

IONIC EQUILIBRIUM

	Ξ

S.No.	CONTENTS	Page			
1.	Introduction (pH scale)	131			
2.	Ostwald's dilution law	133			
3.	Explanation of water				
4.	Salts, types of salts and conjugate theory	139			
5.	Hydrolysis of salts	141			
6.	Solubility and solubility product	148			
7.	Few important points	154			
8.	рН	156			
9.	Buffer solution	157			
10.	Indicators	161			
11.	Acid and Base	163			
12.	Exercise-I (Conceptual Questions)	171			
13.	Exercise-II (Previous Years Questions)	183			
14.	Exercise-III (Analytical Questions)	187			
15.	Exercise-IV (Assertion & Reason)	191			

NEET SYLLABUS

IONIC EQUILIBRIUM : ionization of acids and bases, strong and weak electrolytes, degree of ionization, ionization of polybasic acids, acid strength, concept of pH, Hydrolysis of salts (elementary idea)., buffer solutions, Henderson equation, solubility product, common ion effect (with illustrative examples).

OBJECTIVES

After studying this unit, you will be able to :

- Classify acids and bases as weak or strong in terms of their ionization constants;
- Explain the dependence of degree of ionization on concentration of the electrolyte and that of the common ion;
- Describe pH scale for representing hydrogen ion concentration;
- Explain ionisation of water and its dual role as acid and base;
- Describe ionic product (Kw) and pKw for water;
- Appreciate use of buffer solutions;
- Calculate solubility product constant.
- Classify substances as acids or bases according to Arrhenius, Bronsted-Lowry and Lewis concepts;

"If you're not part of the solution, you're part of the precipitate."

Henry J. Tillman

IONIC EQUILIBRIUM

4.0 INTRODUCTION

Formulae :

 $\ln x = \log_e x = 2.303 \log_{10} x = 2.303 \log x$ (i) $\log (x \times y) = \log x + \log y$ (ii) $\log\left(\frac{x}{y}\right) = \log x - \log y$ (iii) (iv) $\log x^{y} = y \log x$ $\log 6 = \log (2 \times 3)$ Ex. (i) $= \log 2 + \log 3$ = 0.3010 + 0.4771 = 0.7781 $\log 30 = \log \left(3 \times 10\right)$ (ii) $= \log 3 + \log 10$ $= \log 0.4771 + 1 = 1.4771$ $\log 1000 = \log 10^3$ (iii) $= 3 \log 10 = 3 \times 1 = 3$

A. Some values of Log : $\log 1 = 0$ $\log 2 = 0.3010$ $\log 3 = 0.4771$ $\log 4 = 0.6020$ $\log 5 = 0.699$ $\log 6 = 0.7781$ $\log 7 = 0.8451$ $\log 8 = 0.9030$ $\log 9 = 0.9542$ $\log 10 = 1$ $\log 11 = 1.04$ $\log 100 = 2$ $\log 1000 = 3$

Some terms which are used in ionic equilibrium : Antilog : Antilog (x) = 10^x

Ex. Antilog (2) = $10^2 = 100$ Antilog (0.3010) = $10^{.3010} = 2$ Antilog [log (2)] = Antilog (0.3010) = 2

pH - Scale : Given by - Sorenson

pH Scale is called Sorenson scale.

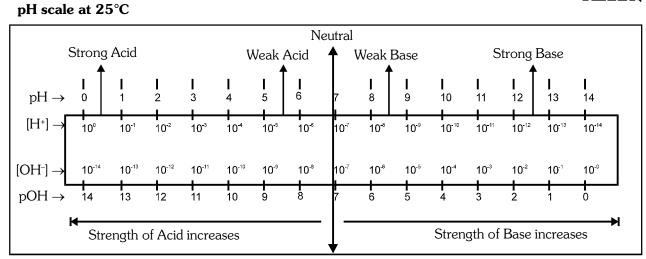
pH scale is a measuring scale used to measure strength of acid and base and its value is equal to $-log[H^+]$

 $pH = -\log[H^+] = \log \frac{1}{\left[H^+\right]}$ $[H^+] = 10^{-3}$

$$pH = -\log 10^{-3} = + 3\log 10 = 3$$

Conclusion :

i.e.


Ex.

 $\label{eq:horizontal} \begin{array}{ll} \mbox{If} & pH = x & \mbox{then} & [H^+] = 10^{-x} & \mbox{or Vice versa} \\ \mbox{i.e.} & \mbox{If} & [H^+] = 10^{-x} & \mbox{then} & pH = x \end{array}$

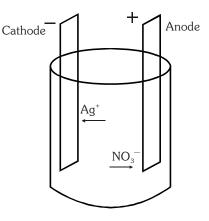
pOH → It is equal to $-\log [OH^-]$ i.e. $pOH = -\log [OH^-] = \log \frac{1}{[OH^-]}$

Ex. If
$$X = \frac{a}{b} \times 10^{-c}$$
, then find pX ?

Sol.
$$pX = -\log X = -\log \left(\frac{a}{b} \times 10^{-c}\right)$$

 $pX = -\left[\log \frac{a}{b} + \log 10^{-c}\right] = -\left[\log a - \log b - c\right]$
 $pX = c + \log b - \log a$

According to conductivity substances are of two types:


(1) Non-Conductor - Those substances which do not show the flow of current or electricity.

Ex. Non - metals, plastic, rubber, wood etc.

Exception – Graphite is a non-metal but show conductivity due to motion of free electrons.

- (2) **Conductors –** Those substances which show conductivity or flow of current are called conductors and these are of two types :
 - (a) Metallic conductor Those conductor which show conductivity due to motion of free electrons.
 Ex. All metals, Graphite
 - (b) Ionic conductors -

Those conductor which show conductivity due to movement of free ions. Ions are in free state in the solutions of ionic compounds. On passing electric current through the solution, ions move towards oppositely charged electrodes, i.e., the cation moves towards cathode (negative electrode) and the anion moves towards anode (positive electrode). Due to this reason, they are called cations and anions respectively. The current flows through the solution due to the movement of the ion Movement of ions through the solution of electrolyte (AgNO₃) towards oppositely charged electrodes.

According to strength, ionic conductors are of two types -

(1) **Strong electrolytes –** Those ionic conductors which are **completely ionized in aqueous solution** are called as strong electrolytes.

For strong electrolyte the value of degree of ionisation is 100% i.e. $\alpha = 1$

(a) Strong acid \rightarrow H₂SO₄, HCl, HNO₃, HClO₄, HBr, HI

- (b) Strong base \rightarrow KOH, NaOH, Ba(OH)₂, CsOH, RbOH
- (c) All Salts \rightarrow NaCl, KCl, CuSO₄.....
- (2) Weak electrolytes Those electrolytes which are partially ionized in aqueous solution are called as weak electrolytes. For weak electrolytes the value of α is less than one.

Ex. (a) Weak acids
$$\rightarrow$$
 HCN, CH₃COOH, HCOOH, H₂CO₃, H₃PO₃, H₃PO₂, B(OH)₃, etc

Z:\NODE02\B0AFB0\TARGET\CHEM\ENG\MODULE-1\4.KONIC EQUILIBRIUM\01-THEORY.P65

Ε

(b) Weak bases \rightarrow NH₄OH, Cu(OH)₂, Zn(OH)₂, Fe(OH)₃, Al(OH)₃ etc.

132

Ex.

4.1 ARRHENIUS CONCEPT :

- (a) According to Arrhenius when an electrolyte dissolves in water it splits up into two oppositely charged particles i.e. cation and anion.
- (b) In an electrolytic solution (Aqueous solution of electrolyte), total +ve charge is equal to total –ve charge i.e. solution is electrically neutral.

 \Rightarrow In an electrolytic solution number of +ve ions may or may not be equal to the number of negative ions.

(c) Properties of an electrolytic solution are defined by its ions.

Ex. Blue colour of $CuSO_4$ aqueous solution is due to Cu^{+2} ion (dark blue colour)

- (d) When electric current is pass in aqueous solution of electrolyte then cation shows migration towards cathode where as anion shows migration towards anode.
- (e) When a weak electolyte is dissolved in water an equilibrium is set up between unionized moles and ionized moles.

This condition of the reversible ionic reaction is known as ionic equilibrium. AB (Aq.) \implies A⁺(Aq.) + B⁻(Aq.)

According to L.M.A.

OSTWALD'S DILUTION LAW

Ionisation constant $K = \frac{\left[A^+\right]\left[B^-\right]}{\left[AB\right]}$

Illustrations

Illustration 1	If $[H^+] = \frac{5}{3} \times 10^{-4}$ then find p	ьΗ?		
Solution	$pH = -\log \left[H^+\right] = -\log \left(\frac{5}{3} \times\right)$	10^{-4}		
	$= -\left[\log \frac{5}{3} + \log 10^{-4}\right] =$	– [log 5 – log 3 – 4]		
	= -[0.699 - 0.4771 - 4	4] = - [- 3.778] = 3.778		
Illustration 2	Assertion : H_2SO_4 is a stron	ng acid.		
	Reason : H_2SO_4 undergoes almost completely ionised in aqueous solution.			
	(1) A	(2) B	(3) C	(4) D
Solution	Ans. (1)			

4.2

 \Rightarrow Ostwald dilution law is applicable only for weak electrolytes.

Statement : According to Ostwald when solution of weak electrolyte is diluted then degree of ionisation of solution is increased, is called dilution law.

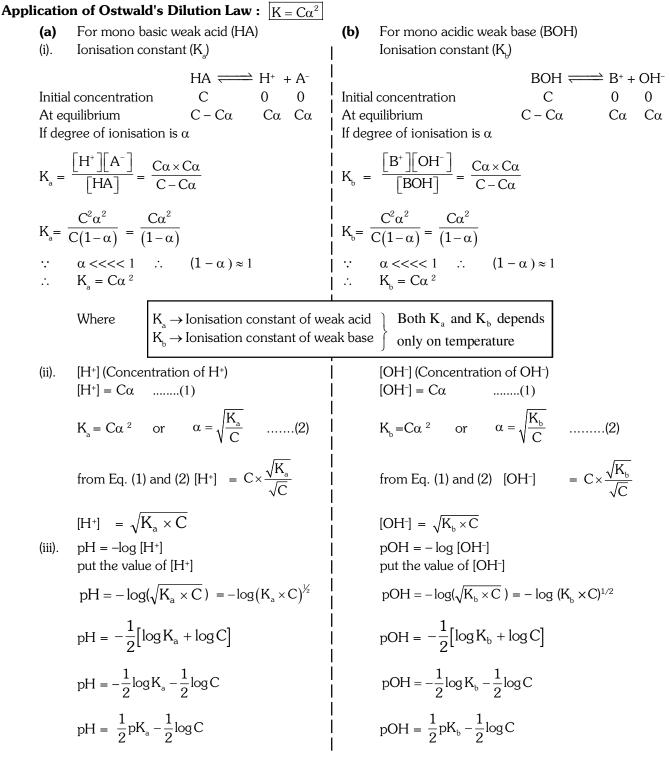
Let Initial concentration	$AB (Aq.) = A^+ (Aq.) + B^- (Aq.)$
Initial concentration Degree of ionisation (α)	$AB (Aq.) \implies A^+ (Aq.) + B^- (Aq.)$ $C \qquad 0 \qquad 0$ $(C - C\alpha) \qquad (C\alpha) \qquad (C\alpha)$
According to L.M.A.	
Ionisation constant	$\mathbf{K} = \frac{\left[\mathbf{A}^{+}\right]\left[\mathbf{B}^{-}\right]}{\left[\mathbf{A}\mathbf{B}\right]}; \ \mathbf{K} = \frac{\mathbf{C}\alpha \times \mathbf{C}\alpha}{\mathbf{C}(1-\alpha)} = \frac{\mathbf{C}\alpha^{2}}{(1-\alpha)}$
If $\alpha <<<<1$ then	$1 - \alpha \simeq 1$
	$K = C\alpha^2$ or $\alpha = \sqrt{\frac{K}{C}}$ (K = constant, At constant temperature)
	$\alpha \propto \frac{1}{\sqrt{C}}$ ($C \propto \frac{1}{V}$) $\alpha \propto \sqrt{V}$
	••

Pre-Medical : Chemistry

volume \equiv dilution

by dilution law

dilution $\uparrow \alpha \uparrow$


At infinite dilution, $\alpha = 100\%$

 $\alpha \propto \sqrt{\text{dilution}}$

Thus for weak electrolytes the degree of ionisation is directly proportional to square root of dilution or inversely proportional to square root of concentration. This law is known as Ostwald Dilution Law.

GOLDEN KEY POINTS

- At infinite dilution the value of α becomes equal to one.
- The value of concentration should be in terms of normality for calculation of pH.

In summary :

1. $K_a = C\alpha^2$

2.
$$[H^+] = C\alpha = \sqrt{K_a \times C}$$

3. $pH = -\log [H^+]$

$$or \qquad pH=\frac{1}{2}pK_{a}-\frac{1}{2}logC$$

Limitation of Ostwald Dilution Law :

It is not applicable for strong electrolytes.

Factors affecting the Value of Degree of ionisation :

- (1) Temperature \rightarrow On increasing temperature, ionization increases so α increases because dissociation is endothermic process.
- (2) Dilution $\rightarrow \alpha \propto \sqrt{V}$ so on dilution, α increases.
- (3) Nature of electrolytes
 - (i) Strong electrolytes (ii) Weak electrolytes $\alpha = 100\% \qquad \qquad \alpha < 100\%$
- (4) Nature of solvent

If Dielectric constant μ of solvent increases then the value of α increases.

$$\begin{split} H_2 O &\rightarrow \mu = 81 \\ D_2 O &\rightarrow \mu = 79 \\ C_6 H_6 &\rightarrow \mu = 2.5 \\ CCl_4 &\rightarrow \mu = 0 \end{split}$$

Mixing of ions :

(a) Common ion effect	(b) Odd ion effect
When a strong electrolyte having a	When a strong electrolyte having a
common ion, is mixed with weak	odd ion, is mixed with weak electrolyte then
electrolyte then the degree of ionisation (\propto)	the degree of ionisation (\propto) of weak
of weak electrolyte is decreased. This	electrolyte is increased. This effect is
effect is called common ion effect.	called odd ion effect.

Common ion : On mixing CH₃COONa with CH₃COOH solution

Initially $CH_3COOH \iff CH_3COO^- + H^+$

(On mixing) $CH_3COONa \longrightarrow CH_3COO^- + Na^+$; $[CH_3COO^-]$ increases so $[H^+]$ decreases respectively.

Odd ion : On mixing, NaOH with CH₃COOH solution

Initially $CH_3COOH \implies CH_3COO^- + H^+$

(On mixing) NaOH \longrightarrow Na⁺ + OH⁻

Due to odd ion effect $H^+ + OH^- \rightarrow Water$

- 1. $K_b = C\alpha^2$
- 2. $[OH^{-}] = C\alpha = \sqrt{K_{b} \times C}$
- 3. $pOH = -\log [OH^{-}]$

or
$$pOH = \frac{1}{2}pK_b - \frac{1}{2}\log C$$

A		

		 Illustration 	s			
Illustration 3 Solution	For which, dilution lav (1) NaCl (SASB salt) (3) CH ₃ COONa (WAS Ans. (4)	w is applicable :	(2) HCl (SA) (4) None			
Illustration 4 Solution	Find out the value of α of 10^{-2} M HCN solution if $[H^+] = 10^{-3}$. $[H^+] = C\alpha$ $10^{-3} = 10^{-2}\alpha$ or $\alpha = \frac{10^{-3}}{10^{-2}} = 10^{-1}$ or $\alpha = 0.1$ $\alpha = 10\%$					
Illustration 5 Solution	For 10 M CH ₃ COOH (i) α (i) α (Degree of ionisation)	solution if $K_a = 10^{-5}$ th (ii) [H ⁺] :- $K_a = C\alpha^2$	en find out : (iii) pH			
	(ii) $[H^+] = C\alpha = 10 \times$ (iii) $pH = -\log [H^+] =$	$-\log 10^{-2} = 2$				
Illustration 6 Solution	Normality = M ×V.F. $[H^+] = C \alpha = 2 \times 10^{-3}$		he value of pH ? log 10 ⁻⁴ = - 0.3010 + 4 =	3.7		
Illustration 7 Solution		HCl does not experiend and HCl are strong ele (2) B		(4) D		

Nature of water is neutral. $[H^+] = [OH^-] [=10^{-7}M \text{ (at } 25^{\circ}C)]$ a. pH = 7 i.e. at 25℃ and pOH = 7pH = pOH*.*.. No. of H_2O moles in 1 litre water = $\frac{1000}{18}$ = 55.5 moles b. Molar concentration of $H_2O = 55.5 \text{ mol } L^{-1}$ c. d. Number of H_2O molecules in 1 litre water = 55.5 N_A (N_A = AVOGADRO'S NUMBER) Concentration of H^+ and OH^- ions in 1 litre water e. $[H^+] = 10^{-7} \text{ mol } L^{-1} \text{ and } [OH^-] = 10^{-7} \text{ mol } L^{-1}$ f. No. of H^+ and OH^- ions in 1 litre water No. of $H^{\scriptscriptstyle +}$ ions = $10^{\scriptscriptstyle -7}N_{_{\rm A}}$ and No. of $OH^{\scriptscriptstyle -}$ ions = $10^{\scriptscriptstyle -7}\,N_{_{\rm A}}$ In water (Number of H_2O molecules : Number of H^+ ions) g. $= 55.5 \text{ N}_{\text{A}} : 10^{-7} \text{ N}_{\text{A}}$ $= 55.5 \times 10^7 : 1$ i.e. one $H^{\scriptscriptstyle +}$ ion is obtained from $55.5\times 10^7 M_{_{2}}O$ molecules

h. Degree of ionisation of water (α) :

 $H_2O \longrightarrow H^+ + OH^-$

According to Ostwald's dilution law

$$[H^+] = c \alpha$$

$$\alpha = \frac{10^{-7}}{55.5} = 1.8 \times 10^{-9}$$

$$\alpha = 1.8 \times 10^{-7} \%$$

Hence, water is a very weak electrolyte.

i. K (Ionisation constant of water) :

$$H_2O \rightleftharpoons H^+ + OH^-$$

$$K = \frac{\left[H^{+}\right]\left[OH^{-}\right]}{\left[H_{2}O\right]}$$
$$K = \frac{10^{-7} \times 10^{-7}}{55.5} \qquad \text{or} \qquad \overline{K = 1.8 \times 10^{-16}}$$

j. Ionic product of water K_w :

$$H_{2}O \xrightarrow{} H^{+} + OH^{-}$$
$$K = \frac{\left[H^{+}\right] \cdot \left[OH^{-}\right]}{\left[H_{2}O\right]}$$

$$\mathsf{K} \times [\mathsf{H}_2\mathsf{O}] = [\mathsf{H}^+] [\mathsf{O}\mathsf{H}^-]$$

Since, dissiociation takes place to a very small extent, $[H_2O]$ may be regarded as constant.

Thus, the product $K \cdot [H_2O]$ gives another constant which designated as K_{w_i} . So,

$$\begin{split} \hline K_{W} &= [H^{+}] [OH^{-}] \end{split}$$

$$At 25^{\circ}C - K_{W} &= 10^{-7} \times 10^{-7} = 10^{-14}$$

$$K [H_{2}O] &= K_{W} \Rightarrow \boxed{K_{W} > K} \qquad (always)$$

Various forms of K_{W}

(a)
$$K_W = [H^+] [OH^-]$$
 for water $[H^+] = [OH^-]$

(b)
$$K_W = [H^+]^2$$

(c)
$$K_W = [OH^-]^2$$

(d)
$$K_W = [H_3O^+] [OH^-]$$

(e)
$$K_W = [H_3O^+]^2$$
 { $[H_3O^+] = [H^+]$ }

Hydronium ion Proton

• Relation in between pH and pOH :

$$\begin{split} K_{W} &= [H^{+}] \ [OH^{-}] \\ taking -log on both sides \\ -log K_{W} &= -log \ [H^{+}] - log \ [OH^{-}] \end{split}$$

 $pK_w = pH + pOH$

Nature of water is neutral so,

 $\begin{bmatrix} pH = pOH \end{bmatrix}$ $pK_{w} = pH + pH$ $pK_{w} = pOH + pOH$ $2pH = pK_{w}$ $pH = \frac{pK_{w}}{2}$ $\begin{bmatrix} pH = pOH = \frac{pK_{w}}{2} \end{bmatrix}$ $POH = \frac{pK_{w}}{2}$ $FH = pOH = \frac{pK_{w}}{2}$ $FH = pOH = \frac{pK_{w}}{2}$ FH = pOH = 14 or pH = pOH = 7

k. Effect of temperature :-

 $H_{2}O \rightleftharpoons H^{+} + OH^{-}$

Ionization of water is endothermic process so, on increasing temperature α increases or [H⁺] and [OH⁻] increases or [H⁺][OH⁻] increases i.e. K_w increases means pH decreases or pOH decreases.

 $T\uparrow = \alpha\uparrow = [H^{\scriptscriptstyle +}] \ [OH^{\scriptscriptstyle -}]\uparrow = K_{_W}\uparrow \Rightarrow pK_{_W}\downarrow$

At 25° C, $K_W = 10^{-14}$ At 90° C, $K = 10^{-12}$

Parameters	At 25°C	At90°C
K _w pK _w	10-14	10-12
рК _w	14	12
$pH = \frac{pK_w}{2} = pOH$	7	6
$[H^+] = [OH^-] = \sqrt{K_w}$	10-7	10-6
$pH + pOH = pK_w$	14	12

GOLDEN KEY POINTS

On increasing temperature, both [H⁺] and [OH⁻] increases equally so water remains neutral but neutral pH changes from 7 to 6 at 90°C.

	Illustrations						
Illustrati	Illustration 8 Dissociation constant of water at 25° C is						
	(1) 1	$0^{-14} \times (55.5)^{-1}$	(2) $10^{-7} \times (18)^{-1}$	(3) $10^{-14} \times (18)^{-1}$	(4) $10^{-7} \times (55.4)^{-1}$		
Solution	Ans.	(1)					
Illustrati	ustration 9 What should be the number of H ⁺ ions in 1 mL of distilled water, if the number of H ⁺ ions in 1 L is 6.023×10^{16} ?						
Solution	Solution Number of H ⁺ ions in 1 mL distilled water = $\frac{6.023 \times 10^{16}}{1000} = 6.023 \times 10^{13}$						
BEGINNER'S BOX-1							
1. The	e pH of a 0.00	$0.5 \text{ MH}_2\text{SO}_4 \text{ solution}$	is–				
(1)	3.3	(2) 5.0	(3) 2.0	(4)) 4.0		
2. If p	2. If pure water has $pK_w = 13.36$ at 50°C, the pH of pure water will be-						
(1)	6.68	(2) 7.0	(3) 7.13	3 (4)) 6.0		

ALI				Pre-Medical : Chemistry			
3.	How many H+ions are p	present in 1 ml of a solutio	n whose pH is 13 ?				
	(1) 10 ⁻¹⁶	(2) 6.022 × 10 ¹³	(3) 6.022 ×10 ⁷	(4) 6.022×10^{23}			
4.	The pH of solutions A, B, C and D are 9.5, 2.5, 3.5 and 5.5 respectively. The most acidic solution is–						
	(1) D	(2) C	(3) A	(4) B			
5.	Calculate the concentration of the formate ion present in 0.100 M formic acid (HCOOH) solution at equilibrium ($K_a = 1.7 \times 10^{-4}$).						
	(1) 4.1×10^{-3} M	(2) 3.1 × 10 ⁻³ M	(3) 2.1 ×10 ⁻³ M	(4) 5.1 ×10 ⁻³ M			
6.	6. Which of the following is the weakest acid ?						
	(1) Phenol (K _a = 1.3×1	0 ⁻¹⁰)	(2) Hydrocyanic acid (K _a	$= 4.9 \times 10^{-10}$)			
(3) Acetic acid ($K_a = 1.8 \times 10^{-5}$) (4) Benzoic acid (5 × 10 ⁻⁵)			
7.	The pH of 0.1 M mono	basic acid is 4.50. The acid	lity constant (K _a) of the mo	onobasic acid is-			
	(1) 1.0×10^{-7}	(2) 1.0 ×10 ⁻⁵	(3) 1.0 ×10 ⁻⁴	(4) 1.0 × 10 ⁻⁸			
8.	Which of the following is	s the strongest base ?					
	(1) $C_6 H_5 N H_2$ (pK _b = 9.4	2)	(2) $C_6 H_5 NHCH_3$ (pK _b =	9.15)			
	(3) $C_6 H_5 N (CH_3)_2 (pK_b = 8)$	8.94)	(4) $C_6 H_5 NHC_2 H_5$ (pK _b =	8.89)			
9.	• Value of dissociation constant of acetic acid is 10 ⁻⁶ , where as dissociation constant of formic acid is 10 ⁻⁵ . Which of the following will be the value of pKa (acetic acid) - pKa (formic acid)						
	(1) 10	(2) +1	(3) 10 ⁻¹	(4)-1			
10.	A solution has pOH equ	al to 13 at 298 K. The sol	ution will be				
	(1) highly acidic	(2) highly basic	(3) moderately basic	(4) unpredictable			
11.	What would be [H+] of 0	.006 M benzoic acid (K =	6 × 10 ⁻⁵)				
	(1) 0.6 × 10 ⁻⁴	(2) 6 ×10 ⁻⁴	(3) 6 ×10 ⁻³	(4) 3.6 ×10 ⁻⁴			

4.4 SALTS, TYPES OF SALT AND CONJUGATE THEORY

(A) **SALT**: Salts are regarded as compounds made up of positive and negative ions. The positive part comes from a base while negative part from an acid. Salts are ionic compounds.

i.e. A compound formed by the combination of acid and base is known as salt.

Acid + Base \rightarrow Salt + Water; $\Delta H = -ve$

HCl + NaOH \rightarrow NaCl (Salt) + H₂O

(B) TYPES OF SALT

(a) Normal/general salts :- The salts formed by the loss of all possible protons. (replaceable hydrogen ions as H⁺) are called normal salts. Such a salt does not contain either a replaceable hydrogen ion or a hydroxyl (OH⁻) group.

Ex.: NaCl, NaNO₃, K_2SO_4 , Ca₃(PO₄)₂, Na₂HPO₃, NaH₂PO₂ etc.

(b) Acid salts :- Salts formed by incomplete neutralisation of poly basic acids are called acid salts. Such salts still contain one or more replaceable hydrogen ions (H⁺).

 $\textbf{Ex.:} \text{NaHCO}_3, \text{NaHSO}_4, \text{NaH}_2\text{PO}_4, \text{Na}_2\text{HPO}_4 \text{ etc.}$

(c) Basic salts :- Salts are formed by incomplete neutralisation of poly acidic base are called basic salts. Such salts still contain one or more hydroxyl ion group.

Ex.: Zn(OH)Cl, Mg(OH)Cl, Fe(OH)₂Cl, Bi(OH)₂Cl etc.

Z:\NODE02\B0A+B0\TARGET\CHEM\ENG\WODULE-1\4,IONIC EQUILBRIUM\01-THEORY.P65

Pre-Medical : Chemistry

(d) **Double salts :-** The addition compounds formed by the combination of two simple salts are termed double salts. Such salts are stable in solid state only i.e. when dissolved in water they break into simple ions.

Ex.: $FeSO_4$. $(NH_4)_2SO_4$. $6H_2O$, K_2SO_4 . $Al_2(SO_4)_3$.24 H_2O etc. (Ferrous ammonium sulphate) (Potash alum)

(e) **Complex salts :-** These salts when dissolved in water give complex ions. Complex ions are stable in solid state as well as in solutions.

Ex.: $K_4[Fe(CN)_6]$, $[Co(NH_3)_6]SO_4$, $[Ag(NH_3)_2Cl$ etc.

