Q1: NTA Test 01 (Single Choice)

The radius ratio of KF is 0.98. The structure of KF is of the type

(A) NaCl (B) ZnS

(C) CsCl (D) Graphite

Q2: NTA Test 02 (Single Choice)

How many unit cells are present in a cube shaped ideal crystal of NaCl of mass 1.00 g?

(A) 2.57×10^{21}

(C) 1.28×10^{21} (D) 1.71×10^{21}

Q3: NTA Test 03 (Single Choice)

A body centred cubic lattice is made up of hollow sphere of B. Sphere of solid A are present in hollow sphere of B. Radius of A is half of the radius of B. What is the ratio of total volume of sphere B unoccupied by A in unit cell and volume of unit cell?

(A) $\frac{29\pi\sqrt{3}}{64}$ (B) $\frac{7\pi\sqrt{3}}{64}$

(C) $\frac{19\pi\sqrt{3}}{64}$ (D) $\frac{2\pi\sqrt{3}}{64}$

Q4: NTA Test 04 (Single Choice)

A solid XY has NaCl structure. If radius of X⁺ is 100 pm. What is the radius of Y⁻ ion:

(A) 120 pm (B) 136.6 to 241.6 pm

(C) 136.6 pm (D) 241.6 pm

Q5: NTA Test 05 (Single Choice)

In orthorhombic unit cell the value of a, b and c are respectively 4.2 Å, 8.6 Å and 8.3 Å. Given the molecular mass of the solute is 155 g mol⁻¹ and density is 3.3 g/cc, the number of formula units per unit cell is (Report your answer by rounding up to nearest integer)

(A) 2

(C) 4 (D) 6

Q6: NTA Test 06 (Single Choice)

A crystal made up of particles X, Y, and Z. X forms fcc packing. Y occupies all octahedral voids of X and Z occupies all tetrahedral voids of X. It all particles along one body diagonal are removed, then the formula of the crystal is

 $(A) XYZ_2 (B) X_2YZ_2$

(C) $X_8Y_4Z_5$ (D) $X_5Y_4Z_8$

Q7: NTA Test 07 (Single Choice)

In a hypothetical solid, C atoms are found to form cubical close-packed lattice. A atoms occupy all tetrahedral voids and B atoms occupy all octahedral voids.

A and B atoms are of appropriate size, so that there is no distortion in the CCP lattice of C atoms. Now, if a plane as shown in the following figure is cut, then the cross section of this plane will look like

Q8: NTA Test 09 (Numerical)

Calculate the percentage of packing efficiency in simple cubic unit cell.

Q9: NTA Test 10 (Single Choice)

A body centre cubic lattice is made up of two different types of atoms A and B. Atom A occupies the body centre and B occupying the corner positions. One of the corners is left unoccupied per unit cell. Empirical formula of such a solid is

(A) AB

 $(B) A_2 B_2$

(C) A_5B_7

(D) A_8B_7

Q10: NTA Test 11 (Single Choice)

The radii of Na+ and Cl- ions are 95 pm and 181 pm respectively. The edge length of NaCl unit cell is

(A) 276 pm

(B) 138 pm

(C) 552 pm

(D) 415 pm

Q11: NTA Test 12 (Single Choice)

The number of unit cells present in 39 g of potassium if it crystallizes as body centred cube is (N = Avogadro number, At. Wt. of potassium = 39 g/mol)

(A) $\frac{N}{4}$

(B) $\frac{N}{2}$

(C) $\frac{N}{3}$

(D) N

Q12: NTA Test 13 (Single Choice)

 $r_{Na^+} = 195 \text{ pm}$ and $r_{Cl^-} = 281 \text{ pm}$ in NaCl (rock salt) structure. What is the shortest distance between Na⁺ ions?

(A) 778.3 pm

(B) 673.06 pm

(C) 195.7 pm

(D) 390.3 pm

Q13: NTA Test 14 (Single Choice)

A₂B has antifluorite structure (B forms FCC lattice and A occupies tetrahedral voids). If all ions along any one body diagonal are removed, then new formula of compound will be:

 $(A) A_4 B_5$

(B) A₈B₅

 $(C) A_7 B_6$

(D) $A_8 B_4$

Q14: NTA Test 15 (Single Choice)

Strontium crystallizes in a fcc unit cell with edge length a. It contains 0.2% Frenkel defect and another crystal of Sr contains 0.1% Schottky defect. Density of solid with Frankel defect = d_s and density with Schottky defect = d_s , then

 $(A) d_f = d_s$

(B) $d_f > d_s$

 $(C) d_f < d_s$

(D) $d_f = 2d_s$

Q15: NTA Test 17 (Single Choice)

A metallic element exists in cubic lattice. Each edge of unit cell is 4A The density of metal is 6.25 g/m³. How many unit cells will be present in 100 g of metal?

(A) 1×10^{22}

(B) 2.5×10^{29}

(C) 5×10^{23}

(D) 2×10^{23}

Q16: NTA Test 18 (Single Choice)

The radius ratio of KF is 0.98. The structure of KF is the type.

(A) NaCl

(B) ZnS

(C) CsCl

(D) CaF₂

Q17: NTA Test 19 (Single Choice)

In a compound oxide ion have ccp arrangement, cations A are present in $\frac{1}{8}$ of the tetrahedral voids and cations B occupy $\frac{1}{2}$ of the octahedral voids. What are the formula of the compound?

 $(A) A_2 BO_4$

(B) AB₂O₄

(C) ABO₂

(D) A₂BO₂

Q18: NTA Test 20 (Single Choice)

CsCl crystallises in body centred cubic lattice. If 'a' is its edge length then which of the following expressions is correct?

(A) $r_{Cs^+} + r_{Cl^-} = 3a$

(B) $r_{Cs} + r_{Cl} = \frac{3a}{2}$

(C) $r_{Cs^{+}} + r_{Cl^{-}} = \frac{\sqrt{3}}{2} a$

(D) $r_{Cs^+} + r_{Cl^-} = \sqrt{3}a$

Q19: NTA Test 21 (Single Choice)

 $TIAI(SO_4)_2$. xH_2O is bcc with edge length 'a' = 1.22 nm. If the density of the solid is 2.32 g/cc, then the value of x is (Given: $N_A = 6 \times 10^{23}$, atomtexte weight (in g/mol) TI = 204, AI = 27, S = 32, O = 16, H = 1)

(A)2

(B) 4

(C)47

(D) 70

Q20: NTA Test 22 (Single Choice)

A metal crystallizes into two cubic systems-face centred cubic (fcc) and simple cubic (SC), whose unit cell lengths are 4.5 and 1.5 A respectively. Calculate the ratio of densities of face centred cubic and Simple cubic.

(A) 0.15

(B) 1.44

(C) 2.25

(D) 3.25

Q21: NTA Test 23 (Numerical)

Number of crystal systems having only 2 types of bravais lattices = x, number of crystal system having at least two interfacial angles equal = y and number of crystal systems having all the three edge lengths equal = z. Then find the value of $x \times y \times z$.

Q22: NTA Test 28 (Numerical)

The metal M crystallizes in a body cantered lattice with cell edge 400 pm. The atomic radius of M is

Q23: NTA Test 30 (Single Choice)

One mole crystal of a metal halide of the type MX with molecular weight 119 g having face centered cubic structure with unit cell length 6.58 Å was recrystallized. The density of the recrystallized crystal was found to be 2.44gcm⁻³. The type of defect introduced during the recrystalization may be

(A) additional M+ and X- ions at interstitial sites

(B) Schottky defect

(C) F-centre

(D) Frenkel defect

Q24: NTA Test 31 (Single Choice)

The arrangement of X^- ions around A^+ ion in solid AX is given in the figure (not drawn to scale). If the radius of X^- is 250 pm, the radius of A^+ is

(A) 104 pm

(B) 125 pm

(C) 183 pm

(D) 57 pm

Q25: NTA Test 33 (Single Choice)

What is the simplest formula of a solid whose unit cell has the atom A at each corner, the atom B at each face centre and a C atom at the body centre?

 $(A) A_2 BC$

(B) AB_2C

(C) AB₃C

(D) ABC₂

Q26: NTA Test 35 (Single Choice)

In which of the following crystals alternate tetrahedral voids are occupied?