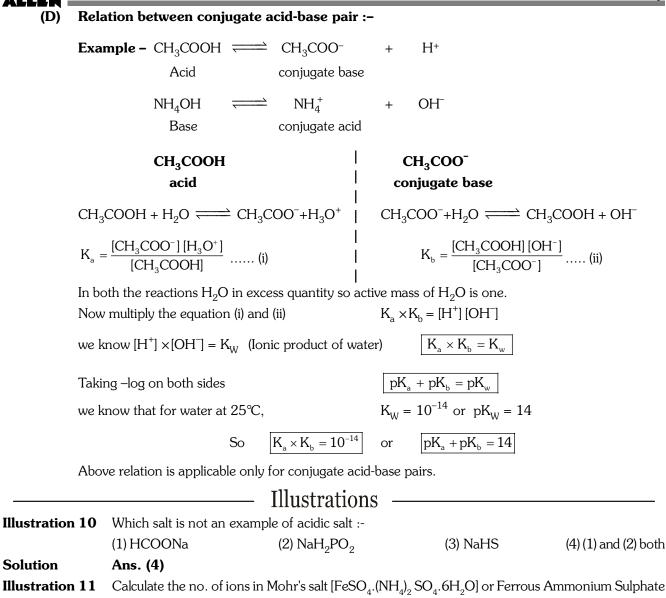
(f) Mixed salts :- The salts which furnishes more than one type of cations or more than one type of anions when dissolved in water are called mixed salts.

These are formed by the neutralisation of more than one acids and bases.

Ex. (i)
$$H_2 \underset{\text{acid}}{\text{SO}_4} + \underset{\text{base}}{\text{NaHSO}_4} - M_2 \underset{\text{acidic salt}}{\text{NaHSO}_4} + H_2 O$$

 $\underset{\text{acidic salt}}{\text{NaHSO}_4} \ + \ \underset{\text{base}}{\text{KOH}} \ \longrightarrow \ \underset{(\text{mixed salt})}{\text{NaKSO}_4} \ \longrightarrow \ \underset{(\text{more than two radicals})}{\text{Na}^+ K^+ SO_4^{-2}}$

	∠OCl		Na	Na
(ii)	Ca	(iii)	>s	(iii) $NH_4 \rightarrow PO_4$
	`Cl		K⁄	H⁄


(a) Types of general salts :

	(i) SASB	(ii) SAWB	(iii) WASB	(iv) WAWB
--	----------	-----------	------------	-----------

(C) Conjugate acid-base pair :

- (i) Conjugate acid-base pairs means difference between two species of only one H⁺ ion.
- (ii) When an acid loses a proton, the residual part of it has a tendency to regain a proton. Therefore it behaves as a base.

Note : Strong acids have weak conjugate bases while weak acids have strong conjugate bases. Similarly, strong bases have weak conjugate acids while weak bases have strong conjugate acids.

Solution FeSO₄. (NH₄)₂SO₄. $6H_2O \longrightarrow Fe^{+2} + SO_4^{-2} + 2NH_4^{+} + SO_4^{-2} + 6H_2O$ Total number of ions = 5

4.5. HYDROLYSIS OF SALTS

Salt hydrolysis is defined as the process in which water reacts with cation or anion or both of a salt to change the concentration of H^+ and OH^- ions of water.

Salt hydrolysis is reverse process of neutralization.

Water + Salt \rightleftharpoons Acid + Base ; $\Delta H = +ve$

(A) Hydrolysis of strong acid and strong base [SA - SB] types of salt -

Ex. NaCl, BaCl₂, Na₂SO₄, KClO₄, BaSO₄, NaNO₃, KBr, KCl etc.

 $Na^+ + Cl^- + H_2O \longrightarrow Na^+ + OH^- + H^+ + Cl^-$

- $H_2O \rightleftharpoons H^+ + OH^-$ (It is not salt hydrolysis)
- (i) Hydrolysis of salt of [SA SB] is not possible as both cation and anion are not reactive.
- (ii) Aqueous solution of these type of salt is neutral in nature. (pH = pOH = 7)
- (iii) pH of the solution is 7.

(iv) No effect on litmus paper.

- (B) Hydrolysis of strong acid and weak base [SA WB] types of salt -
 - Ex. CaSO₄, NH₄Cl, (NH₄)₂SO₄, Ca(NO₃)₂, ZnCl₂, CuCl₂, CaCl₂, AgCl, AgI, AgNO₃ etc

$$NH_4Cl + H_2O \implies NH_4OH + HCl$$

WB SA

$$NH_4^++Cl^- + H_2O \implies NH_4OH + H^+ + Cl^-$$

$$NH_4^+ + H_2O \implies NH_4OH + H^+$$

- (i) In this type of salt hydrolysis, cation reacts with H_2O therefore called as cationic hydrolysis. The cation of the salt which has come from weak base is reactive.
- (ii) Solution is acidic in nature as $[H^+]$ is increased.
- (iii) pH of the solution is less than 7.
- (iv) Solution turns blue litmus paper red.

 - C = Concentration of salt (concentration of ions)

(a) Relation between K_h , K_w and K_b

 B^+ + H_2O \implies BOH + H^+ NH_4^+ + H_2O \implies NH_4OH + H^+ Hudrobusic constant [K]

Hydrolysis constant
$$[K_h]$$

$$K_{h} = \frac{[NH_{4}OH][H^{+}]}{[NH_{4}^{+}]} \qquad \dots \dots \dots (1)$$

For weak Base

$$NH_4OH \implies NH_4^+ + OH^-$$

For water

$$H_2O \rightleftharpoons H^+ + OH^-$$

$$K_W = [H^+] [OH^-] \qquad \dots \dots \dots (3)$$

Now mutiplying Eq. (1) and (2) = Eq. (3)

 $K_{h} \times K_{h} = K_{w}$

$$\frac{\left[\mathrm{NH}_{4}\mathrm{OH}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]} \times \frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4}\mathrm{OH}\right]} = [\mathrm{H}^{+}][\mathrm{OH}^{-}]$$

i.e.

$$K_{\rm h} = \frac{K_{\rm W}}{K_{\rm b}} \qquad \dots \dots \dots (4)$$

(b) Degree of hydrolysis – Represented by h

Initial concentration of salt C = Ch Ch Ch Ch

$$K_{h} = \frac{\lfloor NH_{4}OH \rfloor \lfloor H^{+} \rfloor}{\lfloor NH_{4}^{+} \rfloor} = \frac{Ch \times Ch}{C - Ch} = \frac{C^{2}h^{2}}{C(1 - h)} = \frac{Ch^{2}}{(1 - h)}$$

h <<<< 1 then (1 - h) \approx 1

ALLEN

Since

ALLEN ____

(c) **pH of the solution :**
$$pH = -\log [H^+]$$

$$[H^{+}] = Ch = C \sqrt{\frac{K_{w}}{K_{b} \times C}} \qquad \Rightarrow \qquad [H^{+}] = \sqrt{\frac{K_{w} \times C}{K_{b}}} \qquad (8)$$

taking – log on both sides
$$-\log [H^{+}] = -\log \sqrt{\frac{K_{w} \times C}{K_{b}}} \qquad \Rightarrow \qquad pH = -\log \left(\frac{K_{w} \times C}{K_{b}}\right)^{\frac{1}{2}}$$

$$pH = -\frac{1}{2} \left[\log K_{w} + \log C - \log K_{b}\right]$$

$$pH = -\frac{1}{2} \log K_{w} - \frac{1}{2} \log C - \frac{1}{2} (-\log K_{b})$$

$$pH = \frac{1}{2}pK_{w} - \frac{1}{2}\log C - \frac{1}{2}pK_{b}$$

$$\boxed{pH = 7 - \frac{1}{2}pK_{b} - \frac{1}{2}\log C} \qquad (9)$$

- (C) Hydrolysis of weak acid and strong base [WA SB] types of salt -
 - **Ex.** CH₃COONa, HCOONa, KCN, NaCN, K₂CO₃, BaCO₃, K₃PO₄etc.

$$\begin{array}{ccc} CH_{3}COONa + H_{2}O & \Longrightarrow & CH_{3}COOH + NaOH \\ CH_{3}COO^{-} + Na^{+} + H_{2}O & \Longrightarrow & CH_{3}COOH + Na^{+} + OH^{-} \\ CH_{3}COO^{-} + H_{2}O & \longleftrightarrow & CH_{3}COOH + OH^{-} \end{array}$$

- (i) In this type of salt hydrolysis, anion reacts with water therefore called as anionic hydrolysis. The anion of the salt which has come from weak acid is reactive.
- (ii) Solution is basic in nature as [OH⁻] increases.
- (iii) pH of the solution is greater than 7.
- (iv) Solution turns red litmus paper blue.
- (a) Relation between K_h , K_w and K_a

$$CH_3COO^- + H_2O \implies CH_3COOH + OH^-$$

$$K_{h} = \frac{\left[CH_{3}COOH\right]\left[OH^{-}\right]}{\left[CH_{3}COO^{-}\right]} \qquad \dots \dots \dots (1)$$

For weak acid

$$CH_{3}COOH \iff CH_{3}COO^{-} + H^{+}$$

$$K_{a} = \frac{\left[CH_{3}COO^{-}\right]\left[H^{+}\right]}{\left[CH_{3}COOH\right]} \qquad \dots \dots (2)$$

143

For water

 $H_{2}O \rightleftharpoons H^{+} + OH^{-}$ $K_{_W}=[H^{\scriptscriptstyle +}]\,[OH^{\scriptscriptstyle -}]$(3) Now multiply eq. (1) \times eq. (2) = eq. (3)

$$\frac{\left[CH_{3}COOH\right]\left[OH^{-}\right]}{\left[CH_{3}COO^{-}\right]} \times \frac{\left[CH_{3}COO^{-}\right]\left[H^{+}\right]}{\left[CH_{3}COOH\right]} = [H^{+}][OH^{-}]$$

$$K_{h} \times K_{a} = K_{w}$$

$$K_{h} = \frac{K_{w}}{K_{a}}$$
.....(4)

(b) Degree of hydrolysis (h) :

 $CH_3COO^- + H_2O \Longrightarrow CH_3COOH$ + 0H-Initial concentration of salt С 0 C – Ch Ch $K_{h} = \frac{\left[CH_{3}COOH\right]\left[OH^{-}\right]}{\left[CH_{3}COO^{-}\right]} = \frac{Ch \times Ch}{C - Ch} = \frac{C^{2}h^{2}}{C(1-h)}$ $K_{h} = \frac{Ch^{2}}{\left(1 - h\right)}$ Since h <<<< 1 then $(1 - h) \approx 1$ $K_h = Ch^2$ *:*..(5)

$$h^{2} = \frac{K_{h}}{C}$$
 or $h = \sqrt{\frac{K_{h}}{C}}$ (6)

$$h = \sqrt{\frac{K_{W}}{K_{a} \times C}}$$
(7)

(c) pH of the solution

 $[OH^{-}] = Ch$

$$[OH^{-}] = C \times \sqrt{\frac{K_{W}}{K_{a} \times C}} \quad \text{or} \quad [OH^{-}] = \sqrt{\frac{K_{W} \times C}{K_{a}}} \quad \dots \dots (8)$$

taking – log on both sides

$$-\log [OH^{+}] = -\log \left(\frac{K_{w}.C}{K_{a}}\right)^{\frac{1}{2}}$$

$$pOH = -\frac{1}{2} [\log K_{w} + \log C - \log K_{a}]$$

$$pOH = \frac{1}{2} pK_{w} - \frac{1}{2} pK_{a} - \frac{1}{2} \log C \text{ or } pOH = 7 - \frac{1}{2} pK_{a} - \frac{1}{2} \log C$$

$$\therefore pH + pOH = 14$$

$$pH = 14 - pOH$$

$$\therefore pH = 7 + \frac{1}{2} pK_{a} + \frac{1}{2} \log C \qquad \dots \dots (9)$$

ALLEN

0

Ch

Hydrolysis of weak acid and weak base (WA - WB) type of salt : (D)

 $\mathsf{CH}_3\mathsf{COONH}_4\,,\,\mathsf{AgCN},\,\mathsf{NH}_4\mathsf{CN},\,\mathsf{CaCO}_3,\,[\mathsf{NH}_4]_2\mathsf{CO}_3,\,\mathsf{ZnHPO}_3\,\mathsf{etc}.$ Ex.

 $CH_3COONH_4 + H_2O \implies CH_3COOH_4 + NH_4OH_{WB}$

 $CH_3COO^- + NH_4^+ + H_2O \implies CH_3COOH + NH_4OH$

- Maximum hydrolysis occurs of the salt of (WA WB) as both the cation and anion are reactive. (i)
- (ii) Solution is almost neutral but it may be acidic or basic depending upon the nature of acid base
- pH of the solution is near to 7. (iii)

For WA - WB types of salt :

	Terms	$K_a > K_b$	$K_{b} > K_{a}$	$\mathbf{K}_{a} = \mathbf{K}_{b}$
1.	Hydrolysis	Cationic-anionic	Anionic-cationic	Neutral hydrolysis
2.	Nature	Acidic	Basic	Neutral
3.	рН	pH < 7	pH > 7	pH = 7

(a) Relation between K_h, K_w, K_a and K_b

 $CH_3COO^- + NH_4^+ + H_2O \implies CH_3COOH + NH_4OH$

$$K_{h} = \frac{\left[CH_{3}COOH\right]\left[NH_{4}OH\right]}{\left[CH_{3}COO^{-}\right]\left[NH_{4}^{+}\right]} \qquad \dots \dots \dots (1)$$

For weak base

$$NH_4OH \rightleftharpoons NH_4^+ + OH^-$$

For weak acid

 $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$

$$K_{a} = \frac{\left[CH_{3}COO^{-}\right]\left[H^{+}\right]}{\left[CH_{3}COOH\right]} \qquad \dots \dots (3)$$

For water

$$H_2O \rightleftharpoons H^+ + OH^-$$

 $K_w = [H^+] [OH^-]$ (4)

Multiply Eq. (1) \times Eq. (2) \times Eq. (3) = Eq. (4)

145

Pre-Medical : Chemistry

(b) Degree of hydrolysis (h) -

$$\begin{array}{rcl} CH_{3}COO^{-} &+ & NH_{4}^{+} + H_{2}O & \Longrightarrow & CH_{3}COOH &+ & NH_{4}OH \\ Initial concentration of salt & C & C & 0 & 0 \\ C - Ch & C - Ch & Ch & Ch \\ K_{h} = \frac{\left[CH_{3}COOH\right]\left[NH_{4}OH\right]}{\left[CH_{3}COO^{-}\right]\left[NH_{4}^{+}\right]} &= \frac{Ch \times Ch}{(C - Ch)(C - Ch)} = \frac{C^{2}h^{2}}{C(1 - h) \times C(1 - h)} \\ Since & h <<<<1 & then (1 - h) \approx 1 \\ \therefore & \left[K_{h} = h^{2}\right] & \dots (6) \end{array}$$

or
$$h^2 = \frac{K_W}{K_a \times K_b}$$
 or $h = \sqrt{\frac{K_W}{K_a \times K_b}}$ (7)

(c) pH of the solution

from equation (3)

$$K_{a} = \frac{\left[CH_{3}COO^{-}\right]\left[H^{+}\right]}{\left[CH_{3}COOH\right]}$$

$$\begin{bmatrix} H^{+} \end{bmatrix} = \frac{K_{a} \times \begin{bmatrix} CH_{3}COOH \end{bmatrix}}{\begin{bmatrix} CH_{3}COO^{-} \end{bmatrix}} = \frac{K_{a} \times Ch}{C - Ch} = \frac{K_{a} \times h}{1 - h}$$

Since

 $\label{eq:h} \begin{array}{ll} h<<<<1 & then \\ [H^+] &=K_{_a}\times h \end{array} \quad [Now put the value of h from eq. (5)] \end{array}$

$$= K_{a} \times \sqrt{\frac{K_{w}}{K_{a} \times K_{b}}}$$

$$\left[H^{+} \right] = \sqrt{\frac{K_{w} \times K_{a}}{K_{b}}} \qquad \dots \dots (8)$$

taking – log on both sides – log $[H^+] = -\log \left(\frac{K_W \times K_a}{K_b}\right)^{\frac{1}{2}}$

$$pH = -\frac{1}{2} \left[\log (K_w \times K_a) - \log K_b \right]$$

$$pH = -\frac{1}{2} \left[\log K_w + \log K_a - \log K_b \right]$$

$$pH = -\frac{1}{2} \left[\log K_w \right] -\frac{1}{2} \left[\log K_a \right] -\frac{1}{2} \left[-\log K_b \right]$$

$$pH = +\frac{1}{2} pK_w + \frac{1}{2} pK_a -\frac{1}{2} pK_b$$

$$pH = 7 + \frac{1}{2} pK_a - \frac{1}{2} pK_b$$
.....(9)

ALLEN

146

ALLEN -

GOLDEN KEY POINTS

Degree of hydrolysis, pH of weak acid and weak base [WA – WB] type salts do not depend on the concentration • of salt.

•		SA SB salts	SA WB salts	WA SB salts	WA WB salts		
	1.	Neutral	Acidic	Basic	Almost neutral		
		solution	solution	solution	solution		
	2.	No hydrolysis	Cationic hydrolysis	Anionic hydrolysis	Hydrolysis by both cation and anion		
	3.	-	$K_{\rm h} = \frac{K_{\rm W}}{K_{\rm b}}$	$K_{\rm h} = \frac{K_{\rm W}}{K_{\rm a}}$	$K_{\rm h} = \frac{K_{\rm W}}{K_{\rm a} \times K_{\rm b}}$		
	4.	-	$h = \sqrt{\frac{K_{\rm W}}{K_{\rm b}.C}}$	$h = \sqrt{\frac{K_{w}}{K_{a}.C}}$ $\left[OH^{-}\right] = C.h = \sqrt{\frac{K_{w}.C}{K_{a}}}$	$h = \sqrt{\frac{K_{w}}{K_{a}.K_{b}}}$		
	5.	_	$\left[H^{+}\right] = C.h = \sqrt{\frac{K_{w}.C}{K_{b}}}$	$\left[OH^{-}\right] = C.h = \sqrt{\frac{K_{w}.C}{K_{a}}}$	$\left[H^{+}\right] = K_{a}.h = \sqrt{\frac{K_{w}.K_{a}}{K_{b}}}$		
	6.	_	$pH = 7 - \frac{1}{2} pK_{b} - \frac{1}{2} \log C$	$pH = 7 + \frac{1}{2} pK_a + \frac{1}{2} \log C$	$pH = 7 + \frac{1}{2} pK_a - \frac{1}{2} pK_b$		
			Illustra	tions			
Illus	tratio			solution? Ka of acetic acid = 1			
6 alu		(1) 2.4	(2) 3.6	(3) 4.8	(4) 9.4		
Solu	llion	Ans. (4)					
Illus	tratio	on 13 Calculate	the degree of hydrolysis of a	a mixture containing 0.1N N	H_4OH and 0.1N HCN		
		u	0^{-5} and $K_{\rm b} = 10^{-5}$				
Solu	ition	Salt is [W	/A – WB]				
		$h = \sqrt{\frac{l}{K_a}}$	$\frac{\overline{K_{W}}}{\times K_{b}} = \sqrt{\frac{10^{-14}}{10^{-5} \times 10^{-5}}} = \sqrt{1}$	$\overline{0^{-14} \times 10^{+10}} = \sqrt{10^{-4}} = 10^{-2}$:		
Illus	tratio	on 14 Assertio	on : An aqueous solution of	NH_4NO_3 is acidic in characte	ers.		
		Reason	: NH_4NO_3 in an aqueous so	lution undergoes anionic hyd	rolysis.		
		(1) A	(2) B	(3) C	(4) D		
Solu	ition	Ans. (3)					
BEGINNER'S BOX-2							
	1. When sodium acetate (CH ₃ COONa) is added to aqueous solution of acetic acid (CH ₃ COOH), the–						
1.	Whe	en sodium acetate	e (CH ₃ COONa) is added to ac	fueous solution of acetic acid	(CH_3COOH) , the-		
1.		en sodium acetate he pH value beco	0	(2) pH value remains uncha	0		
1.	(1) t		mes zero		0		
	(1) t (3) r	he pH value beco bH value decrease	mes zero Is	(2) pH value remains uncha (4) pH value increases	0		
1. 2.	(1) t (3) r Whi	he pH value beco pH value decrease ich of the followin	mes zero s g cations is not hydrolyzed ir	(2) pH value remains uncha (4) pH value increases n aqueous solution ?	anged		
	(1) t (3) p Whi (i) M	he pH value beco pH value decrease ich of the followin Ig ²⁺	mes zero s g cations is not hydrolyzed ir (ii) Ca ²⁺	(2) pH value remains uncha (4) pH value increases n aqueous solution ? (iii) Na+ (anged (iv) K+		
	(1) t (3) p Whi (i) M	he pH value beco pH value decrease ich of the followin	mes zero s g cations is not hydrolyzed ir	(2) pH value remains uncha (4) pH value increases n aqueous solution ? (iii) Na+ (anged		

Pre	-Medical : Chemis	try			
3.	Which of the anions i	s not hydrolyzed in aque	ous solution ?	~	
	(i) Cl⁻	(ii) NO ₃ ⁻	(iii) Br-	(iv) ClO ₄ ⁻	
	(1) (i), (ii), (iii), (iv)	(2) (ii), (iii), (iv)	(3) (i), (ii), (iii)	(4) (ii), (iv)	
4.	Which of the followin	g salts does not undergo	hydrolysis ?		
	(1) KCN	(2) KCl	(3) NH ₄ NO ₃	(4) $\operatorname{FeCl}_{3}.6H_{2}O$	
5.	Which of the followin	g salts undergoes anioni	c hydrolysis ?		
	(1) AlCl ₃	(2) CuSO ₄	(3) Na ₂ CO ₃	(4) NH ₄ Cl	
6.	For cationic hydrolys	s, pH is given by–			
	(1) $pH = \frac{1}{2}pK_w + \frac{1}{2}pI$	$K_a + \frac{1}{2}\log C$	(2) $pH = \frac{1}{2}pK_w - \frac{1}{$	$\frac{1}{2}pK_{b}-\frac{1}{2}\log C$	
	(3) $pH = \frac{1}{2}pK_w + \frac{1}{2}pH$	$K_a - \frac{1}{2} p K_b$	(4) $pH = \frac{1}{2}pK_w + \frac{1}{$	$\frac{1}{2}pK_{b}+\frac{1}{2}\log C$	
7.	Which of the followir	g salts is neutral in water	-?		

4.6 SOLUBILITY AND SOLUBILITY PRODUCT (K_{sp})

(A) SOLUBILITY

(1) KCl

(a) **Definition** At constant temperature the maximum number of moles of solute which can be dissolved in a solvent to obtain 1 litre of solution (i.e. saturated solution) is called solubility.

(3) NH_4CN

$$S(M) = \frac{\text{Number of moles of solute}}{\text{Volume of solution } (L)}$$

 $(2) \mathrm{NH}_4 \mathrm{NO}_3$

$$S = \frac{x}{M_w \times V_L} \mod L^{-1}$$

(4) NH_4OH

 $S_{g/\ell} = S_M \times molar mass$

GOLDEN KEY POINTS

- Solubility does not depend on amount of substances and volume of solution where as depends on the following-
 - (i) Temperature
 - (ii) Presence of common ion
 - (iii) Nature of solvent (Molecular wt. of AgCl = 143.5)

(Molecular wt. of $BaSO_4 = 233$)

Solubility can be expressed in terms of molarity.

(B) SOLUBILITY PRODUCT(K_{sp}) :

When a sparingly soluble salt such as AgCl is put into water, a very small amount of AgCl dissolves in water and most of the salt remains undissolved in its saturated solution.

• The salt AgCl is an electrolyte, its dissociation occurs in solution. Hence, the quantity of AgCl that dissolves in water dissociates into Ag⁺ and Cl⁻ ions. Thus, in the saturated solution of AgCl an equilibrium exists between undissolved solid AgCl and its ions, Ag⁺ and Cl⁻ ions.

$$AgCl_{(s)} \xrightarrow{\text{Dissolution}} Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$$
$$K = \frac{\left[Ag^{+}\right] \cdot \left[Cl^{-}\right]}{\left[AgCl\right]}$$

according to law of mass action

148

Since, the concentration of undissolved solid AgCl is constant. Thus, the product K.[AgCl] gives another constant which is designated as Ksp.

So,
$$K.[AgCl] = [Ag^+].[Cl^-]$$
 \therefore $K_{sp} = [Ag^+].[Cl^-]$

At constant temperature product of concentrations of ions in a saturated solution of substance is called solubility product of that substance. (Saturated solution is that solution in which solid solute and the ions in solution remain in equilibrium with each other.

•
$$\mathbf{K}_{sp}$$
 for \mathbf{CaCl}_2 $\mathbf{CaCl}_2(s) \rightleftharpoons \mathbf{Ca^{+2}(aq)} + 2\mathbf{Cl}^{-}(aq)$

Solubility product in terms of concentration of ions $K_{sp} = [Ca^{+2}] [Cl^{-}]^2$

•
$$\mathbf{K}_{sp}$$
 for AlCl₃ AlCl₃(s) \rightleftharpoons Al⁺³(aq) + 3Cl⁻(aq)

Solubility product in terms of concentration of ions $K_{sp} = [Al^{+3}] [Cl^{-}]^3$

• General form $AxBy(s) \xleftarrow{} xA^{+y}(aq) + yB^{-x}(aq)$ $K_{sp} = [A^{+y}]^x [B^{-x}]^y$

4.7 APPLICATION OF SOLUBILITY PRODUCT (K_{sp})

(A) To find out the solubility (S) :

(i) K_{sp} of AB (Mono-mono, di-di, tri-tri valency) type salt –

Ex. NaCl, BaSO₄, CH₃COONa, CaCO₃, NaCN, KCN, NH₄CN, NH₄Cl etc.

$$\begin{array}{ccc} AB(s) & & & & A^+(aq) + & B^-(aq) \\ a & & 0 & 0 \\ (a-s) & s & s \\ K_{sp} = [A^+] [B^-] \end{array}$$

$$K_{sp} = s^2$$
 or $s = \sqrt{K_{sp}}$

(ii) K_{sp} of AB_2 or A_2B (Mono-di or di-mono valency) type salt –

Ex. CaCl₂, CaBr₂, K₂S, (NH₄)₂SO₄, K₂SO₄, K₂CO₃ etc.
AB₂(s)
$$\longrightarrow$$
 A⁺²(aq) + 2B⁻(aq)
a 0 0
a - s s 2s
K_{sp} = [A⁺²] [B⁻]²
K_{sp} = s × (2s)² = s × 4s² = 4s³
s = $\left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}}$

(iii) K_{sp} of AB₃ or A₃B (Mono-tri or tri-mono valency) type salt –

$AB_3(s) \equiv$	È A⁺³(aq)	+	3B⁻(aq)
a	0		0
a-s	S		3s

$$K_{sp} = \left[A^{+3}\right] \left[B^{-}\right]^{3} = s \times (3s)^{3} = 27s^{4}$$
$$s = \left(\frac{K_{sp}}{27}\right)^{\frac{1}{4}}$$

Pre-Medical : (iv)	K_{sp} of A_2B_3 or A_3B_2 (Di-tri or tri-di valency) type salt				
()	Ex. $Al_2(SO_4)_3, Ba_3(PO_4)_2$ etc.				
	$A_2B_3(s) \longrightarrow 2A^{+3}(aq) + 3B^{-2}(aq)$				
	a 0 0				
	a-s 2s 3s				
	$\mathbf{K}_{sp} = \left[\mathbf{A}^{+3}\right]^{2} \left[\mathbf{B}^{-2}\right]^{3} = 2\mathbf{s} \times 2\mathbf{s} \times 3\mathbf{s} \times 3\mathbf{s} \times 3\mathbf{s} = 108\mathbf{s}^{5}$				
	$s = \left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}}$				
(v)	General form :				
	$A_x B_y(aq) \longrightarrow xA^{+y}(aq) + yB^{-x}(aq)$				
	a 0 0				
	$\begin{array}{ccc} a-s & xs & ys \\ K_{sp} = [A^{+y}]^x \cdot [B^{-x}]^y \end{array}$				
	$K_{sp} = (xs)^{x}. (ys)^{y}$ $K_{sp} = x^{x}.y^{y}.s^{(x+y)}$				
	Illustrations				
Illustration 15	What will be the solubility product of following in terms of solubility (mol L^{-1})				
Solution	(i) $Al_2(SO_4)_3(s)$ (ii) $Na_2KPO_4(s)$ (iii) $NaKRbPO_4(s)$ (i) $Al_2(SO_4)_3(s) \rightleftharpoons 2Al^{+3}(aq) + 3SO_4^{-2}(aq)$ $Ksp = 2^2 \times 3^3 \times (S)^{2+3} = 4 \times 27 \times S^5 = 108 S^5$				
	(ii) $\operatorname{Na}_{2}\operatorname{KPO}_{4}(s) = 2\operatorname{Na}^{+}(\operatorname{aq}) + \operatorname{K}^{+}(\operatorname{aq}) + \operatorname{PO}_{4}^{-3}(\operatorname{aq})$				
	$Ksp = 2^{2} \times 1^{1} \times 1^{1}(S)^{2+1+1} = 4S^{4}$ (iii) NaKRbPO ₄ (s) \longrightarrow Na ⁺ (aq) + K ⁺ (aq) + Rb ⁺ (aq) + PO ₄ ⁻³ (aq) Ksp = 1 ¹ × 1 ¹ × 1 ¹ × 1 ¹ × (S)^{1+1+1+1} = S^{4}				
Illustration 16	If solubility product of the base M(OH) ₃ is 2.7×10^{-11} , the concentration of OH ⁻¹ will be				
Solution	(1) 3×10^{-3} (2) 3×10^{-4} (3) 10^{-3} (4) 10^{-11} Ans. (1)				
Illustration 17	Assertion : For a sparingly soluble salt, S is the maximum dissolved value of solute in a solution Reason : K_{sp} corresponds to the ionic product of the salt in a saturated solution.(1) A(2) B(3) C(4) D				
Solution	Ans. (2)				
Illustration 18	The solubility of $BaSO_4$ in water is 1.07×10^{-5} mol dm ⁻³ . Estimate its solubility product.				
Solution	Solubility equilibrium for $BaSO_4$ is $BaSO_{4(s)} \longrightarrow Ba_{(aq)}^{2+} + SO_{(aq)}^{2-}$				
	The solubility product is, $K_{sp} = [Ba^{2+}] [SO_4^{2-}]$ If S is the molar solubility of $BaSO_4$. then $K_{sp} = S^2$ because $x = 1 = y$. Now, $S = 1.07 \times 10^{-5}$ M. Hence, $K_{sp} = (1.07 \times 10^{-5})^2 = 1.145 \times 10^{-10}$				
Illustration 19	The solubility product of AgBr is 5.2×10^{-13} . Calculate its solubility in mol dm ⁻³ and g dm ⁻³ . (Mola mass of AgBr. = 187.8 g mol ⁻¹)				
Solution	The solubility equilibrium of AgBr is $AgBr_{(s)} \longrightarrow Ag^+_{(aq)} + Br^{(aq)}$				
	and $K_{sp} = [Ag^+] [Br^-] = S^2$ because $x = 1 = y$.				
	The molar solubility S of AgBr is given by $S = \sqrt{K_{sp}} = \sqrt{5.2 \times 10^{-13}} = 7.2 \times 10^{-7} \text{ mol dm}^{-3}$				
	The solubility in g dm ⁻³ = molar solubility (mol dm ⁻³) × molar mass (g mol ⁻¹) Hence, solubility = 7.2×10^{-7} (mol dm ⁻³) × 187.8 = 1.35×10^{-4} g dm ⁻³ .				
150					

Condition of precipitation /Ionic product (IP or Q_{sp}) : (B)

- Ionic product (IP) of an electrolyte is defined in the same way as K_{sn}. The only difference is that ionic product expression contains the initial concentration of ions or the concentration at any time whereas the expression of K_{sp} contains only equilibrium concentration. Thus, for AgCl. $Q_{sp} = IP = [Ag^+]_i [Cl^-]_i$ and $K_{sp} = [Ag^+]_{eq} .[Cl^+]_{eq}$ Ionic product changes with concentration but K_{sp} does not. K_{sp} is applicable for saturated solution
- of the sparingly soluble electrolyte.
- To decide whether an ionic compound will precipitate, its K_{sn} is compared with the value of ionic product. The following three cases arise :
 - $Q_{sp} < K_{sp}$ The solution is unsaturated and precipitation will not occur. (i)
 - $\hat{Q}_{sp}^{sp} = K_{sp}^{s\nu}$ $Q_{sn} > K_{sp}$ The solution is saturated and solubility equilibrium exists. (ii)
 - The solution is supersaturated and hence precipitation of the compound (iii) : will occur.

Thus, a salt is precipitated when its ionic product exceeds the solubility product of the salt.

(C) Common ion effect on solubility :

Important point :- Solubility of substances always decreases in the presence of common ion. According to Le-Chatelier's principle on increasing common ion concentration equilibrium shifts in backward direction until the equilibrium is re-established so, the solubility of substances decreases but K_m remains same because it is an equilibrium constant which depends only on temperature.

Illustrations

Find out the solubility of AgCl in the presence of C molar NaCl solution ? **Illustration 20** Solution. AgCl $Ag^+ + Cl^-$ S S S (Let solubility of AgCl is S mol L⁻¹) $Ksp = [Ag^+] [Cl^-]$ $Ksp = S^2$ In NaCl solution NaCl \longrightarrow Na⁺ + Cl⁻ С С С Let solubility of AgCl in the presence of NaCl solution is S' mol L⁻¹. $AgCl \implies Ag^+ + Cl^-$ S' S'+C S' According to L.M.A. $Ksp = [Ag^+]' [Cl^-]'$ $Ksp = S' (S' + C) = S'^{2+}S'C$ (Neglecting the higher power terms of S') $S' = \frac{Ksp}{Ksp}$ Ksp = S'C**Illustration 21** Find out the solubility of CaCl₂ solution in the presence of C NaCl solution ? Solution $CaCl_{2} \iff Ca^{+2} + 2Cl^{-}$ S S [Let solubility of CaCl₂ is S mol L⁻¹] 2S Ksp = $[Ca^{+2}] [Cl^{-}]^{2} = 4S^{3}$ For NaCl solution NaCl \longrightarrow Na⁺ + Cl⁻ С С С Let solubility of CaCl₂ in the presence of NaCl solution is S' mol L⁻¹. $CaCl_{2} \implies Ca^{+2} + 2Cl^{-}$ S' S' 2S'+C According to L.M.A. $Ksp = [Ca^{+2}]' [Cl^{-}]'^{2}$ $Ksp = S' (2S' + C)^2 = S' (4S'^2 + 4S'C + C^2)$ Ksp = $4S'^{3} + 4S'^{2}C + S'C^{2}$ (Neglecting the higher power terms of S') Ksp

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\MODULE-1\4,IONIC EQUILBRIUM\01-THEORY, P65 Ε

Pre-Medical : Chemistry

Illustration 22	Find out the solubility of NaCl in the presence of C CaCl ₂ solution ?
Solution	$CaCl_2 \longrightarrow Ca^{+2} + 2Cl^{-1}$
	C C 2C
	Let solubility of NaCl in the presence of $CaCl_2$ solution is S' mol L ⁻¹ .
	NaCl \longrightarrow Na ⁺ + Cl ⁻
	S' S' S'+2C
	According to L.M.A.
	$Ksp = [Na^+]' [Cl^-]'$
	$Ksp = S' (S' + 2C) = S'^2 + 2S'C$ (Neglecting the higher power terms of S')
	$S' = \frac{Ksp}{2C}$

GOLDEN KEY POINTS

*• Group precipitation	on of Salt
------------------------	------------

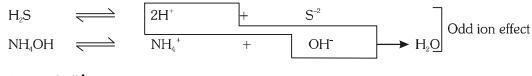
Group Radicals		Condition for precipitation	Forms of precipitation	
		(Group reagent)		
Zero	NH_4^+			
First	$Pb^{+2},Hg^{+1},\left(Hg_{2}^{+2} ight),Ag^{+}$	By mixing of dilute HCl	Chloride	
			AgCl, Hg ₂ Cl ₂ , PbCl ₂	
Second II(A)	Pb ⁺² , Cu ⁺² Hg ⁺² ,Cd ⁺² , Bi ⁺³	H_2S gas passed in	Sulphide	
Second II(B)	As+3, Sb+3, Sn+2,Sn+4	the presence of	PbS,HgS, CuS,CdS,	
		acidic medium	SnS , SnS_2 , As_2S_3 ,	
			Sb_2S_3 , Bi_2S_3	
Third	Al+3, Cr+3, Fe+3	NH ₄ OH mixed in	Hydroxide	
		the presence of NH ₄ Cl	$Al(OH)_{_3}, Fe(OH)_{_3}, Cr(OH)_{_3}$	
Fourth	$Zn^{+2}, Ni^{+2}, Mn^{+2}, Co^{+2}$	H ₂ S gas passed in	Sulphide	
		presence of	MnS,CoS, NiS, ZnS	
		basic medium		
Fifth	Ba ⁺² , Sr ⁺² , Ca ⁺²	$(NH_4)_2 CO_3$ mixed in the	Corbonate	
		presence of NH ₄ Cl	$BaCO_3, SrCO_3, CaCO_3$	
Sixth	Na ⁺ , K ⁺ , Mg ⁺²	By mixing of Na ₂ HPO ₄	Hydrogen phosphate (MgHPO	
$Hg^{+1}(us) \rightarrow U$	Jnstable in aqueous solution.	• $Hg^{+2}(ic) \rightarrow Hg^{+2}(ic)$	$\operatorname{Cl}_2 \rightarrow \operatorname{stable}$ in aqueous solution	
[Stable in din	ner form (Hg ₂ ⁺²) \Rightarrow Hg ₂ Cl ₂]	$HgCl_{2}$	\longrightarrow Hg ⁺² + 2Cl ⁻	
$Hg_2Cl_2 =$	\implies Hg ₂ ⁺² + 2Cl ⁻	S	S 2S	
S	S 2S	[$K_{sp} = 4S^3$	
$K_{sp} = [Hg]$	$_{2}^{+2}$] [Cl ⁻] ²			
= (S) (2S) ²			
$K_{sp} = 4S^3$				
	•			

ALLEN

For precipitation of II group, H_2S gas is passed in acidic medium to decrease S^{-2} concentration by common ion effect. So that ionic product of cations of group II and S^{-2} ions exceed the solubility product of their corresponding metal sulphides. Therefore only the cations of group II gets precipitated. But the sulphides of the cation of the other groupes (III, IV & V) are not precipitated under these conditions because their solubility products are quite high.

When H_2S gas is directly passed through solution then IV^{th} group is also precipitated with II^{nd} group.

 $H_2S \implies 2H^+ + S^{-2}$


 $Ksp_{II} < Ksp_{IV} <$ [radicals of II^{nd} and IV group] $[S^{-2}]$

When H_2S gas pass in acidic medium [H⁺] then only IInd group radicals are precipitated.

 $H_2S \implies 2H^+ + S^{-2}$

 $Ksp_{II} < [radicals of II^{nd} and IV group] [S^{-2}] < Ksp_{IV}$

- For precipitation of group III, NH₄OH is added in the presence of NH₄Cl to decrease the concentration of OH⁻ by common ion effect so that ionic product of cations of group III and hydroxides ions exceed the solubility product of their corresponding metal hydroxides and only group III cations will precipitated. On the other hand cations of group IV, V and VI, which require large concentration of OH⁻ due to their high solubility product, will not be precipitated.
- In IV group, H_2S gas is passed in basic medium to increase S^{-2} ion concentration by odd ion effect, so that the ionic product of cations of group IV and S^{-2} ions exceed the solubility product of their corresponding metal sulphide and hence gets precipitated.

So [S⁻²]↑

 $Ksp_{IV} < [Radicals of group IV] [S^{-2}]$

(D) Precipitation of soap and salt (NaCl)

(i) Precipitation of NaCl (common salt) :

For the precipitation of NaCl, HCl gas passed in saturated solution of NaCl to increase the concentration of Cl^{-} ion by common ion, so ionic product of concentration of Na⁺ and Cl^{-} ion becomes more than Ksp of NaCl and NaCl easily precipitated.

Saturated solution of NaCl	NaCl → Na ⁺ + Cl ⁻
	$Ksp = [Na^+] [Cl^-]$
By passing HCl gas	$HCl \longrightarrow H^+ + Cl^-$
due to common ion	Ksp < [Na⁺] [Cl⁻] ↑

(ii) Precipitation of soap :

For precipitation of soap, NaCl mixed in saturated solution of soap to increase the concentration of Na^+ ion by common ion. So ionic product of concentration of Na^+ and strearate ions is more than Ksp of soap and soap is easily precipitated.

Ex. C₁₇H₃₅COONa (Sodium stearate)

Saturated solution of $C_{17}H_{35}CO$	ONa ⇒	$C_{17}H_{35}COONa^{+} C_{17}H_{35}COO^{-} + Na^{+}$ Ksp = [$C_{17}H_{35}COO^{-}$] [Na ⁺]
By mixing NaCl solution	NaCl \longrightarrow	Na⁺ + Cl⁻
due to common ion	$\mathrm{Ksp} < [\mathrm{C}_{17}\mathrm{H}$	₃₅ COO⁻] [Na⁺] ↑

		— Illustratio	ons ———		
Illustration 23	Solubility products of $M(OH)_3$ and $M(OH)_2$ are 10^{-23} and 10^{-14} respectively. Which will be precipitated first on adding NH_4OH , if M^{+2} and M^{+3} both the ions are in solution ?				
	(1) M ⁺²		(2) M ⁺³		
	(3) Both M ⁺² and M	I ⁺³ together	(4) Precipitation v	vill not take place.	
Solution	Ans. (2)				
Illustration 24	Solubility of $CaCl_2$ Ca(OH) $_2$.	is $4 imes 10^{-8}$, then find c	out its $\mathrm{K}_{_{\mathrm{sp}}}$ and its new solubility in th	he presence of 10 ⁻² M	
Solution	$CaCl_2 \implies$	Ca ⁺² + 2Cl ⁻			
	1	s 2s	(Initial solubility = s)		
	K _{sp} =	$4s^3 = 4(4 \times 10^{-8})^3 =$	$= 256 \times 10^{-24}$	(i)	
	$Ca(OH)_2 \longrightarrow$	Ca ⁺² + 2OH ⁻			
	С	0 0			
	0	C 2C			
	$CaCl_2 \rightarrow$	Ca+2 + 2Cl-			
	1	Ca ⁺² + 2Cl ⁻ s' +C 2s'	(New solubility $=$ s')		
	K _{sp} =	[Ca+2]' [Cl-]2'			
	=	$[s' + C] [2s']^2 = 4s'^3$	+ $4s'^2C$ (s' ³ = negligible)		
	K _{sp} =	4s'2C		(ii)	
	From equation (i) a	and (ii) $s'^2 = \frac{Ksp}{4C} =$	$\frac{256 \times 10^{-24}}{4 \times 10^{-2}} = 64 \times 10^{-22}$		
		$s' = 8 \times 10^{-11}$	mol L ⁻¹		

4.8 FEW IMPORTANT POINTS

(A) Isohydric solution – If different–different solution has same pH are called isohydric solution.
 Sp. point :- Isohydric conditions for two given weak acids HA₁ and HA₂ which has concentration C₁ and C₂ and ionisation constants are Ka₁ and Ka₂ respectively.

Then $[H^+]_1 = \sqrt{Ka_1 C_1}$ and $[H^+]_2 = \sqrt{Ka_2 C_2}$

According to given condition for isohydric solution pH of different solution is same.

Hence $[H^+]_1 = [H^+]_2$

$$\sqrt{\operatorname{Ka}_1 \operatorname{C}_1} = \sqrt{\operatorname{Ka}_2 \operatorname{C}_2}$$

$$Ka_1C_1 = Ka_2C_2$$
 or If $n = 1$ mole then $\boxed{\frac{Ka_1}{V_1} = \frac{Ka_2}{V_2}}$ \therefore $C \propto \frac{1}{V_1}$

(B) Relative strength of Acids :- It indicates that how many times an acid is stronger than the other acid.

We know

Strength of acid
$$\propto [H^+]$$

If there are two weak acids HA_1 and HA_2 which has concentration C_1 and C_2 , degree of ionisation α_1 and α_2 and ionisation constants Ka_1 and Ka_2 respectively then ratio of their strength of acids.

We know
$$[H^+] = C\alpha = \sqrt{KaC}$$

So
$$\frac{\text{Strength of weak acid HA}_1}{\text{Strength of weak acid HA}_2} = \frac{[H^+]_1}{[H^+]_2} = \frac{C_1\alpha_1}{C_2\alpha_2} = \frac{\sqrt{\text{Ka}_1C_1}}{\sqrt{\text{Ka}_2C_2}}$$

 $C_1 = C_2$

If

ALLEN -

RS -	Strength of weak acid HA_1	Ka ₁	∞_1
N.J. –	Strength of weak acid $HA_2 = 1$	$\overline{Ka_2}^{-}$	∞_2

Thus the relative strength of two acids of equimolar concentration can be compared by taking square root of the ratio of their ionisation constants.

1		of their ionisati		iona		
Illustration 25 Which of the following solvents will undergo self-ionization ?						
	(1) H ₂ O		(2) NH ₃		(3) HF	(4) All of these
Solution	Ans. (4)		5			
Illustration 26 For two acids A and B, $pKa_1 = 1.2$, $pKa_2 = 2.8$ respectively in value, then which is						en which is true:-
		both are equa				
	(2) A is str	ronger than B				
	(3) B is str	ronger than A				
	(4) None c	of these				
Solution	Ans. (2)					
Illustration 2 Solution	(1) The stre (2) Acid B i (3) Strengt		vo acids canno nger than acid rength of acid	to be compared. A. B = 4:5		acids are related as :-
			BEGINNER	'S BOX-3		
1. The uni	ts of solubility p	roduct of silver	chromate (Ag	CrO) will be-		
(1) mol ²		(2) mol ³ L ⁻³		(3) mol L ⁻¹	(4) mo	$bl^{-1}L$
	rtain temperatu y product will be		ry of the salt A	$A_x B_y$ is S moles p	per liter. The ge	eneral expression for its
(1) K _{sp} =	x ^y y ^x S ^{x+y}	(2) K _{sp} = (xy)	x+ySx+y	(3) $K_{sp} = (x^{x}y^{y})S^{x+1}$	v (4) K _{sp}	$y = x^{x}y^{y}S^{xy}$
	lar solubility of $\times 10^{-4}$			nol L ⁻¹ . The solut (3) 1.7 ×10 ⁻⁶		the salt will be–) ×10 ⁻³
(1) 10 ⁻³	cipitate of CaF ₂ M Ca ²⁺ + 10 ⁻⁵ M Ca ²⁺ + 10 ⁻³	M F		ed when equal vc (2) 10 ⁻⁵ M Ca ²⁺ (4) 10 ⁻⁴ M Ca ²⁺	+ 10 ⁻³ M F ⁻	llowing are mixed:
solution (1) $S_0 >$	If S_0 , S_1 , S_2 and S_3 are the solubilities of AgCl in water, 0.01 M CaCl ₂ , 0.01 M NaCl and 0.5 M AgNO ₃ solutions, respectively, then which of the following is true? (1) $S_0 > S_2 > S_1 > S_3$ (2) $S_0 = S_2 = S_1 > S_3$ (3) $S_3 > S_1 > S_2 > S_0$ (4) $S_0 > S_2 > S_3 > S_1$					
(1) 0.1	-r-	10 ⁻¹⁷ . The solu		0.1 M KI solutio (2) 8.5 × 10 ⁻¹⁶ M (4) 8.5 × 10 ⁻¹⁸ M	1	

4.9 pH

1. INTRODUCTION

pH of some important substance :-

(i)	Blood	\longrightarrow	7.4
(ii)	Tear	\longrightarrow	7.4
(iii)	Gastric Juice	\longrightarrow	1 to 3
(iv)	Soft drink	\longrightarrow	2 to 4
(v)	Acidic rain	\longrightarrow	6
(vi)	Milk	\longrightarrow	6.3 to 6.6
(vii)	Water	\longrightarrow	7

2. TYPES OF pH

(i) pH of SA and SB. $[H^+] = C$, $[OH^-] = C$

(ii) pH of WA and WB. $[H^+] = C\alpha$, $[OH^-] = C\alpha$

- (iii) pH of very dilute solution. (Consider $H^+ \& OH^-$ of H_2O also)
- (iv) pH of salt solution.

(a)	SA	SB	Type S	alt (always 7)

- (b) SA WB Type Salt (< 7)
- (c) WA SB Type Salt (> 7)
- (d) WA WB Type Salt (Almost 7)

3. pH of mixture of acid and base.

(a) pH of mixture of strong acids :

 $N_1V_1 + N_2V_2 + N_3V_3 + \dots = NV$

 $V = Volume of final solution = V_1 + V_2 + V_3 + \dots$

- N = Normality of final solution = $[H^+]$ in final solution.
- (b) pH of mixture of strong base :

 $N_1V_1 + N_2V_2 + N_3V_3 + \dots = NV$ V = Volume of final solution = V₁ + V₂ + V₃ + \dots + \dots

N = Normality of final solution = $[OH^{-}]$ in final solution.

(c) pH of mixture of strong acids and strong bases : For acid :

$$N_1V_1 + N_2V_2 + N_3V_3 + \dots = (NV)_{Acid}$$

For base :

 $\begin{array}{ll} & N_1V_1+N_2V_2+N_3V_3+\ldots\ldots=(NV)_{Base} \\ (i) & \mbox{ If } (NV)_{Acid}>(NV)_{Base} & \mbox{ then solution is acidic.} \\ & \mbox{ NV }=(NV)_{Acid}-(NV)_{Base} & \mbox{ and } \\ & \mbox{ [}H^+\mbox{]}=N \\ (ii) & \mbox{ If } (NV)_{Base}>(NV)_{Acid} & \mbox{ then solution is basic.} \end{array}$

$NV = (NV)_{Base} - (NV)_{Acid} \text{ and } [OH^-] = N$ (iii) If (NV) = (NV) then solution is neutral

(d)
$$p^{H}$$
 of mixture of (WA + SB); when equivalent of WA > SB]
pH of mixture of (SA + WB); When equivalent of WB > SA]

gives rise to concept of buffer solution

4.10 BUFFER SOLUTION

ALLEN _____

(A) **Definition** : A solution which resist the change in pH and pH does not change significantly on addition of small amount of strong acid or strong base is called buffer solution.

(B) Properties of buffer solution :

- (i) The pH of buffer solution does not change appreciably upon the addition of small amount of either strong acid or strong base.
- (ii) The pH of buffer solution does not depend on the volume of solution. Hence, solution can be diluted without change in pH.
- (iii) The pH of buffer solution remains constant even if it is kept for a long time.

(C) Buffer solutions are used in

- (a) Qualitative analysis of mixture
- (b) Quantitative analysis of mixture
- (c) Digestion of food
- (d) Preservation of food and fruits.
- (e) Agriculture and dairy product preservation.
- (f) Industrial process such as manufacture of paper, dyes inks, paints, drugs etc.

TYPES OF BUFFER SOLUTION

- (A). Simple buffer solution
- (B). Mixed buffer solution :- (i) Acidic buffer solution (ii) Basic buffer solution
- (A) Simple buffer solution :- Aqueous solution of weak acid-weak base (WA WB) types of salt.
 Ex. CH₃COONH₄, NH₄CN, AgCN etc.

$$pH = 7 + \frac{1}{2}pK_a - \frac{1}{2}pK_b$$

pH does not depend on concentration.

$$CH_3COO^- + NH_4^+ + H_2O \implies CH_3COOH + NH_4OH.$$

Buffer Action :

Case 1		Case 2.		
When mixing of a	cid [H+]	When mixing of base [OH-]		
$CH_3COO^- + H^+$	\rightleftharpoons CH ₃ COOH	$NH_4^+ + OH^- \implies NH_4OH$		
$NH_4OH + H^+$	\implies NH ₄ ⁺ + H ₂ O	$CH_3COOH + OH^- \implies CH_3COO^- + H_2O$		

(B) Mixed buffer solution :

(i) Acidic buffer solution :- The solution in which weak acid and its conjugate base are present.

OR

Aqueous solution of mixture of weak acid and salt of same weak acid with any strong base is called acidic buffer solution.

Ex. CH₃COOH + CH₃COONa
WA WASB
CH₃COOH
$$\rightleftharpoons$$
 CH₃COO⁻ + H⁺
CH₃COONa \longrightarrow CH₃COO⁻ + Na⁺
 $\left[CH_{3}COOH + CH_{3}COO^{-} \right] + Na^{+}$ (Spectator ion)

BUFFER ACTION :-

Case 1. If a small amount of acid is added to the buffer solution. The H^+ ions of the acid react with CH_3COO^- ions and produce CH_3COOH and most of the added H^+ ions are consumed so there is no appreciable change in pH.

 $CH_3COO_{(aq)}^- + H^+ \longrightarrow CH_3COOH_{(aq)}$

Case 2. If small amount of base is added to the buffer solution, the OH^- ions are consumed by CH_3COOH .

$$CH_3COOH_{(aq)} + OH_{(aq)} \longrightarrow CH_3COO_{(aq)} + H_2O_{(\ell)}$$

So, there is no appreciable change in pH.

(a) pH of acidic buffer solution :

$$\begin{array}{rcl} CH_{3}COOH & + & CH_{3}COONa \\ Acid & + & Salt \\ CH_{3}COOH & \longrightarrow CH_{3}COO^{-} + H^{+} \\ CH_{3}COONa & \longrightarrow CH_{3}COO^{-} + Na^{+} \\ K_{a} &= \frac{\left[CH_{3}COO^{-}\right]\left[H^{+}\right]}{\left[CH_{3}COOH\right]} \\ or & \left[H^{+}\right] &= \frac{Ka[CH_{3}COOH]}{\left[CH_{3}COO^{-}\right]} &= \frac{Ka[Acid]}{\left[Conjugate base\right]} \end{array}$$

taking –log on both sides

$$pH = pKa - \log \frac{[Acid]}{[Conjugate base]}$$
 or $pH = pKa + \log \frac{[Conjugate base]}{[Acid]}$

Henderson's equation :

 $pH=pKa + log \frac{[Salt]}{[Acid]} or \frac{[Conjugate base]}{[Acid]}$

- [Conjugate base]_{eq} ≃ [Salt] because CH₃COO⁻ mainly comes from salt since dissociation of CH₃COOH in presence of CH₃COONa is appreciably decreased.
- $[Acid]_{aq} \simeq$ initial concentration of acid since it is almost unionised in presence of salt due to common ion effect.
- **(b) pH range of acidic buffer solution :** It depends on pK_a of acid and ratio of salt to acid concentrations.

 $\begin{bmatrix} CH_{3}COOH \end{bmatrix} : \begin{bmatrix} CH_{3}COONa \end{bmatrix} \implies pH = pKa + \log \frac{\begin{bmatrix} CH_{3}COONa \end{bmatrix}}{\begin{bmatrix} CH_{3}COOH \end{bmatrix}}$ If, 1 : 10 $\implies pH = pKa + \log \frac{10}{1} = pKa + 1$ If, 10 : 1 $\implies pH = pKa - 1$ So pH range $\begin{bmatrix} pH = pKa \pm 1 \end{bmatrix}$

 $[CH_3COOH]$: $[CH_3COONa]$

1

:
$$1 \implies pH = pK_a + \log \frac{1}{1}$$

158

(i)

(ii)

(ii) Basic buffer solution :

Definition : The solution in which weak base and its conjugate acid are present. OR

Aqueous solution of mixture of weak base and salt of same weak base with any strong acid is called basic buffer solution.

Ex.
$$NH_4OH + NH_4Cl$$

 $NH_4OH \longrightarrow NH_4^+ + OH^-$
 $NH_4Cl \longrightarrow NH_4^+ + Cl^-$
 $\left[NH_4OH + NH_4^+ \\ _{W.B. C.acid} \right] + Cl^-[Spectatorion]$

BUFFER ACTION :-

Case 1. If a small amount of the acid is added to the buffer solution, the H^+ ions are consumed by NH_4OH .

$$NH_4OH_{(aq)} + H^+_{(aq)} \longrightarrow NH^+_{4(aq)} + H_2O_{(\ell)}$$

So there is no appreciable change in pH.

Case 2. If small amount of base is added to the buffer solution, the OH^- ions react with NH_4^+ ions to produce NH_4OH .

$$NH_{4(aq)}^+ + OH_{(aq)}^- \longrightarrow NH_4OH_{(aq)}$$

Hence most of the added OH^{-} ions are consumed. so there is no appreciable change in pH.