(A) NaCl

(B) ZnS

(C) CaF₂

(D) Na₂O

Q27: NTA Test 36 (Single Choice)

For $[FeF_6]^{3-}$ and $[CoF_6]^{3-}$, the correct statement is

(A) both are coloured

(B) both are colourless

(C) ${\left[{FeF_6} \right]^{3 - }}$ is coloured and ${\left[{CoF_6} \right]^{3 - }}$ is colourless

(D) $\left[FeF_6\right]^{3-}$ is colourless and

 $[CoF_6]^{3-}$ is coloured

Q28: NTA Test 36 (Single Choice)

The shortest distance between two Na⁺ ions in rock-salt arrangement having edge length equal to $a\sqrt{2}$ picometers is-

(A) 2a

(B) $2a\sqrt{2}$

(C) $\frac{a}{\sqrt{2}}$

(D) a

Q29: NTA Test 37 (Single Choice)

The number of unit cells in 58.5 g of NaCl is approximately

(A) 6×10^{20}

(B) 1.5×10^{23}

(C) 6×10^{23}

(D) 0.5×10^{24}

(D) X₂Y₄Z

Q32: NTA Test 43 (Single Choice)

(C) XY2Z4

CsBr has bcc structure with edge length 4.3 Å . The shortest inter ionic distance in between Cs + and Br is -

(A) 4.3 Å (C) 1.86 Å (D) 3.72 Å

Q33: NTA Test 45 (Numerical)

What is the coordination number of Cs⁺ in CsCl?

Q34: NTA Test 46 (Single Choice)

If the unit cell of a mineral has cubic close packed (ccp) array of oxygen atoms with m fraction of octahedral holes occupied by aluminium ions and n fraction of tetrahedral holes occupied by magnesium ions, m and n, respectively, are

(A) $\frac{1}{2}$, $\frac{1}{8}$ (B) 1, $\frac{1}{4}$ (C) $\frac{1}{2}$, $\frac{1}{2}$ (D) $\frac{1}{4}$, $\frac{1}{8}$

Q35: NTA Test 47 (Single Choice)

The density of KBr is 2.75 g cm^{-3} , length of the unit cell is 654 pm. K = 39, Br = 80, then what can be true about the predicted nature of the solid?

(Given: $N_A = 6.023 \times 10^{23}$)

(A) Solid has face centred cubic system with co-ordination number = 6 (B) Solid has simple cubic system with co-ordination number = 8

(C) Solid has face centred cubic system with co-ordination number (D) None of the above =12

Q36: NTA Test 48 (Single Choice)

Which of the following compounds is metallic and ferromagnetic?

(A) MnO_2 (C) CrO_2 (B) TiO_2 (D) VO_2

Answer Keys

Q1: (C)	Q2 : (A)	Q3: (B)
Q4: (B)	Q5: (C)	Q6: (D)
Q7: (C)	Q8: 52.40	Q9: (D)
Q10: (C)	Q11: (B)	Q12: (B)
Q13: (B)	Q14: (B)	Q15: (B)
Q16: (C)	Q17: (B)	Q18: (C)
Q19: (C)	Q20: (A)	Q21: 24

Q22: 173	Q23: (B)	Q24: (A)
Q25: (C)	Q26: (B)	Q27: (D)
Q28: (D)	Q29: (B)	Q30: (A)
Q31: (D)	Q32: (D)	Q33: 8
Q34: (A)	Q35: (A)	Q36: (C)

Solutions

Q1: (C) CsCl

As $\frac{r_+}{r_-}$ lies in the range 0.732-1.000. Hence the coordination number is 8 and crystal is of CsCl type.

Q2: (A) 2.57×10^{21}

 \therefore Mass of one unit cell = $V \times d$ (V is volume, d is density)

$$= a^3 \times d$$

Also, density = $\frac{z \times at. wt.}{a^3 \times av. no.}$

 $\therefore \text{ Mass of one unit cell} = \frac{a^3 \times z \times at. \text{ wt.}}{a^3 \times av. \text{ no.}}$

 $=\frac{z \times at. wt.}{av. no.}$

 $=\frac{4\times58.5}{6.02\times10^{23}}$ (z = 4 for cubic shape)

 $= 38.87 \times 10^{-23} g$

 \therefore No. of unit cell in 1 g = $\frac{1}{38.87 \times 10^{-23}}$

 $=2.57 \times 10^{21}$

Q3: (B) $\frac{7\pi\sqrt{3}}{64}$

Effective number of atoms of B present in a unit cell = 2

Total volume of B unoccupied by A in a unit cell

$$=2 imesrac{4}{3}\left(ext{R}^{3}- ext{r}^{3}
ight) imes\pi$$

$$=\frac{7}{3}\pi R^3\left(r=\frac{R}{2}\right)$$

Volume of unit cell = a^3

$$\left(\frac{4R}{\sqrt{3}}\right)^3 = \frac{64}{3\sqrt{3}}R^3\left(\sqrt{3}a = 4R\right)$$