(a) pOH of basic buffer solution :

$$\begin{bmatrix} NH_{4}OH + NH_{4}CI \end{bmatrix}$$

$$NH_{4}OH \implies NH_{4}^{+} + OH^{-}$$

$$NH_{4}CI \longrightarrow NH_{4}^{+} + CI^{-}$$

$$K_{b} = \frac{\begin{bmatrix} NH_{4}^{+} \end{bmatrix} \begin{bmatrix} OH^{-} \end{bmatrix}}{\begin{bmatrix} NH_{4}OH \end{bmatrix}} \quad \text{or} \quad [OH^{-}] = \frac{K_{b} \begin{bmatrix} NH_{4}OH \end{bmatrix}}{\begin{bmatrix} NH_{4}^{+} \end{bmatrix}}$$

taking -log on both sides $pOH = pK_b + log \frac{\left[NH_4^+\right]}{\left[NH_4OH\right]}$

Henderson's equation :

$$pOH = pK_{b} + log \frac{[Salt]}{[Base]} or \frac{[Conjugate acid]}{[Base]}$$

(b) **pOH range of basic buffer solution :** It depends on pK_b of base and ratio of salt to base concentrations.

		[NH ₄ OH]	:	[NH ₄ Cl]	\Rightarrow	$pOH = pK_{b} + \log \frac{\left[NH_{4}CI\right]}{\left[NH_{4}OH\right]}$
(i) (ii)	lf, If,		: :			$pOH = pK_{b} + 1$ $pOH = pK_{b} - 1$
	So,	pOH range :	pC	$PH = pK_b \pm 1$]	

(c) Maximum buffer action condition of basic buffer solution :

 $NH_4OH : NH_4Cl$ 1 : 1

 $pOH = pK_b$

3. BUFFER CAPACITY

Definition :-

- (i) It is defined as the number of moles of strong acid (or strong base) added to one litre of a buffer solution to change its pH by one unit.
- (ii) It measures the effectiveness of a buffer.
- (iii) Larger the value of buffer capacity more resistant is the solution to pH change.

Buffer capacity = $\frac{\text{Number of moles of acid or base added per litre}}{\text{Change in pH of buffer solution}}$

Illustrations ——

Illustration 28 When 2 moles of HCl is added to 1 L. of an acidic buffer solution, its pH changes from 3.9 to 3.4. Find its buffer capacity.

Solution B.C. = $\frac{2}{0.5} = 4$

160

BEGINNER'S BOX-4

1. A buffer solution is one which has-(1) reserved acid (2) reserved base (3) constant pH (4) pH equal to 7 2. Which of the following solutions cannot act as a buffer system ? (1) KH_2PO_4/H_3PO_4 (2) $NaClO_4/HClO_4$ (3) $C_5H_5N/C_5H_5N^{\dagger}HCl^{-}$ (4) $Na_2CO_3/NaHCO_3$ 3. A buffer solution can not be prepared by mixing equimolar amounts of-(1) $B(OH)_3$ and $Na_2B_4O_7$. $10H_2O$ (2) NH_3 and NH_4Cl (3) HCl and NaCl (4) CH₃COOH and CH₃COONa 4. Which of the following salt solution will act as a buffer ? (3) CH₂COONa (aq.) (1) $CH_{3}COONH_{4}$ (aq.) (2) NH₄Cl (aq.) (4) NaCl (aq.) 5. Which of the following combinations will make a buffer solutions ? (i) CH_2COONa (2 mol) + HCl (1 mol) (ii) CH_3COOH (2 mol) + NaOH (1 mol) (iii) CH₃COOH (1 mol) + CH₃COONa (1 mol) (1) (iii) (2) (i), (ii) (3) (ii), (iii) (4) (i), (ii), (iii) 6. The pH of blood circulating in a human body is maintained around 7.4 by the action of the buffer system-(1) CH₂COOH/CH₂COONa (2) NH_4Cl/NH_3 (4) H₂CO₃/HCO₃ (3) $H_{2}PO_{4}^{2-}$

ALLEN

4.11 INDICATOR

- (A) **Definition :-** An indicator is a substance that undergoes change in its colour to show end point of an acid-base titration.
 - Titration involves neutralization of an acid and base.

(B) Types of indicators :

(a) Acidic indicator (HIn)

Ex. Phenolphthalein (HPh)

 $\begin{array}{rcl} HPh & \rightleftharpoons & H^+ & + & Ph^- \\ colourless & & pink \end{array}$

(b) Basic indicator (InOH)

Ex. Methyl orange (MeOH)

MeOH \implies Me⁺ + OH⁻

yellow orange red

OSTWALD THEORY OF INDICATORS

- (i) According to this theory, all the indicators are weak organic acid or base.
- (ii) Every indicator has light colour in its unionised form and dark colour in ionised form.
- (iii) Every indicator has one colour in acidic medium and an altogether different colour in basic medium due to common ion effect and odd ion effect.

Ex. Acidic indicator [HPh]

Case 1. HPh \rightleftharpoons H⁺ + Ph⁻

In acidic medium [H+]

[HPh] > [Ph⁻] Colourless due to common ion effect.

Case 2. HPh \rightleftharpoons H⁺ + Ph⁻ In basic medium [OH⁻]

$$[Ph^{-}] > [HPh]$$

Pink colour due to odd ion effect.

(a) pH of acidic indicator -

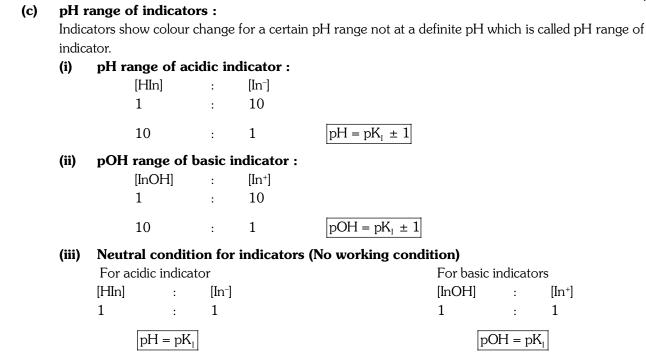
$$HIn \implies H^+ + In^-$$

$$K_{a} \text{ or } K_{I} = \frac{\left[H^{+}\right]\left[In^{-}\right]}{\left[HIn\right]}$$

$$[H^{+}] = \frac{K_{I}[HIn]}{[In^{-}]}$$

Taking – log on both sides $pH = pK_1 - log [HIn] + log [In⁻]$

$$pH = pK_1 + \log \frac{\left[In^{-}\right]}{\left[HIn\right]}$$


(b) pOH of basic indicator -

 $InOH \implies In^+ + OH^-$

$$K_{b}$$
 or $K_{I} = \frac{\left[In^{+}\right]\left[OH^{-}\right]}{\left[InOH\right]}$

$$pOH = pK_1 + log \frac{[lonised form]}{[Unionised form]}$$

 $pH = pK_1 + log \frac{[lonised form]}{[Unionised form]}$

S.No.	Name of indicator	Colour in acidic	Colour in basic	Working pH range
		medium	medium	of indicators
1.	Methyl orange (MeOH)	Orange red	Yellow	3.1 to 4.5
2.	Methyl red	Red	Yellow	4.2 to 6.2
3.	Phenol red	Yellow	Red	6.2 to 8.2
4.	Phenolphthalein (HPh)	Colourless	Pink	8.2 to 10.2

3. ACID-BASE TITRATION

S.No.	Type of titration	pH range of titration	Suitable indicators
1.	SA/SB.	3 – 11	All indicators (MeOH, HPh etc.)
2.	SA/WB	3 – 7	Methyl orange (MeOH) and methyl red
3.	WA/SB	7 – 11	Phenolphthalein (HPh)

Important points of titration :

- (i). Titration is always possible in two opposite solution. (i.e. one is acidic and other is basic).
- (ii). For any titration only that indicator is suitable if their working pH range is in pH range of titration.
- (iii). At the end point of titration equivalents of acids and bases are always same.
- (iv). At the euivalence point, nature of solution depends on the type of titration.
 - SA/SB-Neutral (pH = 7)SA/WB-AcidicWA/SB-BasicWA/WB-Any one possible

4.12 ACID AND BASE

(1) INTRODUCTION

The earliest classification of substances into acids and bases was bases upon the characteristic properties possessed by each one of them. For example,

Acid was defined as a substance whose aqueous solution possesses the following characteristic properties:

- (i) conducts electricity,
- (ii) reacts with active metals like zinc, magnesium etc. to give hydrogen,
- (iii) turns blue litmus red.
- (iv) has a sour taste.
- (v) whose acidic properties disappear on reaction with a base.
- Base was defined as a substance whose aqueous solution possessed the following characteristic properties:

(i) conducts electricity,

- (ii) reacts with active metals like zinc, magnesium etc. to give hydrogen,
- (iii) turns red litmus blue,
- (iv) has a bitter taste
- (v) whose basic properties are destroyed on reaction with an acid.

The above definitions of acids and bases are called operational definitions as they are based certain operations (i.e. tests) to be performed on the substances. However, these have been replaced by conceptual definitions (put forward by Arrhenius, Bronsted-Lowry and Lewis) which go into the causes of the observed behavior, based upon structure and composition of the substances.

(2) Arrhenius Concept (1884)

(a) Acid:- According to this concept, those substances which produce free H⁺ ions in aqueous solution are called acid.

Example HCl, HNO₃, H₂SO₄, H₃PO₄, H₂CO₃, H₂S, CH₃COOH etc.

 $HCl + H_2O \longrightarrow H^+(aq.) + Cl^-(aq.)$

 $H_2SO_4 + H_2O \longrightarrow 2H^+(aq.) + SO_4^{-2}(aq.)$

 $CH_{3}COOH + H_{2}O \iff CH_{3}COO^{-}(aq.) + H^{+}(aq.)$

(b) **Base :-** Those substances which produce free OH⁻ions in aqueous solution are called base.

Example NaOH, KOH, Cs(OH), Rb(OH), NH₄OH, Ba(OH)₂, Ca(OH)₂, Al(OH)₃ etc.

 $NaOH + H_2O \longrightarrow Na^+ (aq.) + OH^- (aq.)$

 $Ba(OH)_{2} + H_{2}O \longrightarrow Ba^{+2}(aq.) + 2OH^{-}(aq.)$

- (c) Nature of water :- According to this concept nature of water is neutral and act as a solvent.
- (d) **Neutralisation Reaction :-** Those reactions in which acid and base react together to form water molecule are called neutralisation reactions.

i.e. $Na^+ + OH^- + H^+ + Cl^- \longrightarrow NaCl + H_2O$ $H^+ + OH^- \longrightarrow H_2O$

(e) **Strength of acids and bases :-** This concept explains the strength of acids and bases depending upon the basis of degree of ionisation.

ExampleFor strong electrolytes $\alpha \simeq 100\%$ For weak electrolytes $\alpha < 100\%$

(f) Advantage :- This concept explains the acids and bases practically. i.e. To find out the pH, ionisation constant, hydrolysis constants, heat of neutralisation etc.

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\MODULE-1\4.IONIC EQUILIBRIUM\01-THEORY.P65

Ε

(g) Disadvantage :-

It explains the behaviour of acids and bases only in aqueous (water) solvents.

Illustrations -

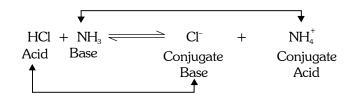
Illustration 29	Gaseous hydrogen chloride is a very poor conductor of electricity but a solution of hydrogen chloride in water is a good conductor. This is due to the fact that :-				
	(1) Water is a good conductor of electricity				
	(2) Hydrogen chloride ionises in water				
	(3) A gas cannot conduct electricity but a liquid can				
	(4) HCl does not obey Ohm's law where as the solution does				
Solution	(2)				
Illustration 30	Which is acid in the following pairs according to Arrhenius concept ?				
	(1) HCl(g) and HCl (aq)	(2) CH ₃ COOH(I) and CH ₃ COOH(aq)			
Solution	(1) HCl(aq.)	(2) $CH_3COOH(aq.)$			

(3) Bronsted-Lowry Concept (1923)

It is based upon the exchange of proton.

(a) Acid :- According to this concept those substances which have tendency to donate the proton (H⁺) by any method in any solvent are called acids.

- **(b) Base :-** Those substances which have tendency to accept the proton by any method in any solvent are called the bases.
 - (1) HS^- , HCO_3^- , HSO_4^- , $H_2PO_4^-$, HPO_4^{-2} , O^{-2} , SO_4^{-2} , CO_3^{-2} , CI^- , Br^- , I^- , CN^- etc.
 - (2) NH_3 , RNH_2 , R_2NH , R_3N , $C_6H_5NH_2$, C_5H_5N , H_2N-NH_2 etc.


Example

(i)

- $HS^{-}(Base) + H_{2}O(Solvent) \longrightarrow H_{2}S + OH^{-}$
- (ii) NH_3 (Base) + H_2O (Solvent) $\longrightarrow NH_4^+ + OH^-$
- (iii) $CO_3^{-2}(Base) + H_2O$ (Solvent) $\longrightarrow HCO_3^{-} + OH^{-1}$

- ALLEN
 - (c) Nature of water :- According to this concept nature of water is amphoteric or amphiprotic i.e. water can act as both acid and base.
 - (i) HCl (Acid) + H_2O (Base) $\longrightarrow Cl^- + H_3O^+$
 - (ii) NH_3 (Base) + H_2O (Acid) $\longrightarrow NH_4^+ + OH^-$
 - (d) **Neutralisation Reaction :-** According to this concept those reaction in which acid and base react together and convert into their respective conjugate acid and base are called neutralisation reactions.

Example

(e) **Strength of acids and bases :-** This concept explain the strength of acid and base depending upon the basis of relative tendency to accept or donate the proton.

		2	1	1			
(i)	HClO ₄		(ix)	H_3PO_4		(xvii)	H–OH
(ii)	HI		(x)	HF		(xviii)	C ₂ H ₅ -OH
(iii)	HBr		(xi)	CH ₃ COOH		(xix)	$C_6H_5NH_2$
(iv)	H_2SO_4		(xii)	H_2CO_3		(xx)	NH ₃
(v)	HCl		(xiii)	H_2S		(xxi)	R-NH ₂
(vi)	HNO ₃		(xiv)	NH_4^+		(xxii)	CH_4
(vii)	H_3O^+		(xv)	HCN		(xxiii)	H_2
(viii)	HSO_4^{-}		(xvi)	C_6H_5OH			
Exa	mple						
(i)	HCl	+	H_2O	`	Cl⁻	+	H_3O^+
	Strong acid		Strong base	2	Weak base		Weak acid
(ii)	CH ₃ COOH	+	H ₂ O	<u></u>	CH ₃ COO-	+	H_3O^+
	Weak acid		Weak base		Strong base		Strong acid
(iii)	NH ₃	+	H ₂ O	<u></u>	NH_4^+	+	OH⁻
	Weak base		Weak acid		Strong acid		Strong base
(iv)	HCl	+	CH ₃ COOH	<u> </u>	Cl⁻	+	$\rm CH_3\rm COOH_2^+$
	Weak acid		Weak base		Strong base		Strong acid
(v)	HCl	+	NH ₃	<u></u>	Cl⁻	+	NH_4^+
	Strong acid		Strong base	2	Weak base		Weak acid
(vi)	CH3COOH	+	NH ₃	<u></u>	CH ₃ COO-	+	NH_4^+
	Strong acid		Strong base	2	Weak base		Weak acid

GOLDEN KEY POINTS

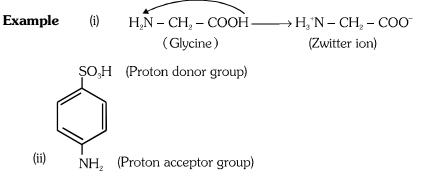
Types of Solvent

(a) **Protogenic or acidic solvent :-** They have a tendency to generate or donate the protons.

CH₃COOH, HCl, HNO₃, H₂SO₄ etc. Example

(b) Protophilic or basic solvent :- They have a tendency to accept the protons.

Example NH₃, CH₃OH, RNH₂etc.


(c) Amphiprotic or amphoteric solvents :- They have the tendency to accept or donate the protons or they are either protophilic or protogenic.

 H_2O , HS^- , HSO_4^- , HCO_3^- etc. Example

(d) Aprotic solvents :- They neither donate nor accept the protons.

C₆H₆, CCl₄, CHCl₃, BrF₃, NO₂, COCl₂ etc. Example

(e) Ampholyte solvents-Those solvents in which the same molecule acts as proton donor and proton acceptor.

(Sulphanilic acid)

(f) Advantage :-

- It explain the behaviour of acids and bases in any type of solvent. (i)
- It explain the stability of proton (H^+) . (ii)

(g) Disadvantage :-

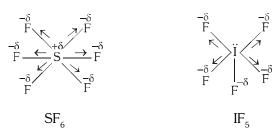
- It does not explain the acid and base practically. (i)
- It does not explain acidic behaviour of aprotic acid. (SO₂, SO₃, CO₂, AlCl₃, SiCl₄ etc.) (ii)

Illustrations							
Illustration 31	In the process : NH_3	In the process : $NH_3 + NH_3 \implies NH_2^- + NH_4^+$, The nature of ammonia is:-					
	(1) Acidic (2) Basic (3) Amphoteric (4) None						
Solution.	Ans.(3)						
Illustration 32	Which of the following behave both as Bronsted acid as well as Bronsted bases ?						
	H_2O , HCO_3^- , H_2SO_4 , H_3PO_4 , HS^- , NH_3						
Solution.	H_2O , HCO_3^- , HS^- , NH_3						
166				I			

(4) Lewis Concept (1939)

(a) Lewis Acid :- According to this concept those species which have self tendency to accept the lone pair of electrons are called acids. i.e. Lewis acid is an electron pair acceptor (electrophilic).

 $H^{+} + : \ddot{O}_{x} H^{-} \longrightarrow H : \ddot{O}_{x} H$ Acid Base


Classification of Lewis Acids :-

(i) Compounds whose central atom have an incomplete octet (electron deficient)

Example BF_3 , BBr_3 , BCl_3 , Bl_3 , $B(CH_3)_3$, $B(OH)_3$, $AlCl_3$, $GeCl_3$ etc.

(ii) Compounds whose central atom have vacant d-orbitals and can accept one or more pair of lone electrons.

Example SF_4 , SF_6 , $SnCl_2$, $SnCl_4$, PX_3 , PX_5 , GeX_4 , TeX_4 , IF_5 , IF_7 , etc.

(iii) Molecules with a multiple bond between atoms of different electronegativities.

Example CO_2 , SO_2 , SO_3 etc.

 $\overset{-\delta}{O} = \overset{+\delta}{C} = \overset{-\delta}{O} \qquad \overset{-\delta}{O} = \overset{+\delta}{S} = \overset{-\delta}{O} \qquad \overset{-\delta}{O} = \overset{+\delta}{S} = \overset{-\delta}{O} \\ \overset{-\delta}{O} = \overset{-\delta}{C} = \overset{-\delta}{O} = \overset{+\delta}{S} = \overset{-\delta}{O} \\ \overset{-\delta}{O} = \overset{-\delta}{C} = \overset{-\delta}{O} = \overset{-\delta}{S} = \overset{-\delta}{O} \\ \overset{-\delta}{O} = \overset{-\delta}{C} = \overset{-\delta}{O} = \overset{-\delta}{S} = \overset{-\delta}{O} \\ \overset{-\delta}{O} = \overset{-\delta}{C} = \overset{-\delta}{O} = \overset{-\delta}{S} = \overset{-\delta}{O} \\ \overset{-\delta}{O} = \overset{-\delta}{C} = \overset{-\delta}{O} = \overset{-\delta}{S} = \overset{-\delta}{O} \\ \overset{-\delta}{O} = \overset{-\delta}{O} = \overset{-\delta}{S} = \overset{-\delta}{O} \\ \overset{-\delta}{O} \overset{-\delta}{O} & \overset{-\delta}{O} & \overset{-\delta}{O} & \overset{-\delta}{O} & \overset{-\delta}{O} & \overset{-\delta}{O}$ Lewis base Lewis acid OH SO₃ + $H_2O \longrightarrow H_2SO_4$ Lewis acid Lewis base Cations :-Ag⁺, Na⁺, Li⁺, Al⁺³, Be⁺², Mg⁺², I⁺, Cl⁺, H⁺ etc. Example **False cations :- Example** NH_4^+ , H_3O^+ , $CH_3COOH_2^+$, PH_4^+ etc. $Ag^+ + 2 : NH_3 \implies [Ag (:NH_3)_2]^+$ Example $Cu^{+2} + 2 (:H_2O)_2 \longrightarrow [Cu (:H_2O)_4]^{+2}$ Elements which have six electrons in their outermost shell or valence shell. O–Family (O, S, Se, Te) Po-Radioactive element $SO_3^{-2} + \ddot{O} \longrightarrow [SO_3 \longrightarrow O]^{-2}$ Base Acid

(iv)

(v)

(b) Lewis Base :- Those species which have self tendency to donate the lone pair of electrons are called bases. i.e. a base is an electron pair (lone pair) donor (nucleophile).

Classification of Lewis Bases

Example

(i) Those species whose central atom have lone pair of electrons and have self tendency to donate them –

Example
$$\ddot{N}H_3$$
, $R - \ddot{N}H_2$, $R_2 - \ddot{N}H$, $C_6H_5 - \ddot{N}H_2$, $C_5H_5 - \ddot{N}$, $H_2\ddot{N} - \ddot{N}H_2$,
 $H - \ddot{O} - H$, $R - \ddot{O} - H$, $R - \ddot{O} - R$, $R - \ddot{S} - R$, $R - \ddot{S} - H$, etc.
Explain :- $R \xrightarrow{-\delta} - \ddot{O} \xleftarrow{-R} R_{+1}$ (Electron density on O, increases due to +I effect)
Anions -
Example O^{-2} , SO_4^{-2} , CO_3^{-2} , Cl^- , Br^- , F^- , l^- , N^{-3} , P^{-3} , NO_3^{-7} , S^{-2} , CN^- , etc.

- (c) Nature of water :- According to this concept nature of water is basic i.e. water is a base.
- (d) Neutralisation Reaction :- According to this concept those reactions in which acid and base react together to form a co-ordinate bond between them are called neutralisation reactions.

```
Example
```

(ii)

$F_3 B$	+	$\stackrel{\bullet\bullet}{\mathrm{NH}}_{3} \rightarrow$	$[F_3B \leftarrow NH_3]$
Lewis acid		Lewis base	
H^{+}	+	$\ddot{N}H_3 \rightarrow$	$[H \leftarrow NH_3]^+ \rightarrow NH_4^+$
$\mathrm{H}^{\scriptscriptstyle +}$	+	$H_2 \overset{\bullet\bullet}{O} \rightarrow$	$\begin{bmatrix} H \leftarrow O \\ H \end{bmatrix} \rightarrow H_3O^+$
Ag^+	+	$::$ 2NH ₃ \rightarrow	$[H_3 N \rightarrow Ag \leftarrow NH_3]^* \rightarrow [Ag (NH_3)_2]^*$

(e) Strength of acids and bases :- This concept explain the strength of acids and bases depending upon the basis of self tendency. To accept or donate the lone pair of electrons (e⁻).

 $SO_2 < SO_3$ (Strong acid) Example

(f) Advantage :-

- This concept explains the acid and base without any solvent. (a)
- This concept explains those acids and bases which are not explained by other concepts. (b)

(g) Disadvantage :-

- This concept fails to explain the acid and base practically. (a)
- According to this concept forming of co-ordinate bond in neutralisation reaction of acid and base is (b) a slow process, whereas neutralisation reaction of acids and bases is actually fast process.
- (c) This concept fails to explain the real acids and bases

ExampleHCl, HNO₃, H₂SO₄, NaOH, KOH, etc.

- All the lewis bases are bronsted bases but all the lewis acids are not bronsted acids.
- All Arrhenius acids are Bronsted acids but it is not so for bases.

ALLEN(6) POLYACIDIC BASE AND POLYBASIC ACIDS

(e) 1 e L (a)	Polyacidic Base				
	$Al(OH)_3 \longrightarrow Al^{+3} + 3OH^- \longrightarrow K_b$				
	$Al(OH)_3 \qquad \Longrightarrow [Al(OH)_2]^{+1} + OH^- \longrightarrow K_{b_1}$				
	$[Al(OH)_2]^{+1} \longleftrightarrow [Al(OH)]^{+2} + OH^- \longrightarrow K_{b_2}$				
	$[Al(OH)]^{+2} \Longrightarrow Al^{+3} + OH^{-} \longrightarrow K_{b_{3}}$				
	$K_{b} = K_{b_1} \times K_{b_2} \times K_{b_3}$				
	taking —log on both sides				
	$pK_{b} = pK_{b_{1}} + pK_{b_{2}} + pK_{b_{3}}$				
	i.e. $K_{b_1} > K_{b_2} > K_{b_3} \implies pK_{b_1} < pK_{b_2} < pK_{b_3}$				
(b)	Polybasic Acid				
	$H_3PO_4 \longrightarrow 3H^+ + PO_4^{-3} \longrightarrow K_a$				
	$H_3PO_4 \longrightarrow H_2PO_4^{-1} + H^+ \longrightarrow K_{a_1}$				
	$H_2PO_4^{-1} \longrightarrow HPO_4^{-2} + H^+ \longrightarrow K_{a_2}$				
	$HPO_{4}^{-2} \qquad \Longrightarrow PO_{4}^{-3} + H^{+} \longrightarrow K_{a_{3}}$				
	$\mathbf{K}_{\mathbf{a}} = \mathbf{K}_{\mathbf{a}_1} \times \mathbf{K}_{\mathbf{a}_2} \times \mathbf{K}_{\mathbf{a}_3}$				
	taking –log on both sides				
	$pK_{a} = pK_{a_{1}} + pK_{a_{2}} + pK_{a_{3}}$				
	$\boxed{K_{a_1} > K_{a_2} > K_{a_3}} \implies \boxed{pK_{a_1} < pK_{a_2} < pK_{a_3}}$				
	Illustrations				
	К. Ко				
Illustratior	1 33 In the dissociation , $H_2A \xrightarrow{H^+} H^+ + HA^- HA^- \xrightarrow{H^+} H^+ + A^{-2}$ (1) K_1 is equal to K_2 (2) K_1 is smaller than K_2				
	(3) K_1 is greater than K_2 (4) K_1 is negligible				
Solution.	Ans. (3)				
Illustratior	4 Calculate the pH of 2.0×10^{-4} M H ₃ X Solution assuming first dissociation to be 100%, second to be 50% and third to be negligible :				
Solution.	First dissociation : $H_3X \implies H_2X^- + H^+$				
	$\therefore H^+ \text{ ion concentration} = 2 \times 10^{-4} \text{ M}$				
	Second dissociation : $H_2X^- \rightleftharpoons HX^- + H^+$ H ⁺ ion concentration = $C\alpha = 2 \times 10^{-4} \times 0.5$				
	∴ Third dissociation is negligible				
	$\therefore \qquad [H^+] = 2 \times 10^{-4} + 10^{-4} = 3 \times 10^{-4}$				
	$pH = 4 - \log 3 = 3.52$				

		BEGINNE	ER'S BOX-5		
1.	Which of the following	is a Bronsted acid ?			
	(i) HCN	(ii) H ₂ PO ₄ ⁻	(iii) NH ₄ ⁺	(iv) HCl	
	(1) (i), (iii)	(2) (i), (ii), (iii), (iv)	(3) (ii), (iii)	(4) (i), (iii),(iv)	
2.	Which of the following	is a Bronsted base ?			
	(i) NH ₃	(ii) CH ₃ NH ₂	(iii) HCO ₃	(iv) SO ₄ ²⁻	
	(1) (i), (ii), (iii), (iv)	(2) (i), (ii)	(3) (i), (ii), (iii)	(4) (i), (iii),(iv)	
3.	The conjugate base of l	nydroxide ion is-			
	(1) H ₂ O	(2) H ₃ O+	(3) O ²⁻	(4) O ₂	
4.	The conugate acid of a	mide ion (NH_2^-) is-			
	(1) N ₂ H ₄	(2) NH ₂ OH	(3) NH ₄ ⁺	(4) NH ₃	
5.	Which of the following	can act both as a Bronstee	l acid as well as a Bronsted	base ?	
	(1) H ₂ SO ₄	(2) HCO ₃ ⁻	(3) O ²⁻	(4) NH ₄ ⁺	
6.	Which of the following acid-base reactions cannot be explained by the Bronsted theory ?				
	(1) $CO_2 + CaO \longrightarrow O_2$	CaCO ₃	(2) $BF_3 + NH_3 \longrightarrow \overline{B}$	$F_3 \overset{+}{N} H_3$	
	(3) Ni + 4CO \longrightarrow Ni	(CO) ₄	(4) All of these		
7.	Which of the following	Bronsted acid has the wea	kest conjugate base ?		
	(1) H ₂ O	(2) HCN	(3) HCOOH	(4) HF	