Ratio of total volume of sphere B unoccupied by A in unit cell and volume of unit cell = $\frac{7/3\pi R^3}{\frac{64}{3\sqrt{3}}R^3} = \frac{7\pi\sqrt{3}}{64}$

Q4: (B) 136.6 to 241.6 pm

For NaCl like structure. The radius ratio should be 0.414 to 0.732

$$\frac{r^+}{r^-} = \frac{100}{r_{max}^-} = 0.414$$

$$\frac{100}{r_{min}} = 0.732$$

$$\therefore r_{max}^- = 241.6 \ pm$$

$$\therefore \rm r_{\rm min} = 136.6\,\rm pm$$

Q5: (C) 4

$$Z = \frac{V \times N_A \times \rho}{M}$$

 $V = Volume of unit cell = a \times b \times c$

$$= \frac{^{4.2 \, \times \, 8.6 \, \times \, 8.3 \, \times \, 10^{-24} \times \, 6.023 \, \times \, 10^{23} \, \times \, 3.3}}{_{155}} = 3.84 \simeq 4$$

Q6: (D) X₅Y₄Z₈

For fcc, number of X atoms = 4/unit cell

Number of Tetrahedral Voids = Z = 8

Number of Octahedral Voids = Y = 4

Number of atoms removed along one body diagonal = 2X (corner) and 2Z (TVs) and 1 Y (OV at body centre)

... Number of X atoms left =
$$4 - \left(2 \times \frac{1}{8}\right) = \frac{15}{4}$$

Number of Y atom left = $4 - (1 \times 1) = 3$

Number of Z atom left = $8 - (2 \times 1) = 6$

The simplest formula
$$=X_{\frac{15}{4}}Y_3Z_6 \Rightarrow X_{15}Y_{12}Z_{24}$$
 $\Rightarrow X_5Y_4Z_8$

From figure, it is clear that 4 corners and 2 face centers lie on the shaded plane. Therefore, there will be six C atoms, and atoms (marked A) in TVs do not touch other.

Fig (i) is not possible; four atom marked C.

Fig. (ii) is not possible, atoms A in TVs are not shown in figure.

Fig. (iii) is possible, since atoms A in TVs are not touching each other. There are four atoms A on two body diagonals contained in shades plane.

Fig (iv) is not possible, since atoms A in TVs are touching each other.

Q8: 52.40

In simple cubic, packing efficiency

$$= \frac{\text{Volume of one atom} \times 100}{\text{Volume of unit cell}}$$

$$=\frac{\frac{4}{3}\pi r^3}{8r^3}\times 100 = \frac{\pi}{6}\times 100 = 52.4\%$$

where, r = radius of one sphere or atom.

Q9: (D) A₈B₇

There is one A per unit cell

Number of B per unit cell = $\frac{1}{8} \times 7 = \frac{7}{8}$

Empirical formula = $A_1 B_{\frac{7}{8}}$

 $= A_8 B_7$

Q10: (C) 552 pm

NaCl has fcc structure.

In fcc lattice with ions in octahedral voids

$$\mathbf{r}^+ + \mathbf{r}^- = \frac{\mathbf{a}}{2}$$

Where, a = edge length

$$r^{+} = 95 \text{ pm}, r^{-} = 181 \text{ pm}$$

Edge length =
$$2r^{+} + 2r^{-}$$

$$=(2 imes95+2 imes181)~\mathrm{pm}$$

$$= 190 + 362 = 552 \text{ pm}$$

Q11: (B) $\frac{N}{2}$

Potassium has bcc system

Number of mole = 39/39 = 1 mole

1 mole of atoms = 6.022×10^{23} atoms = N

: In bcc system 2 atoms are present in 1 unit cell.

 \therefore N number of atoms are present in $\frac{N}{2}$ unit cells.

Q12: (B) 673.06 pm

The shortest distance between two $Na^+ion=\frac{1}{2}\ face-diagonal$

$$= \tfrac{1}{2} \times \sqrt{2} \left\{ 2 \left(r_{Na^{-}} + r_{cr} \right) \right\}$$

$$=\sqrt{2}(195+281) \text{ pm} = 673.06 \text{ pm}$$

Q13: (B) A₈B₅

On one body diagonal, 2 A-atoms(full contribution) 2 B-atoms $\left(\frac{1}{8} contributions\right)$ lie. So, new formula = $A_{8-2}B_{4-\frac{1}{4}}=A_8B_5$

Q14: (B) $d_{\rm f} > d_{\rm s}$

No effect on density due to Frenkel defect but due to Schottky defect density of solid decrease

Q15: (B)
$$2.5 \times 10^{29}$$

$$d = \frac{\text{weight}}{\text{Total volume}}$$

$$6.25 = \frac{100}{n \times (4 \times 10^{-10})^3}$$

$$\frac{100}{6.25 \times 64 \times 10^{-30}}$$

$$n = 2.5 \times 10^{29}$$

$$6.25 \times 64 \times 10^{-3}$$

$$n = 2.5 \times 10^{29}$$

As $\frac{r_{+}}{r_{-}}$ lies in the range 0.732 - 1.000. Hence co-ordination number is 8 and KF is of CsCl type.