ANSWER KEY

								-			
	Que.	1	2	3	4	5	6	7	8	9	10
BEGINNER'S BOX-1	Ans.	3	1	3	4	1	1	4	4	2	1
DEGINNER 5 DOX-1	Que.	11									
	Ans.	2									
BEGINNER'S BOX-2	Que.	1	2	3	4	5	6	7			
DEGINNER 5 DOA-2	Ans.	4	2	1	2	3	2	1			
			•								
BEGINNER'S BOX-3	Que.	1	2	3	4	5	6				
DEGINNER 5 DOX-5	Ans.	2	3	2	3	1	2				
						-					
BEGINNER'S BOX-4	Que.	1	2	3	4	5	6				
DEGINNER 5 DOA-4	Ans.	3	2	3	1	4	4				
					-		-				-
BEGINNER'S BOX-5	Que.	1	2	3	4	5	6	7			
DEGININER S DOA-5	Ans.	2	1	3	4	2	4	4			

Z. NODE02 (BD4+B0/TARGET/CHEM/ENG/MODILE-1 \4 JONIC EQUILBRIUM/01-THEORY P65

- Allen

ALI	len			Pre-Medical : Chemistr
E	XERCISE-I (Concep	otual Questions)		Build Up Your Understanding
1.	INTRODUC The formula weight of H of the acid in 400mL of	H_2SO_4 is 98. The weight f 0.1 M solution is:-	13.	If α is the degree of dissociation of weak dibas organic acid and y is the hydrogen io concentration, what is the initial concentration acid :-
2 .	 (1) 2.45 g (2) 3.92 g Normality of 2M sulphu (1) 2 N (2) 4N 			(1) $\frac{\alpha(y)^{-1}}{2}$ M (2) $y(\alpha)^{-1}$ M
3.	If pH = 3.31, then find (1) 3.39×10^{-4} (3) 3.0×10^{-3}	l out [H+] (Approxy) (2) 5 × 10 ⁻⁴ (4) None	14.	(3) $\frac{y(\alpha)^{-1}}{2}$ M (4) None of them The degree of dissociation of acetic acid is given by
4.	If $[OH^{-}] = 5.0 \times 10^{-5} M$ (1) 5 - log 5 (3) log 5 - 5	$(2) 9 + \log 5$		the expression $\alpha = 0.1 \times C^{-1}$ (where $C =$ concentration of the acid) What is the pH of the solution :- (1) 1 (2) 2 (3) 3 (4) 4
5.	Basicity of H_3PO_3 and H_3PO_3 and H_3PO_3 and H_3PO_3 and H_3PO_3 and H_3PO_3 and H_3PO_3	H ₃ PO ₂ are respectivily :- (2) 2 and 3 (4) 2 and 1	15.	Ostwald's dilution law is not applicable for stron electrolytes because:- (1) Strong electrolytes are completely ionised
6.	Find out pH of solution 1^{-1} OH ⁻ ion's in 2 litre solu (1) pH = 3 (3) pH = 3 - log2	having 2 ×10 ⁻³ moles of ition :- (2) pH = 3 + log2	16.	(2) Strong electrolytes are volatile(3) Strong electrolytes are unstable(4) Strong electrolytes often contain metal ionThe degree of ionisation of a compound dependence
7.	pH of tomato juice is 4.4 H_3O^+ will be :- (1) 39 × 10 ⁻⁴			upon : (1) Size of the solute molecules (2) Nature of the solute molecules (3) Nature of the container taken (4) The amount of current passed
8.	8 g NaOH is dissolved in molarity of the solution (1) 0.2 M (2) 0.4 M		17.	Find out K_a for 10^{-2} M HCN acid, having pO is 10 :- (1) $K_a = 10^{-4}$ (2) $K_a = 10^{-2}$
9.	The amount of acetic ac 0.1M solution is :- (1) 0.30 g (2) 3.0 g	id present in 100 mL of (3) 0.60 g (4) None	18.	(3) $K_a = 10^{-5}$ (4) None of them Which of the following will occur if a 1.0 M solution of a weak acid is diluted to 0.01 M at constant
10.	The number of milli equiv of 0.5N HCl solution i (1) 50 (2) 100			temperature:- (1) Percentage ionisation will increase (2) [H ⁺] will decrease to 0.01M (3) K _a will increase
11.	If the molar conce $1.5 \times 10^{-3} \text{ mol} \text{L}^{-1}$, the consistence in g ion L ⁻¹ is:- (1) 3.0×10^{-3} (3) 0.3×10^{-3}	2	19. 20.	(4) pH will decrease by 2 units The pH of 0.15 M solution of HO($K_a = 9.6 \times 10^{-6}$) is:- (1) 4.42 (2) 2.92 (3) 3.42 (4) Non-
	OSTWALD'S DIL	UTION LAW		electrolytes)
19	Order of dissociation of	0		(1) With the increase in concentration of solu(2) On decreasing the temp. of solution
12.	(Dissociation constant = $(1) \ 10^{-5}$ (2) 10^{-4}	$(3) 10^{-3} (4) 10^{-2}$		(3) On addition of excess of water to the solution(4) On stirring the solution vigorously

- **21.** If Ka of HCN = 4×10^{-10} , then the pH of 2.5 × 10⁻¹ molar HCN (aq) is:-(1) 4.2 (2) 4.7 (3) 0.47 (4) 5.0
- **22.** The molarity of nitrous acid at which its pH becomes $2.(K_a = 4.5 \times 10^{-4})$:-(1) 0.3333 (2) 0.4444 (3) 0.6666 (4) 0.2222
- **23.** Correct statement for HCN weak acid at 25°C temperature.:-

(1)
$$\alpha = \frac{K_a}{[H^+]}$$
 (2) $\alpha = \frac{K_a \times [OH^-]}{K_w}$

(3) (1) & (2) both (4) $K_{\rm b} = C\alpha^2$

EXPLANATION OF WATER

- 24. Ionic product of water will increase, if :(1) Dissociation the pressure
 (2) Add H⁺
 - (3) Add OH-
 - (4) Increase the temperature
- 25. For water at 25° C, 2 × 10⁻⁷ moles per litre is the correct answer for which one of the followoing (1) [H⁺] + [OH⁻] (2) [H⁺]²
 (3) [OH⁻]² (4) [H⁺] [OH⁻]
- **26**. At 25°C, the dissociation constant for pure water is given by :-
 - (1) $(55.4 \times 10^{14})^{-1}$ (2) 1×10^{-14}
 - (3) $\frac{1 \times 10^{-14}}{18}$ (4) None of these
- **27**. Ionic product of water is equal to :-
 - (1) Dissociation constant of water \times [H₂O]
 - (2) Dissociation constant of water $\times \left[H^{\scriptscriptstyle +} \right]$
 - (3) Product of $[H_2O]$ and $[H^+]$
 - (4) Product of $[OH^{-}]^{2}$ and $[H^{+}]$
- **28**. Addition of H^+ and OH^- ion's concentration at 90°C

(1) 10 ⁻¹⁴	(2) 10-12
(3) 2×10^{-6}	(4) 2×10^{-7}

- **29.** At 90°C, pure water has $[H_{3}O^{+}] = 10^{-6.7} \text{ mol } L^{-1}$ what is the value of K_{W} at 90°C:-(1) 10^{-6} (2) 10^{-12} (3) 10^{-67} (4) $10^{-13.4}$
- **30.** At 373 K, temp. the pH of pure H_2O can be: (1) < 7 (2) > 7 (3) = 7 (4) = 0

- 31. The common ion effect is shown by which of the following sets of solutions :(1) P. Class P. (NO) and (2) N. Class HClass
 - (1) $BaCl_2 + Ba(NO_3)_2$ (2) NaCl + HCl(3) $NH_4OH + NH_4Cl$ (4) None
- Basic strength of NH₄OH in presence of NH₄Cl (1) Increases
 - (2) Remains unchanged
 - (3) Decreases
 - (4) Some times increases or sometimes decreases
- **33.** Which of the following is a true statement :
 - (1) The ionisation constant and ionic product of water are same.
 - (2) Water is a strong electrolyte.
 - (3) The value of ionic product of water is less than that of its ionisation constant.
 - (4) At 298K, the number of H⁺ ions in a litre of water is 6.023×10^{16} .
- 34. If it is known that H₂S is a weak acid and it is ionised into 2H⁺ and S⁻². Then in this solution HCl is added so, pH becomes less, then what will happen :-
 - (1) Decrease in S^{-2} ion concentration
 - (2) Concentration of S^{-2} is not affected
 - (3) Increase in S^{-2} ion concentration
 - (4) It is not possible, to add HCl in solution

SALTS, TYPES OF SALT & CONJUGATE THEORY

- **35**. Which of the following is not an acidic salt :-(1) NaHSO₄ (2) HCOONa (3) NaH₂PO₃ (4) None of them
- **36.** Which is a basic salt :-(1) PbS (2) PbCO₃ (3) PbSO₄ (4) $2PbCO_3 Pb(OH)_2$
- **37.** The process of neutralisation invariably results in the production of :-
 - (1) H⁺ ions
 - (2) OH^{_} ions
 - (3) Both H^+ and OH^- ions
 - (4) Molecules of water
- 39. The mixed salt among the following is :-
 - (1) CH(OH)COONa | CH(OH)COONa (2) NaKSO₄
 - (3) CaCl₂ (4) All

Allen

HYDROLYSIS OF SALTS

40. At 90° C, the pH of 0.1M NaCl aqueous solution is :-

$$(1) < 7$$
 $(2) > 7$ $(3) 7$ $(4) 0.1$

- **41.** What will be the pH of 1.0 M ammonium formate solution, If $K_a = 1 \times 10^{-4}$ acid $K_b = 1 \times 10^{-5}$:-(1) 6.5 (2) 7.5 (3) 8.0 (4) 9.0
- **42.** Which salt will not undergo hydrolysis :-(1) KCl (2) Na₂SO₄ (3) NaCl (4) All
- **43.** Maximum efficiency of cationic hydrolysis will be shown by :-

(1) $A\ell^{+3}$ (2) Ga^{+3} (3) $T\ell^{+1}$ (4) $T\ell^{+3}$

44. HCOO⁻ + $H_2O \implies$ HCOOH + OH⁻ is related:-

(1) h =
$$\sqrt{K_h}$$

(2) h = $\sqrt{\frac{K_h}{C}}$
(3) h = $\sqrt{\frac{K_h}{V}}$
(4) $K_h = \sqrt{hc}$

45. The pH of aqueous solution of sodium acetate is

(1) 7	(2) Very low
(3) > 7	(4) < 7

- 46. If pK_b for CN⁻ at 25°C is 4.7. The pH of 0.5M aqueous NaCN solution is :(1) 12
 (2) 10
 (3) 11.5
 (4) 11
- 47. The highest pH value is of :
 (1) 0.1 M NaCl
 (2) 0.1 M NH₄Cl
 (3) 0.1 M CH₃COONa
 (4) 0.1 M CH₃COONH₄
- **48.** pH of K₂S solution is:-(1) 7 (2) Less than 7 (3) More than 7 (4) 0
- 49. For anionic hydrolysis, pH is given by:-

(1) $pH = \frac{1}{2} pK_w - \frac{1}{2} pK_b - \frac{1}{2} \log c$ (2) $pH = \frac{1}{2} pK_w + \frac{1}{2} pK_a - \frac{1}{2} pK_b$ (3) $pH = \frac{1}{2} pK_w + \frac{1}{2} pK_a + \frac{1}{2} \log c$ (4) None of above **50.** A weak acid react with strong base, ionisation

50. A weak acid react with strong base, ionisation constant of weak acid is 10⁻⁴. Find out equilibrium constant for this reaction :(1) 10⁻¹⁰
(2) 10¹⁰
(3) 10⁻⁹
(4) 10⁹

51. Hydroxyl ion concentration $[OH^{-}]$ in the case of sodium acetate can be expressed as (where K_a is dissociation constant of CH_3COOH and C is the concentration of sodium acetate):-

(1)
$$[OH^{-}] = (CK_{w}. K_{a})^{1/2}$$
 (2) $[OH^{-}] = C.K_{w}\sqrt{K_{a}}$

(3)
$$[OH^{-}] = \left(\frac{C.K_{w}}{K_{a}}\right)^{1/2}$$
 (4) $[OH^{-}] = C. K_{a}. K_{w}.$

- **52.** Consider :-(a) FeCl₃ in water - Basic (b) NH₄Cl in water - Acidic (c) Ammonium acetate in water - Acidic (d) Na₂CO₃ in water - Basic Which is/are not correctly matched:-(1) b and d (2) b only (3) a and c (4) d only
- 53. Which of the following salts undergoes hydrolysis in water:(1) Na₃PO₄
 (2) CH₃COONa
 (3) NaNO₃
 (4) Both of (1) and (2)
- 54. A salt 'X' is dissolved in water of pH = 7. The resulting solution becomes alkaline in nature. The salt is made up of:-
 - (1) A strong acid and strong base
 - (2) A strong acid and weak base
 - (3) A weak acid and weak base
 - (4) A weak acid and strong base
- **55.** K_a for cyano acetic acid is 3.5×10^{-3} . Then the degree of hydrolysis of 0.05 M. sodium cyano acetate solution will have the following value :-(1) 4.559×10^{-6} (2) 5.559×10^{-6} (3) 6.559×10^{-6} (4) 7.559×10^{-6}
- **56.** Degree of Hydrolysis of $\frac{N}{100}$ solution of KCN is

(Given Ka = 1.4×10^{-9}) (1) 2.7×10^{-3} (2) 2.7×10^{-2} (3) 2.7×10^{-4} (4) 2.7×10^{-5}

SOLUBILITY & SOLUBILITY PRODUCT(K.,)

- **57.** The solubility product of sparingly soluble univalent salt is defined as the product of ionic concentration in a:-
 - (1) 1 M solution
 - (2) Concentration solution
 - (3) Very dilute solution
 - (4) Saturated solution

58.	In solubility of salts M_2X ,	QY_{2} and PZ_{2} equal, then	67 .	The solu
	the relation between thei			expressio
	(1) $K_{sp}(M_2X) > K_{sp} (QY_2)$ (2) $K (M_2X) - K (QY_2)$	$p_{\rm p} > {\rm K}_{\rm sp} ({\rm PZ}_2)$		(1) $K_{sp} =$ (3) $K_{sp} =$
	(2) $K_{sp}(M_2X) = K_{sp}(QY_2)$ (3) $K(M_2X) > K(QY_2)$	$P_{sp} \langle \Gamma Z_2 \rangle$ $A = K (PZ_2)$		
	(3) $K_{sp}^{p}(M_{2}X) > K_{sp}^{p}(QY_{2})$ (4) $K_{sp}(M_{2}X) = K_{sp}(QY_{2})$	$\dot{P} = K_{sp}^{sp} (PZ_2)$	68 .	If the solu consideri
59 .	The expression of solubil	-		is :- (1) 2S ³
	iodide is :- (1) [2 Hg+] ² × 2 [I-] ²	(2) [Hg ⁺⁺] ² × [2I ⁻] ²		(1) 23
		(4) $[Hg^{2+}]^2 \times [I^{-}]^2$	69 .	If the so aluminate
60.	At 25°C, the K_{sp} value of 10^{-5} moles of Agt are add	of AgCl is 1.8×10^{-10} . If		product i (1) S ⁸ (3) 18S ³
	10 ⁻⁵ moles of Ag ⁺ are adde be :-		70.	One litre
	(1) 1.8×10^{-15}	(2) 1.8 × 10 ⁻¹⁰	70.	evaporate
	(3) 1.8×10^{-5}	(4) $18 \times 10^{+10}$		left. The
61.	At 25°C, required volume BaSO ₄ ($K_{sp} = 1.1 \times 10^{-10}$)			(1) 4.9 × (3) 4.9 ×
	of BaSO ₄ = 233) :- (1) 820 L.	(2) 1 L.	APP	LICATIO
	(1) 020 L. (3) 205 L.	(4) 430 L.	71.	At 30ºC,
()		· · · · · · · · · · · · · · · · · · ·	•	solubility
62.	Concentration of Ag ⁺ ior Ag ₂ CrO ₄ at 20 ^o C is 1.5			will be m
	the solubility product of	Ag_2CrO_4 is :-		(1) 0.05(3) 0.05
	(1) 3.3750 × 10 ⁻¹²	(2) 1.6875 × 10 ⁻¹⁰		(3) 0.03
	(3) 1.68×10^{-12}	(4) 1.6875×10^{-11}	72.	Solubility
63.	How many grams of CaC	₂ O ₄ will dissolve in distilled		(1) Pure (3) 0.1 N
	water to make one litre sat		=0	
	product of CaC_2O_4 is 2.8 molecular weight is 128.		73.	In which will be u
	(1) 0.0064 g	(2) 0.0128 g		(1) [Ag ⁺]
		(4) 0.0640 g		(3) [Ag+]
64 .	If the concentration of ($\Gamma n \Omega^{2}$ ion in a saturated	74.	If 's' and 's
01.	solution of silver chrom	-		product of
	solubility product of silve			then :-
	(1) 4 x 10 ⁻⁸ (2) 22 x 10 ⁻¹²	(2) 8 x 10^{-12}		(1) s = S
	(3) 32 x 10^{-12}	(4) 6 x 10^{-12}		(3) $s = S$
65.	If the solubility of AgCl (for			()
	at 25°C is 1.43 ×10 ⁻⁴ g/		75.	The solut
	the value of K_{sp} will be (1) 1 \times 10 ⁻⁵	:- (2) 2×10^{-5}		$10^{-37}, 10$
	(1) 1×10^{-10} (3) 1×10^{-10}	(2) 2×10^{-10} (4) 2×10^{-10}		of these
	(3) 1 × 10	(4) 2 × 10		(1) HgS
66 .	If the salts M_2X , QY_2 a	-		(3) CuS :
	solubilities, their K_{sp} value		76 .	If the ma
	(1) $K_{sp} (M_2 X) = K_{sp} (QY)$ (2) $K_{sp} (M_2 X) > K_{sp} (QY)$			is 0.01 M
	(3) $K_{sp}^{sp} (M_2^2 X) = K_{sn}^{sp} (QY)$	$\tilde{z}'_{2} > K_{sp}^{sp} (PZ_{3}^{3})$		in 0.1 M (1) 4×1
	(3) K_{sp}^{o} (M_2X) = K_{sp}^{o} (QY) (4) K_{sp} (M_2X) > K_{sp} (QY)	$_{2}) > K_{sp}^{-} (PZ_{3})$		(1) 4×1 (3) 4×1
				\-, - / · ·
174				

ubility product of As_2S_3 is given by the on :-(2) $K_{sp} = [As^{3+}]^1 [S^{-2}]^1$ (4) $K_{sp} = [As^{3+}]^2 [S^{-2}]^3$ $= [As^{3+}] \times [S^{-2}]$ $= [As^{3+}]^3 [S^{-2}]^2$ lubility of PbBr₂ is 'S' g molecules per litre, ing 100% ionisation its solubility product (2) $4S^2$ $(3) 4S^3$ $(4) 2S^4$ olubility of lithium sodium hexeafluoro te $\text{Li}_3\text{Na}_3(\text{AlF}_6)_2$ is 'S' mol L⁻¹. Its solubility is equal to :-(2) 12 S^3 (4) 2916 S⁸ e of saturated solution of CaCO₃ is ed to dryness, when 7.0 g of residue is solubility product for CaCO₃ is:- $\times 10^{-3}$ (2) 4.9×10^{-5} (4) 4.9×10^{-7} $\times 10^{-9}$ N OF SOLUBILITY PRODUCT(K_) , In which of the one litre solution, the of Ag₂CO₃ (solubility product = 8×10^{-12}) naximum :-M Na₂CO₃ (2) Pure water M AgNO₃ (4) 0.05 M NH₃ y of AgBr will be minimum in :-(2) 0.1 M CaBr, water (4) 0.1 M AgNO3 M NaBr of the following, the solution of AgSCN insaturated :- $\begin{array}{l} [{\rm SCN}^{-}] \ = \ K_{_{{\rm sp}}} & (2) \ [{\rm Ag}^{+}] \times [{\rm SCN}^{-}] < K_{_{{\rm sp}}} \\ \times [{\rm SCN}^{-}] \ > \ K_{_{{\rm sp}}} & (4) \ [{\rm Ag}^{+}] \ [{\rm SCN}^{-}]^2 < \ K_{_{{\rm sp}}} \end{array}$ 'S' are respectively solubility and solubility of a sparingly soluble binary electrolyte (2) $s = S^2$ S (4) s = $\frac{1}{2}$ S S^{1/2} bility product of CuS , Ag₂S and HgS are 0^{-44} and 10^{-54} respectively. The solubility sulphides will be in the order $> Ag_2S > CuS \quad (2) Ag_2S > HgS > CuS$ $> Ag_2S > HgS \quad (4) Ag_2S > CuS > HgS$ aximum concentration of PbCl₂ in water M at 298 K, Its maximum concentration M NaCl will be:-(2) 0.4×10^{-4} M 10⁻³ M 10⁻² M (4) 4×10^{-4} M

Е

Z:\NODE02\B0A-B0\TARGET\CHEM\ENG\MODULE-1\4.IONC

.P65

EQUILIBRIUM\02-EXERCISE

. .

	1.2 × 10 ⁻⁵ at 298 K. Th	ent metal ion) has a K_{sp} of e maximum concentration ained in a saturated solution :-	8
	(1) 3.46×10^{-3} M (3) 2.8×10^{-3} M	(2) 2.89×10^{-2} M	
78 .	(K _{sp} value is given in br (1) HgS (1.6 \times 10 ⁻⁵⁴)	has maximum solubility rackets) :- (2) PbSO ₄ (1.3 × 10 ⁻⁸) (4) AgCl (1.7 × 10 ⁻¹⁰)	٤
79 .		(K _{sp} is given) (2) CdS (3.6 × 10 ⁻²⁸) (4) MnS (1.4 × 10 ⁻¹⁰)	8
80 .	In which of the followin will be maximum :- (1) 0.1 M AgNO ₃ (3) 0.1 M NaCl	ng, the solubility of AgCl (2) Water (4) 0.1 M KCl	
81.	are given below :No.Formula1 PQ 2 PQ_2 3 PQ_3 The correct order of decree	three sparingly soluble salts Solubility product 4.0×10^{-20} 3.2×10^{-14} 2.7×10^{-35} reasing molar solublity is:- 3, 2, 1, (4), 2, 3, 1	٤
82.	The K_{sp} value for Gd(OH) Gd(OH) ₃ in saturated so (1) 6.08 (2) 5.08		9
83.	$5.5 \times 10^{\text{-5}}$ and $2 \times 10^{\text{-5}}$ re	D_4	g
84.	0.5 M HCl solution has	H ₂ S gas in this solution, out :- (2) Cd ⁺² , Hg ⁺² , Cu ⁺²	9
85.		OH) ₂ is 1×10 ⁻¹¹ . At what Ig(OH) ₂ will begin from	

	Pre-Medical : Chemistry
86.	A solution, containing 0.01 M Zn^{+2} and 0.01 M Cu^{2+} is saturated by passing H_2S gas. The S^{-2} concentration is 8.1×10^{-21} M, Ksp for ZnS and CuS are 3.0×10^{-22} and 8.0×10^{-36} respectively. Which of the following will occur in the solution:- (1) ZnS will precipitate (2) CuS will precipitate (3) Both ZnS and CuS will precipitate (4) Both Zn ²⁺ and Cu ²⁺ will remain in the solution
87.	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
88.	What will happen if the pH of the solution of $0.001 \text{ M} \text{ Mg}(\text{NO}_3)_2$ solution is adjusted to pH = 9 $(\text{K}_{sp}\text{Mg}(\text{OH})_2 = 8.9 \times 10^{-12})$ (1) ppt will take place (2) ppt will not take place (3) Solution will be saturated (4) None of these
89 .	The solubility product constant Ksp of Mg(OH) ₂ is 9.0×10^{-12} . If a solution is 0.010 M with respect to Mg ²⁺ ion, what is the maximum hydroxide ion concentration which could be present without causing the precipitation of Mg(OH) ₂ :- (1) 1.5×10^{-7} M (2) 3.0×10^{-7} M (3) 1.5×10^{-5} M (4) 3.0×10^{-5} M
 90 .	 When HCl gas is passed through a saturated solution of common salt, pure NaCl is precipitated because:- (1) The impurities dissolve in HCl (2) HCl is slightly soluble in water (3) The ionic product [Na⁺] × [Cl⁻] exceeds the solubility product of NaCl (4) The solubility product of NaCl is lowered by Cl⁻ from aq. HCl
91 .	A solution is a mixture of 0.06 M KCl and 0.06 M KI. AgNO ₃ solution is being added drop by drop till AgCl starts precipitating (K_{sp} AgCl = 1×10 ⁻¹⁰ and K_{sp} AgI = 4 × 10 ⁻¹⁶). The concentration of lodide ion at this stage will be nearly equal to :- (1) 4.0 × 10 ⁻⁵ M (2) 2.4 × 10 ⁻⁷ M (3) 2.0 × 10 ⁻⁸ M (4) 4 × 10 ⁻⁸ M
92 .	 Why only As³⁺ gets precipitated as As₂S₃ and not Zn²⁺ as ZnS when H₂S is passed through an acidic solution containing As³⁺ and Zn²⁺ :- (1) Enough As³⁺ are present in acidic medium (2) Zinc salt does not ionise in acidic medium (3) Solubility product of As₂S₃ is less than that of ZnS (4) Solubility product changes in presence of an acid

(4) Solubility product changes in presence of an acid

93.

94.

95.

96.

97.

98.

99.

-Medical : Chemistry	
 H₂S is passed through a solution of cations in HCl medium to precipitate cation of :- (1) II-A group of cation analysis (2) II - B group of cation analysis (3) IV group of cation analysis (4) Both II - A and II-B gps. 	100. Minim (1) 0.1 (3) 0.1 101. Given (a) 0.0 (c) 10 ⁻
To have more sulphide ion concentration, H ₂ S should be passed through :- (1) 1 N HCl solution (2) 0.1 M HCl solution (3) A neutral solution such as water (4) An ammonical solution	Choos (1) a, (1) (1) a, (1) (1) 10 ⁻ (3) 10 ⁻
The solubility product of hydroxides of Mg ⁺² , Zn ⁺² , and Fe ⁺³ decreases as $K_{sp} Mg(OH)_2 > K_{sp} Zn(OH)_2 > K_{sp} Fe(OH)_3$ The order of precipitation of hydroxides is:- (1) Fe(OH)_3, Zn(OH)_2, Mg(OH)_2 (2) Mg(OH)_2, Zn(OH)_2, Fe(OH)_3 (3) Zn(OH)_2, Fe(OH)_3, Mg(OH)_2 (4) Zn(OH)_2, Mg(OH)_2, Fe(OH)_3	 103. A meta is 50% pH :- (1) 12 104. In the acids a highes
	(1) $\frac{M}{10}$
FEW IMPORTANT POINTS Two monobasic weak acids have the same concentration of H ⁺ ions. What is the relationship between dissociation constant and dilution:- (1) $Ka_1V_1 = Ka_2V_2$ (2) $Ka_1V_2 = Ka_2V_1$	(2) $\frac{M}{20}$ (3) $\frac{M}{20}$
(3) $[Ka_1V_1]^{\frac{1}{2}} = Ka_2V_2$ (4) $Ka_1V_1 = [Ka_2V_2]^{\frac{1}{2}}$ What is the molar concentration of chloride ion in the solution obtained by mixing 300 mL of 3.0M NaCl and 200 mL of 4.0 M solution of $BaCl_2$:- (1) 5.0 M (2) 1.8 M	 (4) M/20 105. If 100 is mixed (1) 3.2 106. 10⁻⁶ M (1) 6.0
 (3) 1.6 M (4) None of these The pH of a 0.1 M formic acid 0.1% dissociated is equal to 4. What will be the pH of another weak monobasic acid (same concentration) which is 1% dissociated (1) 2 (2) 3 (3) 1 (4) 4 	 (1) 0.0 107. pH of (1) 2 108. At 90% (1) 3
рН	109. The pl H+ ion
pH of water is 7. When any substance Y is dissolved in water then pH becomes 13. Substance Y is a salt of :- (1) Strong acid and strong base	(1) Red (2) Do (3) Red (4) Inc
(2) Weak acid and weak base(3) Strong acid and weak base(4) Weak acid and strong base	110. A solu solutio (1) Hig

100.	Minimum pH is shown by aqueous solution of :-(1) $0.1 \ M \ BaCl_2$ (2) $0.1 \ M \ Ba(NO_3)_2$ (3) $0.1 \ M \ BeCl_2$ (4) $0.1 \ M \ Ba(OH)_2$	
101.	Given :- (a) $0.005 \text{ M H}_2\text{SO}_4$ (b) $0.1 \text{ M Na}_2\text{SO}_4$ (c) 10^{-2} M NaOH (d) 0.01 M HCl Choose the correct code having same pH :- (1) a, c, d (2) b, d (3) a, d (4) a, c	
102.	What is H ⁺ ion concentration of $5 \times 10^{-3} \text{ M H}_2\text{CO}_3$ solution having a 10% dissociation:- (1) 10^{-3} (2) 10^{-2} (3) 10^{-1} (4) 5×10^{-2}	
103.	A metal hydroxide of molecular formula $M(OH)_4$ is 50% ionised. Its 0.0025M solution will have the pH :- (1) 12 (2) 2 (3) 4 (4) 11.7	
104.	In the following solutions, the conc. of different acids are given, which mixture of the acid has highest pH :-	
	(1) $\frac{M}{10}H_2SO_4$, $\frac{M}{20}HNO_3$, $\frac{M}{10}HClO_4$	
	(2) $\frac{M}{20}H_2SO_4$, $\frac{M}{10}HNO_3$, $\frac{M}{20}HCIO_4$	
	(3) $\frac{M}{20}H_2SO_4$, $\frac{M}{10}HNO_3$, $\frac{M}{40}HCO_4$	
	(4) $\frac{M}{20}H_2SO_4$, $\frac{M}{5}HNO_3$, $\frac{M}{5}HCIO_4$	
105.	If 100 mL of $pH = 3$ and 400 mL of $pH = 3$ is mixed, what will be the pH of the mixture (1) 3.2 (2) 3.0 (3) 3.5 (4) 2.8	
106.	10 ⁻⁶ M HCl is diluted to 100 times. Its pH is :- (1) 6.0 (2) 8.0 (3) 6.95 (4) 9.5	
107.	pH of 0.001M acetic acid would be :- (1) 2 (2) > 3 (3) 7 (4) 14	20
108.	At 90°C, the pH of 0.001M KOH solution will be (1) 3 (2) 11 (3) 5 (4) 9	
109.	At 90°C, the pH of 0.001M KOH solution will be (1) 3 (2) 11 (3) 5 (4) 9 The pH of solution is increased from 3 to 6. Its H ⁺ ion concentration will be :- (1) Reduced to half (2) Doubled (3) Reduced by 1000 times (4) Increased by 1000 times A solution has pOH equal to 13 at 298 K. The solution will be:- (1) Highly acidic (2) Highly basic (3) Moderately basic (4) Unpredictable	
110.	A solution has pOH equal to 13 at 298 K. The solution will be:- (1) Highly acidic (2) Highly basic (3) Moderately basic (4) Unpredictable	Z. NINOPENZ INVALIDATION

- (1) Highly acidic
 (3) Moderately basic
- (2) Highly basic(4) Unpredictable

Pre-Mec	lical :	Chemi	stry
ion of HCl	is 10-9	M HCl.	The

	Pre-Medical : Chemistry
111. The pH of the solution containing 10 mL of a 0.1M NaOH and 10 mL of $0.05M H_2SO_4$ would be (1) Zero (2) 1 (3) >7 (4) 7	 121. An aqueous solution of HCl is 10⁻⁹ M HCl. The pH of the solution should be:- (1) 9 (2) Between 6 and 7 (3) 7 (4) Unpredictable
 112. Which of the following statements are (is) correct (a) The pH of 1.0 × 10⁻⁸ M solution of HCl is 8. (b) The conjugate base of H₂PO⁻₄ is HPO₄²⁻ (c) Autoprotolysis constant of water increases with temperature. (d) When a solution of a weak monoprotic acid is titrated against a strong base, at half neutralization point pH = 1/2 pKa 	 122. H₂X is a dibasic acid which dissociates completely in water. Which one of the following is the molarity of an aqueous solution of this acid which has a pH of 1 :- (1) 0.1 (2) 0.05 (3) 0.2 (4) 0.5 123. How many moles of HCl must be removed from 1 litre of aqueous HCl solution to change its pH
 (1) a (2) a, b (3) a, b, d (4) b, c 113. In a solution of pH = 5, more acid is added in order to reduce the pH = 2. The increase in hydrogen ion concentration is:- (1) 100 times (2) 1000 times (3) 3 times (4) 5 times 	from 2 to 3 :- (1) 1 (2) 0.02 (3) 0.009 (4) 0.01 124. 8 g NaOH and 4.9 g H ₂ SO ₄ are present in one litre of the solution. What is its pH (1) 1 (2) 13 (3) 12 (4) 2 125. Calculate pH of a solution whose 100 mL contains
114 . The hydrogen ion concentration in a given solution is 6×10^{-4} M. Its pH will be :- (1) 6 (2) 3.22 (3) 4 (4) 2.	0.2 g NaOH dissolved in it :- (1) 10.699 (2) 11.699 (3) 12.699 (4) 13.699
 115. The pOH of beer is 10.0. The hydrogen ion concentration will be :- (a) 10⁻¹⁰ (b) Kw/10⁻¹⁰ (c) Kw/10⁻⁸ (d) 10⁻⁴ 	126 . One litre solution contains 1M HOCl $[K_a = 10^{-8}]$ and 1 M NaOH. What is the pH of the solution : - (1) 8 (2) 11 (3) 5 (4) 2
(1) a, d (2) b, c (3) a, b, c (4) None 116 . An aqueous solution whose $pH = 0$ is :-	127 . What is the quantity of NaOH present in 250 cc of the solution, so that it gives a $pH = 13$:-
(1) Basic(2) Acidic(3) Neutral(4) Amphoteric	(1) 10^{-13} g (2) 10^{-1} g (3) 1.0 g (4) 4.0 g 128 . 0.001 mol of the strong electrolyte M(OH) ₂ has been dissolved to make a 20 mL of its saturated
 117. The pH of the solution produced when an aqueous solution of strong acid pH 5 is mixed with equal volume of an aqueous solution of strong acid of pH 3 is :- (1) 3.3 (2) 3.5 (3) 4.5 (4) 4.0 	solution. Its pH will be : $-[K_w = 1 \times 10^{-14}]$ (1) 13 (2) 3.3 (3) 11 (4) 9.8 129 . Choose the wrong statement :- (1) For a partial solution [[Ht]] [OH]
118 . Following five solution of KOH were prepare as- First \rightarrow 0.1 moles in 1 L Second \rightarrow 0.2 moles in 2 L Third \rightarrow 0.3 moles in 3 L	(1) For a neutral solution : $[H^+] = [OH^-] = \sqrt{K_w}$ (2) For an acidic solution : $[H^+] > \sqrt{K_w}$ and $[OH^-] < \sqrt{K_w}$
Fourth \rightarrow 0.4 moles in 4 LFifth \rightarrow 0.5 moles in 5 LThe pH of resultant solution is :-(1) 2(2) 1(3) 13(4) 7	(3) For a basic solution : $[H^+] < \sqrt{K_w}$ and $[OH^-] > \sqrt{K_w}$ (4) For a neutral solution at all temperatures :
119 . The pH of a 0.02 M ammonia solution which is 5% ionised will be :- (1) 2 (2) 11 (3) 5 (4) 7	$[H^+] = [OH^-] = 10^{-7} M$ 130. The pH of 0.1 M solution of the following salts increases in order :- (1) NaCl < NH ₄ Cl < NaCN < HCl
120. For $\frac{N}{10}$ H ₂ SO ₄ , pH value is :- (1) 1 (2) 0.586 (3) 0.856 (4) None	(2) NaCN $<$ NH ₄ Cl $<$ NaCl $<$ HCl (3) HCl $<$ NaCl $<$ NaCl $<$ NH ₄ Cl (4) HCl $<$ NH ₄ Cl $<$ NaCl $<$ NaCl $<$ NaCN
	177

BUFFER SOLUTIONS and INDICATOR

- **131.** In a buffer solution the ratio of concentration of NH_4Cl and NH_4OH is 1:1 when it changes in 2:1 what will be the value of pH of buffer :- (1) Increase (2) Decrease (3) No effect (4) N.O.T.
- 132. To a 50 mL of 0.05M formic acid how much volume of 0.10M sodium formate must be added to get a buffer solution of pH = 4.0 ? (pK_a of the acid is 3.8)
 (1) 50 mL (2) 4 mL (3) 39.6 mL (4) 100 mL
- **133.** In the volumetric estimation of HCl, if we make use of phenolphthalein as an indicator, which base
 - is unsuitable for the titration :-(1) NaOH (2) RbOH (3) KOH (4) NH₄OH
- 134. In a mixture of weak acid and its salt, the ratio of concentration of acid to salt is increased ten-fold. The pH of the solution :(1) Decreases by one
 (2) Increases by one-tenth
 (3) Increases by one
 (4) Increases ten-fold
- **135.** pK_{b} for $NH_{4}OH$ at certain temperature is 4.74. The pH of basic buffer containing equimolar concentration of $NH_{4}OH$ and $NH_{4}CI$ will be:-(1) 7.74 (2) 4.74 (3) 2.37 (4) 9.26
- 136. What is the suitable indicator for titration of NaOH and oxalic acid:(1) Mathul area acid:(2) Mathul area acid:-
 - (1) Methyl orange (2) Methyl red (3) Phenolophthaloin (4) Stauch solution
 - (3) Phenolphthalein (4) Starch solution
- 137. Phenolphthalein does not act as an indicator for the titration between :(1) KOH and H_aSO₄
 - (2) NaOH and CH_2OO_4
 - (3) Oxalic acid and $KMnO_4$
 - (4) $Ba(OH)_2$ and HCl
- **138**. Which can act as buffer :-(1) $NH_4OH + NaOH$ (2) $HCOOH + CH_3COONa$ (3) 40 mL 0.1 M NaCN + 20 mL of 0.1 M HCl (4) None of them
- 139. The buffer solution play an important role in :-(1) Increasing the pH value(2) Decreasing the pH value
 - (2) Decreasing the pH value
 - (3) Keeping the pH constant
 - (4) Solution will be neutral
- 140. Ka for HCN is 5 x 10⁻¹⁰ at 25°C. For maintaining a constant pH of 9, the volume of 5M KCN solution required to be added to 10mL of 2M HCN solution is(1) 4 mL
 (2) 7.95 mL
 - (1) 4 IIIL (2) 7.95 mL (3) 2 mL (4) 9.3 mL
- 178

- **141.** Buffering action of a mixture of CH₃COOH and CH₃COONa is maximum when the ratio of salt to acid is equal to -(1) 1.0 (2) 100.0 (3) 10.0 (4) 0.1
- 142 The pink colour of phenolphthalein in alkaline medium is due to (1) Negative ion (2) Positive ion
 - (3) OH⁻ ions (4) Neutral form
- **143**. Which indicator works in the pH range 8 9.8(1) Phenolphthalein(2) Methyl orange(3) Methyl red(4) Litmus
- 144. A basic buffer will obey the equation pOH pK_b = 1 only under condition:(1) [Conjugate acid] : [base] = 1 : 10
 (2) [Conjugate acid] = [base]
 (3) [Conjugate acid] : [base] = 10 : 1
 - (4) N.O.T
- **145.** For weak acid strong base titration, the indicator used is :-
 - (1) Potassium di-chromate
 - (2) Methyl orange
 - (3) Litmus
 - (4) Phenolphthalein
- **146.** From the following in which titration methyl orange is a best indicator :-(1) $CH_3COOH + NaOH$ (2) $H_2C_2O_4 + NaOH$ (3) HCl + NaOH (4) $CH_3COOH + NH_4OH$
- **147**. The total number of different kind of buffers obtained during the titration of H_3PO_4 with NaOH are :-(1) 3 (2) 1 (3) 2 (4) 0

- 150. When 1.0 mL of dil. HCl acid is added to 100 mL of a buffer solution of pH 4.0. The pH of the solution
 (1) Becomes 7
 (2) Does not change
 (3) Becomes 2
 (4) Becomes 10
- 151. The pH of blood is maintained by CO₂ and H₂CO₃ in the body and chemical constituents of blood. This phenomenon is called :(1) Colloidal (2) Buffer action
 (3) Acidity (4) Salt balance

ALL			
152 .	Phenolphthalein is not a good indicator for titrating (1) NaOH against oxalic acid (2) NaOH against HCl (3) NaOH against H_2SO_4 (4) Ferrous sulphate against KMnO ₄		When 0.02 moles of NaOH of buffer solution, its pH ct 5.80. What is its buffer ca (1) 0.4 (2) 0.05 (3)
153 .	Which of the following solutions does not act as buffer :- (1) $H_3PO_4 + NaH_2PO_4$ (2) $NaHCO_3 + H_2CO_3$ (3) $NH_4CI + HCI$		Calculate the pH of a buffe $300 \text{ cc of } 0.3 \text{ M NH}_3 \text{ and } 50^{\circ}$ K _b for NH ₃ = 1.8×10^{-5} : (1) 8.1187 (2) (3) 8.8117 (4)
	(4) $CH_{3}COOH + CH_{3}COONa$ 50 mL of 2N acetic acid mixed with 10 mL of 1N sodium acetate solution will have an approximate pH of ($K_{a} = 10^{-5}$) :- (1) 4 (2) 5 (3) 6 (4) 7 On addition of NaOH to CH COOH solution 60%	163.	What amount of sodium be added to one litra solution containing 0.02 mm (Ka = 1.34×10^{-5} at 25°C solution of pH 4.75 :- (1) 4.52×10^{-2} M (2) (3) 2.52×10^{-2} M (4)
155.	On addition of NaOH to CH_3COOH solution, 60% of the acid is neutralised. If pK_a of CH_3COOH is 4.7 then the pH of the resulting solution is :- (1) More than 4.7 but less than 5.0 (2) Less than 4.7 but more than 4.0 (3) More than 5.0 (4) Remains unchanged	164 .	(3) 2.52×10^{-2} M (4) What will be the pH of the s of HCl is dissolved in a buff 0.02 moles of propanoic ac and 0.0152 moles of salt, [log(0.173) = -0.76] (1) 3.11 (2) 4.11 (3)
156 .	500 mL of 0.2 M acetic acid are added to 500 mL of 0.30 M sodium acetate solution. If the dissociation constant of acetic acid is 1.5×10^{-5} then pH of the resulting solution is:- (1) 5.0 (2) 9.0 (3) 3.0 (4) 4.0	165 .	Calculate the pH of a buffer dissolving 30g of Na ₂ CO ₃ in S solution containing 150 ml $HCO_3^- = 5.63 \times 10^{-11} \log 100$
157 .	Half of the formic acid solution is neutralised on addition of a KOH solution to it. If K_a (HCOOH) = 2 × 10 ⁻⁴ then pH of the solution is : (log 2 = 0.3010) (1) 3.6990 (2) 10.3010 (3) 3.85 (4) 4.3010	166 .	(1) 8.197 (2 (3) 10.197 (4) Calculate the ratio of pH of 1 mole of $CH_3COONa + 1$
158 .	A solution contains 0.2M NH ₄ OH and 0.2M NH ₄ Cl. If 1.0 mL of 0.001 M HCl is added to it. What will be the [OH ⁻] of the resulting solution $[K_b = 2 \times 10^{-5}]$:- (1) 2 × 10 ⁻⁵ (2) 5 × 10 ⁻¹⁰ (3) 2 × 10 ⁻³ (4) None of these	167.	and of other solution of $CH_3COONa + 1$ mole of a (1) 1 : 1 (2) 2 : 1 (3) When 20 mL of $\frac{M}{20}$ NaOH
159 .	Hunderson equation $pH - pK_a = 1$ will be applicable to an acidic buffer when :- (1) [Acid] = [Conjugate base] (2) [Acid] $\times 10$ = [Conjugate base] (3) [Acid] = [Conjugate base] $\times 10$ (4) None of these		of $\frac{M}{10}$ HCl, the resulting s (1) Turn blue litmus red (2) Turn phenolphthalein so (3) Turn methyl orange red (4) Will have no effect on eith
160 .	0.05 M ammonium hydroxide solution is dissolved in 0.001 M ammonium chloride solution. What	168 .	10 mL of a solution contains M NH ₄ OH. Which addition pH of solution :-

in 0.001 M ammonium chloride solution. What will be the OH⁻ ion concentration of this solution: $K_{\rm b}(\rm NH_4OH) = 1.8 \times 10^{-5}$

(1)
$$3.0 \times 10^{-3}$$
 (2) 9.0×10^{-4}
(3) 9.0×10^{-3} (4) 3.0×10^{-4}

ALLEN .

- H are added to a litre changes from 5.75 to apacity :-3) - 0.05 (4) 2.5 er prepared by mixing $00 \text{ cc of } 0.5 \text{ M NH}_{4}\text{Cl.}$:-2) 9.8117 4) None of these n propanoate should re of an aqueous nole of propanoic acid °C) to obtain a buffer
 - 2) 3.52 × 10⁻² M 4) 1.52 × 10⁻² M
- solution, if 0.01 moles fer solution containing acid (K_a = 1.34×10^{-5}) at 25°C : 3) 5.11 (4) 6.11
- r solution prepared by 500 mL of an aqueous nL of 1M HCl. Ka for

$$\begin{array}{l} \text{HCO}_{3}^{-} = 5.63 \times 10^{-11} \left[\log \left(\frac{133}{150} \right) = -0.05 \right] \\ (1) \ 8.197 \\ (3) \ 10.197 \\ (4) \ 11.197 \end{array}$$

- of a solution containing 1 mole of HCl per litre containing 1 mole acetic acid per litre :-3) 1 : 2 (4) 2 : 3
- H are added to 10 mL
 - solution will:-
 - solution
 - d
 - ither red or blue litmus
- ns 0.1 M NH₄Cl+ 0.01 would not change the pH of solution :-(1) Adding 1 mL water
 - (2) Adding 5 mL of 0.1 M NH_aCl
 - (3) Adding 5 mL of 0.1 M NH₄OH (4) Adding 10 mL of 0.1 M NH_4Cl

169. $\frac{N}{10}$ acetic acid was titrated with $\frac{N}{10}$ NaOH. When 25%, 50% and 75% of titration is over then the pH of the solution will be :- $[K_a = 10^{-5}]$ (1) $5 + \log 1/3$, 5, 5 + $\log 3$ (2) $5 + \log 3$, 4, 5 + $\log 1/3$ (3) $5 - \log 1/3$, 5, 5 - $\log 3$ $(4) 5 - \log 1/3, 4, 5 + \log 1/3$ ACID AND BASE **170.** The conjugated acid of O^{-2} ion's is :-(4) OH-(2) H+ (3) H₂O⁺ (1) O₂⁺ 171. Ionization constant of AOH and BOH base are K_{b_1} and K_{b_2} . Their relation is $pK_{b_1} < pK_{b_2}$. Conjugate of following base, does not show maximum pH : (1) AOH (2) BOH (3) Both of them (4) NOT **172.** Select the species which can function as - Lewis base, bronsted acid and bronsted base:-(c) N⁻³ (a) H₂O (b) NH⁺ Correct code is :-(1) Only a (2) a, b (3) a, c (4) b, c 173. Which ion does not show acid behaviour :-(1) $\left[Al(H_2O)_6 \right]^{+3}$ (2) $\left[Fe(H_2O)_6 \right]^{+3}$ (3) HPO⁻² (4) ClO₂-174. An example of Lewis acid is:-(1) CaO (2) CH₂NH₂ (4) None of these (3) SO_{3} **175**. In the reaction $NH_3 + H_2O \implies NH_4^+ + OH^-$ water behaves as :-(1) Acid (2) Base (3) Neutral (4) Both acid & Base **176**. Which acts as Lewis base in the reaction $BCl_3 + :PH_3 \rightarrow Cl_3B \leftarrow PH_3$ (1) PH₃ (2) BCl₂ (3) Both 1 & 2 (4) None **177**. Which acts as Lewis acid in the reaction $SnCl_{2} + 2Cl^{-} \longrightarrow [SnCl_{4}]^{-2}$ (1) Cl⁻ (2) $SnCl_2$ (3) SnCl₄ (4) None 178. The conjugated base of (CH₃)₂NH₂ is :-(2) $(CH_2)_2 N^+$ (1) CH_3NH_2 $(3) (CH_2)_2 N$ (4) $(CH_{3})_{2}NH$

179. Which equilibrium can be described as Lewis acid base reaction but not Bronsted acid base reaction:-(1) $H_0O + CH_2COOH \implies H_0O^+ + CH_2COO^-$ (2) $2NH_3 + H_2SO_4 \implies 2NH_4^+ + SO_4^{2-1}$ (3) $NH_3 + CH_3COOH \implies NH_4^+ + CH_3COO^-$ (4) $Cu^{+2} + 4NH_2 \implies [Cu(NH_2)_4]^{2+}$ 180. Conjugate base of hydrazoic acid is :-(3) N³⁻ (1) HN_{3}^{-} (2) N_3^- (4) N_2^- **181.** NH_3 gas dissolves in water to give NH_4OH , in this reaction, water acts as :-(1) An acid (2) A base (3) A salt (4) A conjugate base **182.** Conjugate acid of Zn(OH)₂ is :-(1) $Zn(OH)^+$ (2) $Zn(OH_2)^-$ (3) Zn^{2+} (4) None **183.** When ammonia is added to water it decreases the concentration of which of the following ion (1) OH-(2) H₃O⁺ (3) NH+ (4) None 184. The strongest acid among the following is -(1) $ClO_3(OH)$ (2) $ClO_{2}(OH)$ (4) SO₂(OH)₂ (3) SO(OH)₂ 185. Which of the following is not a Bronsted acid :-(1) $CH_{3}NH_{4}^{+}$ $(2) CH_2COO^-$ (3) H₂O (4) HSO_4 **186.** Which of the following example behave as a Lewis acid BF3 , SnCl2 , SnCl4 :-(1) Stanus chloride, stanic chloride (2) $\mathrm{BF}_{\scriptscriptstyle 3}$, Stanus chloride (3) Only BF_3 (4) BF_3 , stanus chloride, stanic chloride 187. In the reaction $HNO_3 + H_2O \implies H_3O^+ + NO_3^-$, the conjugate base of HNO3 is :-(2) H₂O⁺ (1) $H_{2}O$ (4) H_3O^+ and NO_3^- (3) NÕ₃ **188**. The conjugate base of the weak acid in the reaction $HBr + H_0O \implies H_0O^+ + Br^-$ is (1) HBr (2) H₂O (3) Br-(4) H₀O⁺ **189**. In the reaction, $AlCl_3 + Cl^- \rightarrow [AlCl_4]^-$, $AlCl_3$ acts as :-(1) Salt (2) Lewis base (3) Bronsted acid (4) Lewis acid **190**. Mg^{2+} is ------ than Al^{3+} :-(1) Strong Lewis acid (2) Strong Lewis base (3) Weak Lewis acid (4) Weak Lewis base

Ε

Z:\NODE02\B0A-B0\TARGET\CHEM\ENG\MODULE-1\4.IONCEQUILBRIUM\02-EXERCISE

191 .	The two Bronsted bases in the reaction	
	$\begin{array}{rcl} HC_{2}O_{4}^{-} + PO_{4}^{3-} & & HPO_{4}^{2-} + C_{2}O_{4}^{2-} \text{ are} \\ (1) & HC_{2}O_{4}^{-} \text{ and } PO_{4}^{2-} \\ (2) & HPO_{4}^{2-} \text{ and } C_{2}O_{4}^{2-} \\ (3) & PO_{4}^{3-} \text{ and } C_{2}O_{4}^{-2} \\ (4) & HC_{2}O_{4}^{-} \text{ and } HPO_{4}^{2-} \end{array}$	
192 .	The compound HCl behaves as in the reaction,	
	HCl + HF \implies H ₂ ⁺ Cl + F ⁻ (1) Strong acid (2) Strong base (3) Weak acid (4) Weak base	:
193.	Which of the following is not a lewis base:- (1) NH_3 (2) O^{2-} (3) H_2O (4) I^+	2
194.	Which of the following is bronsted Lowry acid:- (1) SO_4^{-2} (2) H_3O^+ (3) OH^- (4) CI^-	
195.	The conjugated base for bicarbonate ion is:- (1) CO_3^{2-} (2) HCO_3^{-} (3) CO_2^{-} (4) $H_2CO_3^{-}$	2
196.		
197.	HCl does not behave as acid in :- (1) NH ₃ (2) C_2H_5OH (3) H_2O (4) C_6H_6	2
198 .	Which of the following is a base according to Lowry-Bronsted concept :- (1) I ⁻ (2) H_3O^+ (3) HCl (4) NH_4^+	
199 .	In which of the following reactions NH_3 acts as acid (1) $NH_3 + HCl \rightarrow NH_4Cl$ (2) $NH_3 + H^+ \rightarrow NH_4^+$:
	(3) $NH_3 + Na \rightarrow NaNH_2 + \frac{1}{2}H_2$	2
	(4) NH_3 cannot act as acid	
200 .	According to Bronsted concept, the acids in the	2
	following reaction $NH_3 + H_2O \implies NH_4^+ + OH^-$ are :-	
	(1) NH_3 and NH_4^+ (2) H_2O and OH^- (3) H_2O and NH_4^+ (4) NH_3 and OH^-	:
201 .	Consider the following reactions :-	
	(i) CO_3^{2-} + H_2O \implies HCO_3^- + OH^-	
	(ii) $CO_2 + H_2O \implies H_2CO_3$	
	(iii) $NH_3 + H_2O \implies NH_4OH$	
	(iv) HCl + $H_2O \implies Cl^- + H_3O^+$ Which of the pairs of reactions proves that water is amphoteric in character :- (1) (i) and (ii) (2) (ii) and (iii)	:

(1) (i) and (ii) (2) (ii) and (iii) (3) (iii) and (iv) (4) (i) and (iii)

	F16-7V	nedical . Chemisiry
202.	CH ₃ COO ⁻ ion is a :- (1) Weak conjugate base (2) Strong conjugate base (3) Weak conjugate acid (4) Strong conjugate acid	
203 .	Which of the following is s (1) ClO_4^- (2) HCO_3^-	
204 .	Which of the following s base :- (1) Cu^{2+} (2) $AlCl_3$	pecies can act as Lewis (3) NH ₃ (4) BF ₃
205.	A compound having the f may behave :- (1) Only as an acid (2) Only as a base (3) Both as an acid and (4) Neither acid nor base	base
206 .	 BF₃ is acid according to (1) Lewis (2) Arrhenius (3) Bronsted and Lowery (4) Madam Curie 	
207 .	Which of the following calacid and Bronsted base $(1) \text{ Na}_2\text{CO}_3$ (3) CO_3^{-2}	
208 .	The strongest conjugate	base is :-
	(1) NO_3^-	(2) Cl [−]
	(3) SO ₄ ²⁻	(4) CH ₃ COO⁻
209 .	Aluminium chloride is :- (1) Bronsted Lowry acid (3) Lewis acid	(2) Arrhenius acid (4) Lewis base
210 .	Water is a :- (1) Protogenic solvent (3) Amphiprotic solvent	
211 .	Ammonium ion is :- (1) A conjugate acid (2) A conjugate base (3) Neither an acid nor a (4) Both an acid and a b	
212.	Species which do not act and base is :- (1) $(HSO_4)^{-1}$ (3) NH_3	t both as Bronsted acid (2) Na ₂ CO ₃ (4) OH ⁻¹
213.	Which one of the followi & Bronsted acid & bron (1) NH ₃ (2) PH ₃	sted base:-

Z'NODE02'804-80/TARGET/CHEM/BNG/NODULE-1/4.IONCEQUILBRUM/02-EXERCISE-P65

214. Which of the following pa	air is Lewis acid & Lewis
base & product of these	is also Lewis base
(1) BF_3 , NH_3	(2) $SiCl_4$, $2Cl^-$
(3) CH_3^{\oplus} , ΘOC_2H_5	(4) None of these

215. Which of the following is not a correct statement

- Arrhenius theory of acids-bases is capable of explaining the acidic or basic nature of the substances in the solvents other than water
- (2) Arrhenius theory does not explain acidic nature of ${\rm AlCl}_{\rm 3}$
- (3) The aqueous solution of $\rm Na_2CO_3$ is alkaline although it does not contain OH^- ions
- (4) Aqueous solution of CO_2 is acidic although it does not contain H^+ ions