Q17: (B) AB₂O₄

Oxide ions are forming the lattice

Effective number of oxide ions = 4 (ccp)

 \therefore Tetrahedral voids = $2 \times 4 = 8$

And effective number of A atom = $\frac{1}{8} \times 8 = 1$

Number of octahedral voids =4

Effective number of B atom $= \frac{1}{2} \times 4 = 2$

... Molecular formulae = AB2O4

Q18: (C)
$$r_{Cs^{+}} + r_{Cl^{-}} = \frac{\sqrt{3}}{2} a$$

8 chloride ions at 8 corners Cs⁺ cation at body centre along body diagonal there will be one Cs⁺ cation and 2 Cl⁻ ions at ends of body diagonal.

$$2r_{Cs^+}^{} + 2r_{Cl^-}^{} = \sqrt{3}\,a$$

Q19: (C) 47

For any unit cell

$$d = \frac{2 M}{a^3 N_A} \text{ (for BCC, } Z = 2\text{)}$$

$$2.32 = \frac{2 \times M}{6 \times 10^{23} \times (1.22)^3 \times 10^{-21}}$$

$$M = 1264$$

So $423 + x (18) = 1264$
 $x = 47$

Q20: (A) 0.15

face centred cubic unit cell length = 4.5 A

Simple cubic unit cell length = 1.5 A

 $\begin{array}{l} \text{Density in face centred cubic} = \frac{n_1 \times \text{atomic weight}}{V_1 \times \text{Avogadro number}} \\ \text{Density simple cubic (SC)} = \frac{n_2 \times \text{atomic mass}}{V_2 \times \text{Avogardro number}} \end{array}$

$$\frac{D_{fcc}}{D_{bcc}} = \frac{n_1}{n_2} \times \frac{V_2}{V_1}$$

 n_1 for face centred cubic = 4; Also $V_1=a^3=\left(4.5\times 10^{-8}\right)^3$ n_2 for simple cubic = 1; Also $V_2=a^3=\left(1.5\times 10^{-8}\right)^3$

$$rac{D_{fcc}}{D_{sc}} = rac{4 imes (1.5 imes 10^{-8})^3}{1 imes (4.5 imes 10^{-8})^3} = 0.15$$

Q21: 24

x = 2 (Tetragonal, Monoclinic)

y = 6 (except triclinic all the bravis lattices)

z = 2 (Cubic, Rhombohedral)

$$xyz = (2)(6)(2) = 24.00$$

Q22: 173

$$a = 400 \text{ pm}$$

In body central lattice $\sqrt{3}a = 4r$

$$r = \frac{\sqrt{3}a}{}$$

$$r = \frac{\sqrt{3}a}{\frac{4}{3}}$$
$$r = \frac{\sqrt{3}}{4} \times 400$$

$$r=\sqrt{3}\times 100=173~pm$$

Q23: (B) Schottky defect

Calculated density $d=Z\times \frac{moler\;mass}{N_a\times volume}=2.78\;gcm^{-3}$

Is greater then actual density 2.44 gcm⁻³ therefore density decreases and defect is Schottky defect

Q24: (A) 104 pm

$$\begin{array}{l} \frac{r_A^-}{r_x^-} = 0.414 = \frac{r_A^+}{250} \\ r_A^+ = 0.414 \times 250 \ pm = 104 \ pm \end{array}$$

Q25: (C) AB₃C

An atom at the corner of a cube is shared among 8 unit cells. As there are 8 corners in a cube, number of corner atom (A) per unit cell $8 \times \frac{1}{8} = 1$

Face-centred atom in a cube is shared by two unit cells.

As there are 6 faces in a cube, number of face-centred

atom (B) per unit cell $6 \times \frac{1}{2} = 3$

An atom in the body of the cube is not shared by other cells.

... Number of atoms (C) at the body centre per unit cell = 1.

Hence, the formula of the solid is AB3C.