- **216**. For the reaction $NH_4^+ + S^{-2} \implies NH_3 + HS^-, NH_3$ and S^{-2} are a group of :-
 - (1) Acids (2) Bases
 - A aid have noise (1) Norse (2)
 - (3) Acid-base pair (4) None of these
- **217.** According to Lewis concept acid & base pair is-(1) HO⁻, H⁺ (2) Ag^+, Cl^- (3) BF_3, NH_3 (4) None of these

EX	ERCI	SE-I	(Conc	eptua	l Que	stions)						ANS	NER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	2	2	2	4	4	2	1	3	1	1	4	3	1	1
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	4	1	2	3	4	4	3	4	1	1	1	3	4	1
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	3	3	4	1	2	4	4	3	2	1	1	4	1	2	3
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	3	3	3	2	3	3	4	4	4	2	4	4	3	2
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	4	3	1	3	3	3	4	3	4	1	4	2	2	3	4
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	4	2	2	4	2	4	3	3	2	1	2	2	2	4	3
Que.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
Ans.	2	3	4	4	1	2	1	2	4	3	3	1	4	3	2
Que.	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	3	2	4	3	1	4	4	2	2	4	2	1	3	2	1
Que.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135
Ans.	2	2	3	2	3	2	3	1	4	4	2	3	4	1	4
Que.	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
Ans.	3	3	3	3	3	1	1	1	3	4	3	1	1	1	2
Que.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165
Ans.	2	4	3	1	1	1	1	1	2	2	1	3	4	2	3
Que.	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans.	3	4	1	1	4	2	1	4	3	1	1	2	4	4	2
Que.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195
Ans.	1	1	2	1	2	4	3	2	4	3	3	4	4	2	1
Que.	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210
Ans.	4	4	1	3	3	3	2	2	3	3	1	4	4	3	3
Que.	211	212	213	214	215	216	217								
Ans.	1	2	1	3	1	2	3								
182	182														

ALLEN

ALLEN

EXERCISE-II (Previous Year Questions)

AIPMT 2006

Which of the following pairs constitutes a buffer :
 (1) HNO₂ & NaNO₂
 (2) NaOH & NaCl

(3) $HNO_3 \& NH_4NO_3$ (4) HCl & KCl

AIIMS 2006

3. 40 mL of 0.1 M ammonia solution is mixed with 20 mL of 0.1 M HCl. What is the pH of the mixture (pK_b of ammonia solution is 4.74) :- (1) 4.74 (2) 2.26 (3) 9.26 (4) 5.00

AIPMT 2007

- 4. Calculate the pOH of a solution at 25° C that contains 1×10^{-10} M of hydronium ions, i.e., H_3O^+ (1) 7.000 (2) 4.000 (3) 9.000 (4) 1.000
- 5. A weak acid HA has a K_a of 1.00×10^{-5} . If 0.100 moles of this acid is dissolved in one litre of water the percentage of acid dissociated at equilibrium is closed to :-(1) 99.0% (2) 1.00%
 - (3) 99.9% (4) 0.100%

AIPMT 2008

- Equimolar solutions of the following were prepared in water separately. Which one of the solutions will record the highest pH? (1) BaCl₂ (2) MgCl₂ (3) CaCl₂ (4) SrCl₂
 Equal volumes of three acid solutions of pH 3, 4
- and 5 are mixed in a vessel. What will be the H⁺ ion concentration in the mixture ? (1) 3.7×10^{-4} M (2) 3.7×10^{-3} M

(3) $1.11 \times 10^{-3} \text{ M}$ (4) $1.11 \times 10^{-4} \text{ M}$

AIPMT 2009

8. The ionization constant of ammonium hydroxide is 1.77 × 10⁻⁵ at 298 K. Hydrolysis constant of ammonium chloride is :
(1) 5.65 × 10⁻¹²
(2) 5.65 × 10⁻¹⁰
(3) 6.50 × 10⁻¹²
(4) 5.65 × 10⁻¹³

9. What is the [OH⁻] in the final solution prepared by mixing 20.0 mL of 0.050 M HCl with 30.0 mL of 0.10M Ba(OH)₂ ?

(1) 0.12 M (2) 0.10 M (3) 0.40 M (4) 0.0050M

AIPMT/NEET & AIIMS (2006-2018)

10. The dissociation constants for acetic acid and HCN at 25°C are 1.5×10^{-5} and 4.5×10^{-10} , respectively. The equilibrium constant for the equilibrium $CN^{-} + CH_3COOH \rightleftharpoons HCN + CH_3COO^{-}$ would be :-(1) 3.0×10^4 (2) 3.0×10^5 (3) 3.0×10^{-5} (4) 3.0×10^{-4}

AIPMT 2010

11. If pH of a saturated solution of $Ba(OH)_2$ is 12, the value of its $K_{(sp)}$ is :-

(1) 5.00 $\times 10^{-7}$ M ³	(2) $4.00 \times 10^{-6} \text{ M}^3$
(3) $4.00 \times 10^{-7} \text{ M}^3$	(4) 5.00 $\times 10^{-6}$ M ³

12. In a buffer solution containing equal concentration of B⁻ and HB the K_b for B⁻ is 10⁻¹⁰. The pH of buffer solution is :(1) 4 (2) 10 (3) 7 (4) 6

AIIMS 2010

- 13. The pH of blood from 7.26 to 7.42 is maintained by buffer :
 (1) H₂CO₃/HCO₃⁻
 (2) H₃PO₄/H₂PO₄⁻
 (3) CH₃COOH/CH₃COO⁻
 (4) NH₂-CH₂COOH/NH₂CH₂COO⁻
- **14.** K_{sp} of a salt Ni(OH)₂ is 2×10^{-15} then molar solubility of Ni(OH)₂ in 0.01M NaOH is :-(1) 2×10^{-15} M (2) $2^{1/3} \times 10^{-5}$ M (3) 2×10^{-11} M (4) 10^{-7} M

AIPMT Mains 2011

15. In qualitative analysis, the metals of Group I can be separated from other ions by precipitating them as chloride salts. A solution initially contains Ag⁺ and Pb²⁺ at a concentration of 0.10 M. Aqueous HCl is added to this solution until the Cl⁻ concentration is 0.10 M. What will the concentrations of Ag⁺ and Pb²⁺ be at equilibrium ?

 $\begin{array}{l} ({\rm K_{sp}\ for\ AgCl}{=}1.8\times10^{-10},\ {\rm K_{sp}\ for\ PbCl_2}{=}1.7\times10^{-5}) \\ (1)\ [{\rm Ag^+}] = 1.8\times10^{-11}\ {\rm M}\ ;\ [{\rm Pb^{2+}}] = 1.7\times10^{-4}\ {\rm M}; \\ (2)\ [{\rm Ag^+}] = 1.8\times10^{-7}\ {\rm M}\ ;\ [{\rm Pb^{2+}}] = 1.7\times10^{-6}\ {\rm M}; \\ (3)\ [{\rm Ag^+}] = 1.8\times10^{-11}\ {\rm M}\ ;\ [{\rm Pb^{2+}}] = 8.5\times10^{-5}\ {\rm M}; \\ (4)\ [{\rm Ag^+}] = 1.8\times10^{-9}\ {\rm M}\ ;\ [{\rm Pb^{2+}}] = 1.7\times10^{-3}\ {\rm M}; \\ \end{array}$

- - (3) 11.72 (4) 8.73

AIIMS 2011

- **17.** K_{sp} of a CaSO₄.5H₂O is 9 ×10⁻⁶, Find the volume of CaSO₄ for 1gm (Mw = 136) (1) 2.45 litre (2) 5.1 litre (3) 4.52 litre (4) 3.2 litre
- 18. 25ml, 0.2M Ca(OH)₂ is neutralised by 10ml of 1M HCl. Then pH of resulting solution is(1) 1.37
 (2) 9
 (3) 12
 (4) 7

AIPMT Mains 2012

- **19.** Buffer solutions have constant acidity and alkalinity because:
 - (1) they have large excess of $H^{\scriptscriptstyle +}$ or $OH^{\scriptscriptstyle -}$ ions
 - (2) they have fixed value of pH
 - (3) these give unionised acid or base on reaction with added acid or alkali
 - (4) acids and alkalies in these solutions are shielded from attack by other ions
- **20.** Equimolar solutions of the following substances were prepared separately. Which one of the these will record the highest pH value?

(1) LiCl	(2) $BeCl_2$
(3) BaCl ₂	(4) AlCl ₃

AIIMS 2012

21. Which will not be precipitated after addition of $(NH_4)_2CO_3$ in presence of NH_4Cl :-

(1) Mg	(2) Ba
--------	--------

-		
(3) Ca	(4) \$	5r

NEET UG 2013

22. Which is the strongest acid in the following ? (1) H_2SO_3 (2) H_2SO_4 (3) $HCIO_3$ (4) $HCIO_4$

AIIMS 2013

- **AIPMT 2014**
- **24.** Which of the following salts will give highest pH in water ?
 - (1) KCl (2) NaCl (3) Na₂CO₃ (4) CuSO₄

AIPMT 2015

25. The K_{sp} of Ag_2CrO_4 , AgCl, AgBr and AgI are respectively, 1.1×10^{-12} , 1.8×10^{-10} , 5.0×10^{-13} , 8.3×10^{-17} . Which one of the following salts will precipitate last if AgNO₃ solution is added to the solution containing equal moles of NaCl, NaBr, NaI and Na₂CrO₄ ? (1) AgCl (2) AgBr (3) Ag₂CrO₄ (4) AgI

Re-AIPMT 2015

- **26.** Which one of the following pairs of solution is not an acidic buffer ?
 - (1) H_2CO_3 and Na_2CO_3 (2) H_3PO_4 and Na_3PO_4
 - (3) HClO₄ and NaClO₄
 - (4) CH₃COOH and CH₃COONa
- 27. What is the pH of the resulting solution when equal volumes of 0.1 M NaOH and 0.01 M HCl are mixed?
 (1) 7.0
 (2) 1.04

. ,	. ,
(3) 12.65	(4) 2.0

AIIMS 2015

- **29**. pH of salt of weak acid with strong base at 25° C.
 - (1) = 7
 - (2) > 7
 - (3) < 7
 - (4) None

Z:\NODE02\B0A-B0\TARGET\CHEM\ENG\MODULE-1\4.IONC

EQUILIBRIUM\02-EXERCISE.P65

NEET-I 2016

ALLEN

- **30.** MY and NY₃, two nearly insoluble salts, have the same K_{sp} values of 6.2 × 10⁻¹³ at room temperature. Which statement would be **true** in regard to MY and NY₃?
 - (1) The molar solubilities of MY and NY_3 in water are identical.
 - (2) The molar solubility of MY in water is less than that of NY_3
 - (3) The salts MY and NY $_3$ are more soluble in 0.5 M KY than in pure water.
 - (4) The addition of the salt of KY to solution of MY and NY₃ will have no effect on their solubilities.

NEET-II 2016

31. The percentage of pyridine (C_5H_5N) that forms pyridinium ion ($C_5H_5N^+H$) in a 0.10 M aqueous pyridine solution (K_b for $C_5H_5N = 1.7 \times 10^{-9}$) is

(1) 0.77% (2) 1.6%
--------------	--------

- (3) 0.0060% (4) 0.013%
- **32.** The solubility of AgCl(s) with solubility product 1.6×10^{-10} in 0.1 M NaCl solution would be
 - (1) 1.6×10^{-11} M (2) zero

(3) 1.26×10^{-5} M (4) 1.6×10^{-9} M

AIIMS 2016

- 33. Calculate the degree of ionization of 0.04 M HOCl solution having ionization constant 1.25 × 10⁻⁴?
 (1) 0.025 (2) 0.25 (3) 0.5 (4) 0.055
- **34.** Calcualte pH of a salt of weak monobasic acid and weak monoacidic base having concentration 0.1M at 25°C (Given :- pk_a = 4.8, pk_b = 5.2)

(1) 7.2 (2) 6.8 (3) 9.6 (4) 7

- **35.** The K_{sp} of salt AgCl at 25°C is 2.56 ×10⁻¹⁰. Then how much volume of H_2O is required to dissolve 0.01 mole of salt.
 - (1) 800 L (2) 400 L
 - (3) 625 L (4) 50 L
- 36. Calculate pOH of 10⁻²M monobasic acid if value of K_w at 90°C is 10⁻¹²?
 (1) 2
 (2) 10

(3) 12	(4) 7

37. K_{sp} of Sr(OH)₂ is x, then calculate value of [OH⁻] in saturated solution?

(1)
$$\left(\frac{3x}{4}\right)^{\frac{1}{3}}$$
 (2) $2\left(\frac{x}{4}\right)^{\frac{1}{3}}$
(3) $\left(\frac{x}{4}\right)^{\frac{1}{3}}$ (4) $\left(\frac{x}{3}\right)^{\frac{1}{4}}$

NEET(UG) 2017

- Concentration of the Ag⁺ ions in a saturated 38. solution of $Ag_2C_2O_4$ is 2.2×10^{-4} mol L⁻¹ Solubility product of Ag₂C₂O₄ is :-(1) 2.66×10^{-12} (2) 4.5×10^{-11} (3) 5.3×10^{-12} (4) 2.42×10^{-8} **AIIMS 2017 39**. Calculate the ratio of solubility of AgCl in 0.1M AgNO₃ and in pure water. Given : K_{sp} of AgCl = 1.8×10^{-10} :-(1) 1.34×10^{-5} M (2) 1.34 × 10⁻⁴ M (4) 3×10^{-6} M (3) 2×10^{-8} M
- **40.** 200 ml of 0.005 M AgNO₃ reacts with 300 mL of 0.01 M KCl. If K_{sp} of AgCl is 1.8×10^{-10} . Then maximum conc. of Ag⁺ in mixture is :-

(1) 2×10^{-8}	(2) 4.5×10^{-8}
------------------------	--------------------------

(3) 4.8×10^{-5} (4) 1.34×10^{-5}

NEET(UG) 2018

41. Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations :

a.
$$60mL\frac{M}{10}HCl + 40mL\frac{M}{10}NaOH$$

b. $55mL\frac{M}{10}HCl + 45mL\frac{M}{10}NaOH$

c.
$$75mL\frac{M}{5}HCl + 25mL\frac{M}{5}NaOH$$

d.
$$100mL\frac{M}{10}HCl + 100mL\frac{M}{10}NaOH$$

pH of which one of them will be equal to 1 ? (1) b (2) a (3) d (4) c

42 .	The solubility of BaSO_4 in water $2.42 \times 10^3 \mbox{ gL}^{-1}$	45.	Which of following will h	ave maximum pH :-
	at 298 K. The value of solubility product $(\mathrm{K}_{\mathrm{sp}})$		(1) Human saliva	(2) Black coffee
	will be		(3) Human blood	(4) Gastric juice
	(Given molar mass of BaSO ₄ = 233 g mol ⁻¹) (1) $1.08 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2}$	46.	Find concentration of [H	⁺] after mixing of 15 mL,
	(1) $1.08 \times 10^{-10} \text{ mol}^2 \text{ L}^2$ (2) $1.08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$		$0.1\mathrm{M}\mathrm{H_2SO_4}$ and $15\mathrm{ml}\mathrm{O}$).1M NaOH :-
	(2) $1.08 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$		(1) 5×10^{-2}	(2) 10 ⁻⁷
	(4) $1.08 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}$		(3) 1 × 10 ⁻²	(4) 2 × 10 ⁻²
	AIIMS 2018	47.		f [H+] after mixing 20 ml,) ml, 0.1 M NaOH. Given
43.			K_a for $CH_3COOH 1.7 \times$	
	using phenolphthalein as an acidic indicator at end point pink color dissappear after some time due		(1) 1.7 ×10 ⁻⁵	(2) 3.4 ×10 ⁻⁵
	to :-		(3) 3.4 ×10 ⁻⁶	(4) 1.7 ×10 ⁻⁴
	 (1) CH₃COOH is formed (2) Due to weak acedic nature of CH₃OH (3) Regeneration of HCl (4) Due to ionization of phenolphthalein 		-	nol/lit in water find out M YB. Consider YB is
44.	50 ml of 0.1 M NH_3 solution and 10 mL of 0.1 M		(1) $4X^3 \times 10^{+6}$	(2) $4X^3 \times 10^{-6}$
	HCl mixed together then calculate pH of mixure.		(3) 10 ⁻³	(4) X ³
	If $pk_b of NH_3$ is 4.75 :-	49.	0.02M of pyridium hyd	rochloride having [H+] is
	(1) 8.86 (2) 4.74 (3) 9.86 (4) 5.32		$5.55 imes 10^{-6}$ what is ionisa	tion constant of pyridine.
			(1) 1.54 ×10 ⁻⁹	(2) 1.54 ×10 ⁻⁷
			(3) 1.54 ×10 ⁻⁶	(4) 1.54 ×10 ⁻⁵
		1		

EXERCISE-II (Previous Year Questions)											ANS	WER	KEY		
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	2	3	2	2	1	1	2	2	1	1	1	1	3	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	1	4	3	3	1	4	1	3	3	3	3	1	2	2
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	4	4	4	2	3	2	2	3	2	2	4	1	4	3	3
Que.	46	47	48	49											
Ans.	1	1	1	1											
186		-	•	•	•			÷		-					

Z:\NODE02\804-80\TARGET\CHEM\BNG\MODULE-1\4.IONCEQUIUBRUM\02-EXERCISE.965

AL	LEN		Pre-Medical : Chemistry
E	XERCISE-III (Analytical Questions)	l	Check Your Understanding
1.	The concentration of $[H^+]$ and concentration of $[OH^-]$ of a 0.1 M aqueous solution of 2% ionised weak acid is [ionic product of water = 1×10^{-141}	10.	The pKa of HNO_2 is 3.37. The pH of HNO_2 in its 0.01 mol L ⁻¹ aqueous solution will be :- (1) 5.37 (2) 2.69 (3) 1.69 (4) 0.69
	1 × 10 ⁻¹⁴] :- (1) 0.02 × 10 ⁻³ M and 5 × 10 ⁻¹¹ M (2) 1 × 10 ⁻³ M and 3 × 10 ⁻¹¹ M (3) 2 × 10 ⁻³ M and 5 × 10 ⁻¹² M (4) 3 × 10 ⁻² M and 4 × 10 ⁻¹³ M	11.	When 0.01 M HCl is added in aqueous solution of acetic acid then :- (1) [CH ₃ COO ⁻] decreases (2) [CH ₃ COOH] decreases (3) [CH ₃ COO ⁻] increases
2 .	The solubility of $BaSO_4$ in water, is $2.33 \times 10^{-3} \text{ gL}^{-1}$. Its solubility product will be (molecular weight of $BaSO_4 = 233$) :- (1) 1×10^{-5} (2) 1×10^{-10} (3) 1×10^{-15} (4) 1×10^{-20}	12.	 (4) NOT On passing H₂S gas through a solution of Cu⁺² and Zn⁺² ions, CuS is precipitated first because:- (1) Solubility product of CuS is equal to the ionic product of ZnS ;
3 .	What will be the H ⁺ ion concentration, when 4 g NaOH dissolved in 1000 mL of water: (1) 10^{-1} (2) 10^{-13} (3) 10^{-4} (4) 10^{-10}		(2) Solubility product of CuS is equal to the solubility product of ZnS.(3) Solubility product of CuS is lower than the
4.	When 10 mL of 0.1 M acetic acid (pKa=5.0) is titrated against 10 mL of 0.1 M ammonia solution (pK _b = 5.0), the equivalence point occurs at pH: (1) 5.0 (2) 6.0 (3) 7.0 (4) 9.0		solubility product of ZnS.(4) Solubility product of CuS is greater than the solubility product of ZnS.
5.	At 25°C, the dissociation constant of a base, BOH, is 1.0×10^{-12} . The concentration of hydroxyl ions in 0.01M aqueous solution of the base would be:	13.	
	(1) $1.0 \times 10^{-6} \text{ mol } L^{-1}$ (2) $1.0 \times 10^{-7} \text{ mol } L^{-1}$ (3) $2.0 \times 10^{-6} \text{ mol } L^{-1}$ (4) $1.0 \times 10^{-5} \text{ mol } L^{-1}$	14.	A solution of $MgCl_2$ in water has pH : (1) < 7 (2) > 7 (3) 7 (4) 14.2
6 .	The solubility product of $BaSO_4$ at 25 °C is 1.0×10^{-9} . What would be the concentration of H_2SO_4 necessary to precipitate $BaSO_4$ from a solution of 0.01 M Ba ⁺² ions :- (1) 10^{-9} (2) 10^{-8} (3) 10^{-7} (4) 10^{-6}	15.	When H_2S gas is passed through the HCl containing aqueous solutions of $CuCl_2$, $HgCl_2$, $BiCl_3$ and $CoCl_2$, it does not precipitate out : (1) CuS (2) HgS (3) $Bi_2 S_3$ (4) CoS
7 .	pH of the solution of HCOONH ₄ is 6.48 this can be explained by :- (1) Hydrolysis of both cation and anion (2) Hydrolysis of cation (3) Hydrolysis of anion	16.	 Mark the correct statement : (1) I group basic radicals precipitate as chloride. (2) IV group basic radicals precipitate as sulphides (3) V group basic radicals precipitate as carbonates (4) All the above statements are correct
	(4) Hydrolysis of water	17.	The role of NH_4Cl in group III for analysis of cations is :-
8.	The correct representation of solubility product of SnS_2 is :- (1) $[Sn^{4+}][S^{2-}]^2$ (2) $[Sn^{4+}][S^{2-}]$ (3) $[Sn^{4+}][2S^{2-}]$ (4) $[Sn^{4+}][2S^{2-}]^2$		 (1) that it acts as a catalyst. (2) that it increases the solubility of hydroxides. (3) that it lowers the OH⁻ concentration. (4) that it causes the precipitation of cations as
9.	 A solution of FeCl₃ in water acts as acidic due to:- (1) Acidic impurities (2) Ionisation (3) Hydrolysis of Fe³⁺ (4) Dissociation 	18.	chlorides. $K_{sp} \text{ of } Ca_3 (PO_4)_2 \text{ is } :-$ (1) $[Ca^{+2}][PO_4^{-3}]^2$ (2) $[Ca^{+2}]^3 [PO_4^{-3}]^2$ (3) $[Ca^{+2}]^2 [PO_4^{-3}]^3$ (4) $[Ca^{+2}] [PO_4^{-3}]$

19.	An acid HA has dissociated HA \rightleftharpoons H ⁺ + A ⁻ It has concentration 1 M out dissociation constant	1 and pH = 5 then find t :-	28.	weak base BOH is 4.7	d HA is 4.80. The pK_{b} of 8. The pH of an aqueous onding salt BA will be :
	(1) 1×10^{-10} (3) 5×10^{-5}	(2) 1×10^{-5} (4) 5	29.	find ionisation constan	OH is 3.2% ionised then t of acid :-
20.	Which of the following precipitated when pass presence of acidic media	sing of H_2S gas in the um:-	30.	(1) 4.2×10^{-4} (3) 2.1×10^{-4} Three reactions invol	(2) 4.2×10^{-5} (4) 2.1×10^{-5} lying $H_2PO_4^-$ are given
	(1) Cu^{+2} , Cr^{+3} (3) Cu^{+2} , Cd^{+2}	(2) Zn^{+2} , Co^{+2} (4) Al^{+3} , Cd^{+2}		below :- (i) $H_3PO_4 + H_2O \rightarrow H$	
21 .	Solution of sodium carb (1) Strongly acidic (3) Strongly basic	onate is :- (2) Weakly basic (4) Weakly acidic		(ii) $H_2PO_4^- + H_2O \rightarrow D$ (iii) $H_2PO_4^- + OH^- \rightarrow$ In which of the above	$HPO_4^{2-} + H_3O^+$
22.	Aqueous solution of Al ₂ ((1) Basic & acidic (3) Basic	SO ₄) ₃ is :- (2) Neutral (4) Acidic		acid ? (1) (i) only (3) (i) and (ii)	(2) (ii) only (4) (iii) only
23.	In a saturated solution of the electrolyte AgIO ₃ (Molece equilibrium which	culatr mass =283). The	31.		, $K_a = 10^{-6}$ and for MOH of 0.1 M MA salt solution (3) 9 (4) 2
	$AgIO_{3(S)} \longrightarrow Ag^{+}_{(aq)} + IC$	$\bar{J}_{3_{(aq)}}^{-}$ If the solubility	32.		1.6×10^{-30} . The molar
	product constant K_{sp} temperature is 1.0×10		02.	solubility of this compo	
	$AgIO_3$ contained in 10 solution :			(1) $\sqrt[2]{1.6 \times 10^{-30}}$	(2) $\sqrt[4]{1.6 \times 10^{-30}}$
	(1) 2.83×10^{-3} g (3) 1.0×10^{-4} g	(2) 1.0×10^{-7} g (4) 28.3×10^{-2} g	33.	(3) $\sqrt[4]{1.6 \times 10^{-30} / 27}$ An acid HA ionises as	(4) 1.6 × 10 ⁻³⁰ /27
24.	If k_{sp} of CaF_2 in pure water the solubility of CaF_2 in (1) 1.70×10^{-10} (3) 1.70×10^{-8}			HA \implies H ⁺ + A ⁻ The pH of 1.0 M solution constant would be :-	tion is 5. Its dissociation
25.	The solubility product of			(1) 1×10^{-10} (3) 5×10^{-8}	(2) 5 (4) 1 ×10 ⁻⁵
	solubility of AgCl is :- (1) 1×10^{-10} (3) 1×10^{-5}	(2) 1×10^{-7} (4) 1×10^{-8}	34.		r solution of the acid HQ onization constant, Ka of
26.	To precipitate Zn in form is first added in the solution	· 7		(1) 1×10^{-7} (3) 1×10^{-3}	(2) 3×10^{-7} (4) 1×10^{-5}
	 through it :- (1) To convert Zn into Z (2) To reduce Zinc (3) To decrease the disso (4) To increase the disso 	n^{+2}	35.	of an aqueous solution create an aqueous solut	er must be added to 1 litre of HCl with a pH of 1 to ion with pH of 2 ? (3) 2.0 L (4) 9.0 L
27.	Ka for CH ₃ COOH is 1 percentage dissociation 0.1M HCl solution (1) 0.018 (2) 0.36		36.	completely neutralize solution-	M H_2SO_4 is needed to 40 mL of 0.2M NaOH . (3) 20 mL (4) 80 mL
188		•			

Z:\NODE02\80.4:80\TARGET\CHEM\ENG\MODULE-1\4.IONCEQUIBRIUM\02-EXERCISE.P65

ALLEN

Ε

ALI 37.	If pH value of a solution is it becomes 6, then the di (1) 10 times (3) 500 times		4
38.	The aqueous solution of w will have the lowest pH (1) NaClO (3) NaClO ₃	which of the following salt (2) NaClO ₂ (4) NaClO ₄	4
39.	In the reaction $I_2 + I^- \rightarrow$ (1) I^- (3) I_3^-	I_{3}^{-} , the Lewis base is : (2) I_{2} (4) None of these	4
40.	In which of the following is greater than 8 at equi (1) Acetic acid versus an (2) Acetic acid versus soc (3) Hydrochloric acid ver (4) Hydrochloric acid ver	ivalence point:- nmonia dium hydroxide rsus ammonia	4
41.	Which one of the following protonic acid :- (1) B(OH) ₃ (3) SO(OH) ₂	ing compounds is not a (2) PO(OH) ₃ (4) SO ₂ (OH) ₂	
42.	Which one of the follo solution:- (1) $0.8M H_2S + 0.8M K$ (2) $2M C_6H_5NH_2 + 2M$ (3) $3M H_2CO_3 + 3M KH$ (4) $0.05M KCIO_4 + 0.05$	KHS C ₆ H₅N ⁺ H₃Br HCO₃	2
43.	The rapid change of pH point of an acid-base t indicator detection. pH of to ratio of the concentration (HIn) and base (In ⁻) forms expression:-	itration is the basis of of the solution is related ons of the conjugate acid	į
	(1) log $\frac{[HIn]}{[In^-]} = pK_{In} - pI$	Н	;
	[HIn]		

(2) $\log \frac{[HIn]}{[In^-]} = pH - pK_{In}$ (3) $\log \frac{[In^-]}{[HIn]} = pH + pK_{In}$ (4) $\log \frac{[In^-]}{[HIn]} = pK_{In} - pH$

		Fre-/	viedical : C	Linemistry
44.		pH of 0.01 = 4.5 × 10 (2) 10.0		
45.	The correct (1) HClO ₄ < (2) HClO ₂ < (3) HClO ₄ <	order of aci < HClO ₃ < H < HClO ₃ < H < HClO < H HClO ₂ < H	$HCIO_2 < HC$ $HCIO_4 < HC$ $CIO_2 < HCIO_2$	– 10 10 0 ₃
46.	solution are	ons of NH ₄ C in the ratio en pH of the (2) 5	$1:10.$ If K_{b}	for NH ₄ OH
47.		centrated H_2 concentration (2) 0.09N	of diluted ad	cid is:-
48.	When HF is established	dissolved in fo is :—	ormic acid, the	e equilibrium
	the true pai conjugate a (1) (HF, HC (2) (HF, HC (3) (HCOOH	OH \implies F r of conjugat cid] [Base, co COOH) and (COOH ₂ ⁺) and H ₂ ⁺ , HF) and and (HCOO	e acid base i onjugate base HCOOH ₂ +, 1 (HCOOH, 1 (F⁻, HCOO	s as a [acid, 2]:- F ⁻) F ⁻) H)
49.	should be pr	grams of diba resent in 100 ngth of (N/1 (2) 2g.	mL the aque	
50.		e of equimola he species pre	esent in solutio (2) NaHCC	0
51.	diluted by m	s solution co nixing equal v on of OH ⁻ in D ⁻¹⁰	olume of wa	ter then the ill be :-
52.	Which of th (1) Ka ₂ > K	e following i a ₁	s right for dij (2) Ka ₁ > k	
	(3) Ka ₂ > \bar{k}	1 Ka ₁	(4) Ka ₂ = k	Ka ₁

53.	The first and second dissociation constants of an acid H_2A are 1.0×10^{-5} and 5.0×10^{-10} respectively. The overall dissociation constant of the acid will be:- (1) 5.0×10^{15} (2) 5.0×10^{-15} (3) 0.2×10^{5} (4) 5.0×10^{-5}	57. 58.	The pH of an aqueous solution of a 1×10^{-7} M solution of HCl will be :- (1) 7 (2) slightly less than 7 (3) slightly greater than 7 (4) 1 What will be the concentration of H ^{\oplus} ions in 0.1M
54.	The pKa of a weak acid (HA) is 4.5. The pOH of an aqueous beffered solution of HA in which 50% of the acid is ionized is :- (1) 2.5 (2) 9.5 (3) 7.0 (4) 4.5		acetic acid and 0.1M sodium acetate solution, if the dissociation constant of acetic acid is 1.8×10^{-5} ? (1) 1.8×10^{-7} (2) 1.8×10^{-5} (3) 1.8×10^{-2} (4) 1.8×10^{-3}
55.	50 mL solution of $0.1M$ CH ₃ COOH (pK _a = 4.73) is titrated with 0.1M NaOH solution, pH of solution when half of CH ₃ COOH is neutralized (1) 4.53 (2) 4.63 (3) 4.73 (4) 4.83	59.	Calculate the pH of 4×10^{-3} M, Y(OH) ₂ solution assuming the first dissociation to be 100% second dissociation to be 50%:- (1) 11.78 (2) 9.9 (3) 2.5 (4) 2.22
56.	pK_a of Quinoline base is 4.88. What will be the pK_a of 0.01M solution of it (1) 4.88 (2) 0.01 (3) 9.12 (4) 14		

E	EXERCISE-III (Analytical Questions) ANSWER K											KEY			
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	2	2	3	2	4	1	1	3	2	1	3	4	1	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	3	2	1	3	2	4	1	3	3	4	1	3	3	2
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	2	3	1	4	4	2	4	4	1	2	1	4	1	3	4
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	
Ans.	2	3	2	1	1	2	2	2	2	3	1	2	2	1	

is added to pure water, its pH undergoes a change. Reason :- Addition of an acid or base increases the degree of ionisation of water. (1) A (2) B (3) C (4) D 2. Assertion :- Solubility of AgBr decreases in the presence of sodium bromide. Reason :- Solubility of AgBr decreases in the presence of sodium bromide. Reason :- Solubility of AgBr decreases in the presence of sodium bromide. Reason :- The jH of an aqueous solution of acetic acid remains unchanged on the addition of sodium acetate. (1) A (2) B (3) C (4) D 3. Assertion :- The pH of an aqueous solution of acetic acid remains unchanged on the addition of sodium acetate. (1) A (2) B (3) C (4) D 4. Assertion :- The ionisation of acetic acid is suppressed by the addition of socium acetate. (1) A (2) B (3) C (4) D 5. Assertion :- The aqueous solution of Na ₂ PO ₄ is alkaline in nature. (1) A (2) B (3) C (4) D 5. Assertion :- The aqueous solution undergoes anionic hydrolysis. (1) A (2) B (3) C (4) D 5. Assertion :- The aqueous solution undergoes anionic hydrolysis. (1) A (2) B (3) C (4) D 5. Assertion :- The aqueous solution undergoes anionic hydrolysis. (1) A (2) B (3) C (4) D 6. Assertion :- The x ₁ Collectreases the solubility product (K _w) depends c (1) A (2) B (3) C (4) D 6. Assertion :- The x ₁ coice product, precipitate is formed. Reason :- Solubility product (K _w) is the highest limit of ionic product of the electrolyte in saturated solutions. (1) A (2) B (3) C (4) D 7. Assertion :- To precipitate the cations of fourth group in qualitative analysis, medium is made alkaline before passing H ₂ S gas. Reason :- This is done to suppress the ionisation Reason :- This is done to suppr		XERCISE-IV (Assertion & Reason)				_	jet AIIMS				
these Questions you are required to choose any one of the following four responses.(A)If both Assertion & Reason are True but Reason is a correct explanation of the Assertion.(B)If both Assertion & Reason are True but Reason is rot a correct explanation of the Assertion.(C)If Assertion is True but the Reason are false.(D)If both Assertion & Reason are false.(D)Assertion :- When small amount of acid or base is added to pure water, its pH undergoes a change. (1) A (2) B (3) C (4) D(2)Assertion :- Solubility of AgBr decreases in the presence of sodium bromide. Reason :- Solubility of AgBr decreases in the presence of SIG(H). (1) A (2) B (3) C (4) D(1)A (2) B (3) C (4) D(1)A section :- The pH of an aqueous solution of acetic acid is supressed by the addition of sodium acetate. (1) A (2) B (3) C (4) D(1)A (2) B (3) C (4) D(1)A section :- The ionisation of acetic acid is supressed by the addition of sodium acetate. (1) A (2) B (3) C (4) D(1)A (2) B (3) C (4) D(1)Assertion :- The aqueous solution of Na, PO4, is alkaline in nature. (1) A (2) B (3) C (4) D(1)A (2) B (3) C (4) D(1)Assertion :- The aqueous solution of Na, PO4, is alkaline in nature. (1) A (2) B (3) C (4) D(2)Assertion :- The aqueous solution of Na, PO4, is alka		Directions for Asse	rtion	& Reason	questions	i					
 (B) If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion. (C) If Assertion is True but the Reason is False. (D) If both Assertion & Reason are false. (a) Assertion :- When small amount of acid or base is added to pure water, its pH undergoes a change. Reason :- Addition of an acid or base increases the degree of ionisation of water. (I) A (2) B (3) C (4) D 2. Assertion :- Solubility of AgBr decreases in the presence of sodium bromide. (I) A (2) B (3) C (4) D 3. Assertion :- The pH of an aqueous solution of acetic acid remains unchanged on the addition of sodium acetate. (I) A (2) B (3) C (4) D 3. Assertion :- The pH of an aqueous solution of acetic acid remains unchanged on the addition of sodium acetate. (I) A (2) B (3) C (4) D 4. Assertion :- If HCl gas is passed through saturated NaCl solution, solid NaCl starts to precipitate. Reason :- Na,PO, in its aqueous solution undergoes anicin hydrolysis. (I) A (2) B (3) C (4) D 5. Assertion :- If HCl decreases the solubility product (I) A (2) B (3) C (4) D 5. Assertion :- If K_u < ionic product, precipitate is formed. (I) A (2) B (3) C (4) D 6. Assertion :- If K_u < ionic product, precipitate is formed. (I) A (2) B (3) C (4) D 6. Assertion :- If K_u < ionic product, precipitate is formed. (I) A (2) B (3) C (4) D 7. Assertion :- If K_u < ionic product, precipitate is formed. (I) A (2) B (3) C (4) D 7. Assertion :- To precipitate the cations of fourth group in qualitative analysis, medium is made alkaline before passing H₂ S as. Reason :- This is done to suppress the ionisation of H, S. 	Th						-				
(C) If Assertion is True but the Reason is False.(D) If both Assertion & Reason are false.(D) If both Assertion & Reason are false.(I) A ssertion :- When small amount of acid or base is added to pure water, its pH undergoes a change. Reason :- Addition of water.8.Assertion :- When an acid or a base is added to water at constant temperature th changes. Reason :- This is due to change in ionic pr of water.(I) A (2) B (3) C (4) D9.Assertion :- Solubility of AgBr decreases in the presence of sodium bromide. Reason :- Solutom bromide undergoes hydrolysis in water. (I) A (2) B (3) C (4) D8.Assertion :- Addition of NH ₂ OH to an a gold to of BaCl, in the presence of NH ₂ Cle precipitates BaO(H). Reason :- The concentration of S ²⁺ ion in a medium is inadequate for precipitated as su when in its alkaline solution H ₂ S is passed. Reason :- The Concentration of S ²⁺ ion in a medium is inadequate for precipitated as su when in its alkaline solution H ₂ S is a strong acid. (I) A (2) B (3) C (4) D6.Assertion :- If HCl gas is passed through salkaline in nature. (I) A (2) B (3) C (4) D7.Assertion :- The aquecous solution of MaCl. (I) A (2) B (3) C (4) D8.Assertion :- The aquecous solution of MaCl. (I) A (2) B (3) C (4) D9.Assertion :- The aquecous solution undergoes anionic hydrolysis. (I) A (2) B (3) C (4) D9.Assertion :- The aquecous solution oundergoes anionic hydrolysis. (I) A (2) B (3) C (4) D9.Assertion :- The aquecous solution undergoes anionic hydrolysis. (I) A (2) B (3) C (4) D9.Assertion :- To precipitate the cations of fourth group in qualitative analysis, medi	(A)	If both Assertion & Reason are True & the Reason is a correct explanation of the Assertion.									
(D) If both Assertion & Reason are false. 1. Assertion := When small amount of acid or base is added to pure water, its pH undergoes a change. Reason := Addition of an acid or base increases the degree of ioniation of water. (1) A (2) B (3) C (4) D 2. Assertion := Solubility of AgBr decreases in the presence of sodium bromide. Reason := Solubility of AgBr decreases in the presence of sodium bromide. Reason := Solubility of AgBr decreases in the presence of sodium bromide. Reason := The joniation of acetic acid is suppressed by the addition of sodium acetate. (1) A (2) B (3) C (4) D 3. Assertion := The pH of an aqueous solution acetic acid remains unchanged on the addition of sodium acetate. Reason := The ionisation of acetic acid is suppressed by the addition of sodium acetate. (1) A (2) B (3) C (4) D 4. Assertion := If HCl gas is passed through saturated NaCl solution, solid NaCl starts to precipitate. Reason := HCl decreases the solubility product of NaCl. (1) A (2) B (3) C (4) D 5. Assertion := The aqueous solution of Na ₃ PO ₄ is alkaline in nature. Reason := Na ₃ PO ₄ in its aqueous solution undergoes anionic hydrolysis. (1) A (2) B (3) C (4) D 5. Assertion := The aqueous solution of Na ₃ PO ₄ is alkaline in nature. Reason := Na ₃ PO ₄ in its aqueous solution undergoes anionic hydrolysis. (1) A (2) B (3) C (4) D 5. Assertion := The aqueous solution of Na ₃ PO ₄ is alkaline in nature. Reason := Na ₃ PO ₄ in its aqueous solution undergoes anionic hydrolysis. (1) A (2) B (3) C (4) D 7. Assertion := To precipitate the cations of fourth group in qualitative analysis, medium is made alkaline before passing H ₃ S gas. Reason := This is done to suppress the ionisation of H ₃ S.	(B)	If both Assertion & Reason are True but Reason is not a correct explanation of the Assertion.									
 Assertion :- When small amount of acid or base is added to pure water, its pH undergoes a change. <i>Reason :-</i> Addition of an acid or base increases the degree of ionisation of water. (1) A (2) B (3) C (4) D Assertion :- Solubility of AgBr decreases in the presence of sodium bromide. <i>Reason :-</i> Solubility of AgBr decreases in the presence of sodium bromide. <i>Reason :-</i> Solubility of AgBr decreases in the presence of sodium bromide. Assertion :- The pH of an aqueous solution acetic acid remains unchanged on the addition of sodium acetate. (1) A (2) B (3) C (4) D Assertion :- The tonisation of acetic acid is suppressed by the addition of sodium acetate. (1) A (2) B (3) C (4) D Assertion :- If HCl gas is passed through saturated NaCl solution, solid NaCl starts to precipitate. <i>Reason :-</i> HCl decreases the solubility product (1) A (2) B (3) C (4) D Assertion :- The aqueous solution undergoes anionic hydrolysis. (1) A (2) B (3) C (4) D Assertion :- The aqueous solution undergoes anionic hydrolysis. (1) A (2) B (3) C (4) D Assertion :- Solubility product (K_a) is the highest limit of ionic product of the electrolyte in saturated solutions. (1) A (2) B (3) C (4) D Assertion :- Solubility product (K_a) is the highest limit of ionic product of the electrolyte in saturated solutions. (1) A (2) B (3) C (4) D Assertion :- The ionic product of the electrolyte in saturated solutions. (1) A (2) B (3) C (4) D Assertion :- This is done to suppress the ionisation of H₂ S. Assertion :- This is done to suppress the ionisation of H₂ S. A (2) B (3) C (4) D Assertion :- This is done to suppress the ionisation of H₂ S. Assertion :- This is done to suppress the ionisation of H₂ S. A (2) B (3) C (4) D Assertion :- This is done to supress the ionisation of H₂ S. 	(C)	If Assertion is True but the Reason is False.									
 is added to pure water, its pH undergoes a change. <i>Reason :-</i> Addition of an acid or base increases the degree of ionisation of water. (1) A (2) B (3) C (4) D Assertion :- Solubility of AgBr decreases in the presence of sodium bromide. <i>Reason :-</i> Solubility of AgBr decreases in the presence of sodium bromide undergoes hydrolysis in water. (1) A (2) B (3) C (4) D Assertion :- The pH of an aqueous solution of acetic acid remains unchanged on the addition of sodium acetate. (1) A (2) B (3) C (4) D Assertion :- The pH of an aqueous solution of acetic acid remains unchanged on the addition of sodium acetate. (1) A (2) B (3) C (4) D Assertion :- If HCl gas is passed through saturated NaCl solution, solid NaCl starts to precipitate. <i>Reason :-</i> The is doue outs only a constraint the presence of S⁺ ion in a medium is inadequate for precipitated as su when in it is adequate for precipitated. <i>Reason :-</i> The Quecous solution of Na₃PO₄ is alkaline in nature. (1) A (2) B (3) C (4) D Assertion :- The aqueous solution of Na₃PO₄ is alkaline in nature. (1) A (2) B (3) C (4) D Assertion :- The Aqueous solution of Na₃PO₄ is a strong acid. (1) A (2) B (3) C (4) D Assertion :- The aqueous solution of Na₃PO₄ is a strong acid. (1) A (2) B (3) C (4) D Assertion :- The solubility product (K_w) is the highest limit of ionic product of the electrolyte in saturated solutions. (1) A (2) B (3) C (4) D Assertion :- This is done to suppress the ionisation of H₂ S. (1) A (2) B (3) C (4) I Assertion :- A buffer solution is always 7 at 25°C. (1) A (2) B (3) C (4) I 	(D)	If both Assertion & Reason are false.									
 Assertion :- Solubility of AgBr decreases in the presence of sodium bromide. <i>Reason</i> :- Sodium bromide undergoes hydrolysis in water. (1) A (2) B (3) C (4) D Assertion :- The pH of an aqueous solution of acetic acid remains unchanged on the addition of sodium acetate. (1) A (2) B (3) C (4) D Assertion :- The pH of an aqueous solution of acetic acid remains unchanged on the addition of sodium acetate. (1) A (2) B (3) C (4) D Assertion :- The ionisation of acetic acid is suppressed by the addition of sodium acetate. (1) A (2) B (3) C (4) D Assertion :- The ionisation of acetic acid is suppressed by the addition of sodium acetate. (1) A (2) B (3) C (4) D Assertion :- The concentration of S² ion in a medium is inadequate for precipitated as su when in its alkaline in nature. (1) A (2) B (3) C (4) D Assertion :- The aqueous solution of Na³PO₄ is alkaline in nature. (1) A (2) B (3) C (4) D Assertion :- The solubility product (K_a) is the highest limit of ionic product of the electrolyte in saturated solutions. (1) A (2) B		is added to pure water, its pH undergoes a change. <i>Reason :-</i> Addition of an acid or base increases the degree of ionisation of water.	8.	added to w changes. Reason :-	Assertion :- When an acid or a base is added to water at constant temperature the p changes. Reason :- This is due to change in ionic produ						
 <i>Reason :-</i> Sodium bromide undergoes hydrolysis in water. (1) A (2) B (3) C (4) D <i>Assertion :-</i> The pH of an aqueous solution of acetic acid remains unchanged on the addition of sodium acetate. <i>Reason :-</i> The ionisation of acetic acid is suppressed by the addition of sodium acetate. (1) A (2) B (3) C (4) D <i>Assertion :-</i> The ionisation of acetic acid is suppressed by the addition of sodium acetate. (1) A (2) B (3) C (4) D <i>Assertion :-</i> The ionisation of acetic acid is suppressed by the addition of sodium acetate. (1) A (2) B (3) C (4) D <i>Assertion :-</i> The concentration of S² ion in a medium is inadequate for precipitate. <i>Reason :-</i> HCl decreases the solubility product of NaCl. (1) A (2) B (3) C (4) D <i>Assertion :-</i> The aqueous solution of Na₃PO₄ is alkaline in nature. <i>Reason :-</i> Ha aqueous solution of Na₃PO₄ is alkaline in nature. <i>Reason :-</i> Na₃PO₄ in its aqueous solution undergoes anionic hydrolysis. (1) A (2) B (3) C (4) D <i>Assertion :-</i> Solubility product (K_{sc}) is the highest limit of ionic product of the electrolyte in saturated solutions. (1) A (2) B (3) C (4) D <i>Assertion :</i> To precipitate the cations of fourth group in qualitative analysis, medium is made alkaline before passing H₂S gas. <i>Reason :</i> This is done to suppress the ionisation of H₂ S. 	2.	Assertion :- Solubility of AgBr decreases in the	9.		(2) B	(3) C	(4) D				
 1) A (2) B (3) C (4) D (1) A (2) B (3) C (4) D 		Reason :- Sodium bromide undergoes hydrolysis in water.		Assertion : Addition of NH_4OH to an aqueo solution of $BaCl_2$ in the presence of NH_4Cl (exce precipitates $Ba(OH)_2$.							
 <i>Reason :-</i> The ionisation of acetic acid is suppressed by the addition of sodium acetate. (1) A (2) B (3) C (4) D <i>Assertion :-</i> If HCl gas is passed through saturated NaCl solution, solid NaCl starts to precipitate. <i>Reason :-</i> HCl decreases the solubility product of NaCl. (1) A (2) B (3) C (4) D <i>Assertion :-</i> The aqueous solution of Na₃PO₄ is alkaline in nature. <i>Reason :-</i> Na₃PO₄ in its aqueous solution undergoes anionic hydrolysis. (1) A (2) B (3) C (4) D <i>Assertion :-</i> Na₃PO₄ in its aqueous solution undergoes anionic hydrolysis. (1) A (2) B (3) C (4) D <i>Assertion :-</i> Na₃PO₄ in its aqueous solution undergoes anionic hydrolysis. (1) A (2) B (3) C (4) D <i>Assertion :-</i> No precipitate the cations of fourth solutions. (1) A (2) B (3) C (4) D <i>Assertion :-</i> To precipitate the cations of fourth group in qualitative analysis, medium is mada alkaline before passing H₂S gas. <i>Reason :-</i> This is done to suppress the ionisation of H₂ S. 	3.	acetic acid remains unchanged on the addition of			-		(4) D				
 saturated NaCl solution, solid NaCl starts to precipitate. <i>Reason :-</i> HCl decreases the solubility product of NaCl. (1) A (2) B (3) C (4) D 5. Assertion :- The aqueous solution of Na₃PO₄ is alkaline in nature. <i>Reason :-</i> Na₃PO₄ in its aqueous solution undergoes anionic hydrolysis. (1) A (2) B (3) C (4) D 6. Assertion :- If K_{sp} < ionic product, precipitate is formed. <i>Reason :-</i> Solubility product (K_{sp}) is the highest limit of ionic product of the electrolyte in saturated solutions. (1) A (2) B (3) C (4) D 7. Assertion :- To precipitate the cations of fourth group in qualitative analysis, medium is made alkaline before passing H₂S gas. <i>Reason :-</i> This is done to suppress the ionisation of H₂S. 		Reason :- The ionisation of acetic acid is suppressed by the addition of sodium acetate.	10.	when in its alkaline solution H ₂ S is passe Reason :- The concentration of S ²⁻ ion in							
 5. Assertion :- The aqueous solution of Na₃PO₄ is alkaline in nature. <i>Reason :-</i> Na₃PO₄ in its aqueous solution undergoes anionic hydrolysis. (1) A (2) B (3) C (4) D 6. Assertion :- If K_{sp} < ionic product, precipitate is formed. <i>Reason :-</i> Solubility product (K_{sp}) is the highest limit of ionic product of the electrolyte in saturated solutions. (1) A (2) B (3) C (4) D 7. Assertion :- To precipitate the cations of fourth group in qualitative analysis, medium is made alkaline before passing H₂S gas. <i>Reason :-</i> This is done to suppress the ionisation of H₂S. 12. Assertion :- Solubility of salt of SB an changes when pH of the solution is change when pH of the solution is change when pH of the solution is change meason :- Solubility product (K_{sp}) depends to (1) A (2) B (3) C (4) D 13. Assertion :- A mixture of a weak acid CH₃C and sodium acetate forms a buffer solution reacts with quantities of hydrogen or hydroxyl ions and the pH almost same. (1) A (2) B (3) C (4) D 14. Assertion :- At 25°C the pH of 10⁻⁸ M HC <i>Reason :-</i> pH of acidic solution is always 7 at 25°C. (1) A (2) B (3) C (4) D 		saturated NaCl solution, solid NaCl starts to precipitate. Reason :- HCl decreases the solubility product of NaCl.	11.	Assertion than Ka ₂ . Reason :-	:- For H_2SO H_2SO_4 is a	$\mathbf{K}_{a_1} \mathbf{K}_{a_1}$ value i strong acid	1.				
 (1) A (2) B (3) C (4) D 6. Assertion :- If K_{sp} < ionic product, precipitate is formed. <i>Reason :-</i> Solubility product (K_{sp}) is the highest limit of ionic product of the electrolyte in saturated solutions. (1) A (2) B (3) C (4) D 7. Assertion :- To precipitate the cations of fourth group in qualitative analysis, medium is made alkaline before passing H₂S gas. <i>Reason :-</i> This is done to suppress the ionisation of H₂ S. (1) A (2) B (3) C (4) D 	5.	alkaline in nature. Reason :- Na_3PO_4 in its aqueous solution	12.	Assertion changes wh	:- Solubilit nen pH of t	ty of salt o he solution	is changed.				
 is formed. <i>Reason :-</i> Solubility product (K_{sp}) is the highest limit of ionic product of the electrolyte in saturated solutions. (1) A (2) B (3) C (4) D 7. Assertion :- To precipitate the cations of fourth group in qualitative analysis, medium is made alkaline before passing H₂S gas. <i>Reason :-</i> This is done to suppress the ionisation of H₂ S. 10. Assertion :- A buffer solution is always 7 at 25°C. (1) A (2) B (3) C (4) D 							(4) D				
7.Assertion :- To precipitate the cations of fourth group in qualitative analysis, medium is made alkaline before passing H_2S gas. Reason :- This is done to suppress the ionisation of H_2S .(1) A (2) B (3) C (4) I14.Assertion :- At 25°C the pH of 10°8 M HC Reason :- pH of acidic solution is always 7 at 25°C. (1) A (2) B (3) C (4) I	6.	is formed. Reason :- Solubility product (K_{sp}) is the highest limit of ionic product of the electrolyte in saturated solutions.	and sodium acetate forms a buffer solution. Reason :- A buffer solution reacts with su quantities of hydrogen or hydroxyl ions and ke								
group in qualitative analysis, medium is made alkaline before passing H_2S gas. 14. Assertion :- At 25°C the pH of 10°8 M HC Reason :- pH of acidic solution is always 7 at 25°C. (1) A (2) B (3) C (4) D	7			(1) A	(2) B	(3) C	(4) D				
of $H_2 S$. (1) A (2) B (3) C (4) I	1.	group in qualitative analysis, medium is made alkaline before passing $\rm H_2S$ gas.	14.	Reason :-							
(1) A (2) B (3) C (4) D		of $H_2 S$.			(2) B	(3) C	(4) D				
		(1) A (2) B (3) C (4) D					191				

Assertion :- In the acid base titration involving 15. 23. Assertion :- Only a very small amount of indicator a strong base and a weak acid methyl orange can should be used. be used as an indicator. **Reason** :- So that addition of the indicator does **Reason** :- Methyl orange changes its colour in not effect the pH of the solution. pH range 3 to 5. (4) D (1) A (2) B (3) C (3) C (4) D (1) A (2) B 24. Assertion :- Solubility of sparingly soluble salt **16.** Assertion :- pH of a buffer changes with increases with increase in temperature. temperature. **Reason** :- Enthalpy of solution is negative for all **Reason** :- Ionic product of water (K_) changes salts. with temperature. (1) A (2) B (3) C (4) D (1) A (2) B (3) C (4) D Assertion :- HCl is titrated with NaOH using **25**. **17.** Assertion :- H₃PO₃ is a dibasic compound. phenolphthalein as indicator, pink colour appears **Reason** :- The two H-atom are directly attached in solution when OH- ion is present in excess in to P. solution. (1) A (2) B (3) C (4) D **Reason** :- At end point, both reacting species, **18**. **Assertion** : Boric acid behaves as a weak neutralises each other. monobasic acid. (1) A (2) B (3) C (4) D **Reason**: Boric acid contains hydrogen bonds in 26. Assertion :its structure. (1) A (2) B (3) C (4) D (III) (IV) **19**. **Assertion** : H₂O is amphoteric in nature. (II) **Reason**: H_2O can accept a proton to form H_3O^+ ion and can donate a proton to form OH- ion. (1) A (2) B (3) C (4) D IInd is more suitable for titration. Reason :- It is difficult to add titrant in first. **20**. Assertion : All Arrhenius acids are also Bronsted (1) A (2) B (3) C (4) D acids. **Reason**: All Bronsted bases are also Lewis bases. 27. Assertion : In NaHCO₃ solution phenolpthalein (2) B (3) C (4) D (1) A is colorless. 21. Assertion :- The buffer solution has a capacity Reason : Phenolphalein is colorless in basic to resist the change in pH value on addition of medium and pH of NaHCO₃ is less than 10. small amount of acid or base to it. (1) A (2) B (3) C (4) D **Reason** :- pH value of buffer solution does not change on dilution or on keeping for long. **Assertion** :- Na₂SO₃ is alkaline towards litmus. **28**. (3) C (1) A (2) B (4) D **Reason** :- H₂SO₃ is formed due to hydrolysis. **22.** Assertion :- The species in the buffer must not (1) A (2) B (3) C (4) D react with each other. **Reason** :- The pH of a buffer depends on the value of K_a of the weak acid and the relative concentration of that acid and its conjugate base. (1) A (2) B (3) C (4) D ANSWER KEY **EXERCISE-IV** (Assertion & Reason) 2 5 7 12 13 15 Que. 1 3 4 6 8 9 10 11 14 Ans. 3 3 4 3 1 1 3 3 4 4 2 3 1 4 4

Que.

16

2

17

3

19

1

18

2

21

2

20

3

22

2

23

1

24

3

25

2

26

4

27

4

28

2

Е