Q26: (B) ZnS

In ZnS structure, sulphides occupy all the lattice points while Zn2+ ions are present in alternative tetrahedral voids.

NaCl has FCC structure and Na+ atom occupied all octahedral hole.

CaF2 has FCC structure and all T-holes will occupied by guest.

Na2O has FCC sturcture and all T-holes will occupied by guest.

Q27: (D) ${\rm [FeF_6]}^{3-}$ is colourless and ${\rm [CoF_6]}^{3-}$ is coloured

In $[CoF_6]^{3-}$ it absorbs red colour light so it shows complementary colour green, while in the case of $[FeF_6]^{3-}$ there is very weak splitting so the light absorbed will be in infrared region so its complementary colour is not in visible region of light hence it appears colourless.

Q28: (D) a

Distance between two Na $^{^{+}}$ is $\frac{1}{\sqrt{2}}$ times of edge length

Q29: (B)
$$1.5 \times 10^{23}$$

58.5 g NaCl = 6×10^{23} molecule (atoms) of NaCl (as NaCl occupies FCC system)

1-unit cell have 4 molecules of NaCl

So, no. of unit cell
$$=\frac{6\times 10^{23}}{4}=1.5\times 10^{23}$$

Q30: (A) Hexagonal

For the given crystal,

$$a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$$

These are the characteristic of a hexagonal system.

Q31: (D) X₂Y₄Z

X is in f.c.c. lattice

Number of atoms = atom at corner $\times \frac{1}{8}$ + atoms at faces $\times \frac{1}{2}$

$$X = 8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$$

Total tetrahedral voids = 8

As y are at T.V.

So
$$Y = 8$$

Number of Octahedra voids = 4

$$Z = \frac{1}{2} \times 4 = 2$$

So
$$X = 4, Y = 8, Z = 2$$

Hence the formula of solid is $X_4Y_8Z_2$ or X_2Y_4Z .

Q32: (D) 3.72 Å

In BCC structure the cations and anions touch along the body diagonal

$$2\left(\mathbf{r}_{cs^{-}} + \mathbf{r}_{Br^{-}}\right) = \sqrt{3} \times 4 \cdot 3 \text{ (Body Diagonal} = \sqrt{3}\mathbf{a}$$
)

$$\rm r_{cs^+} + r_{Br^-} = \frac{1\cdot 732\times 4\cdot 3}{2} = 3\cdot 72~{\rm \AA}$$

Q33: 8

Coordination number is defined as the no. of nearest equidistant neighbours. The coordination number of CsCl is 8..8

Q34: (A) $\frac{1}{2}$, $\frac{1}{8}$

No. of oxygen atoms per unit cell in ccp $=4\left(O^{2-}\right)$

No. of octahedral voids per unit $\text{cell} = 4\left(\text{Al}^{3+}\right)$

No. of Tetrahedral voids per unit $\text{cell} = 8 \left(\text{Mg}^{3+} \right)$

Total negative charge due to oxygen atoms = 8

Net charge must be zero.

$$m4(3) + 2n(8) + 4(-2) = 0$$

3m + 4n = 2

(A)
$$\frac{3}{2} + \frac{4}{8} = 2$$
 is correct.

(B)
$$3 \times 1 + 4 \times \frac{1}{4} = 4 \neq 2$$
 is incorrect.

(C)
$$3 imes \frac{1}{2} + 4 imes \frac{1}{2} = 4 \neq 2$$
 is incorrect

(D)
$$3 \times \frac{1}{4} + 4 \times \frac{1}{8} = \frac{3}{4} + \frac{2}{4} = \frac{5}{4} \neq 2$$
 is incorrect.

Q35: (A) Solid has face centred cubic system with co-ordination number = 6

Given that
$$~~\rho=2.75\,\mathrm{g\,cm}^{-3}$$

we need to find type of unit cell

$$\therefore \ \rho = \frac{Z \times M}{N_A a^3}$$

$$\because \quad Z = \frac{\rho \times N_A \times a^3}{M}$$

$$= \frac{2.75 \times 6.023 \times 10^{23} \times \left(654 \times 10^{-10}\right)^3}{119}$$

 \therefore Z \simeq 4 So fcc unit cell

In FCC 1 atm surrounded by 6 atoms so coordination number is 6.

Q36: (C) CrO_2

Chromium Oxide (CrO_2) is metallic compound and it shows Ferromagnetic property. It is a black synthetic magnetic solid and was once widely used in magnetic tape emulsion.