INTRODUCTION TO CHEMISTRY

ATOMIC HYPOTHESIS :

Keeping in view various laws of chemical combination, a theoretical proof for the validity of different laws was given by John Dalton in the form of hypothesis called Dalton's atomic hypothesis. Postulates of Dalton's hypothesis are as follows :

- (i) Elements are composed of extremely small particles called atoms.
- (ii) All atoms of a given element are identical, having the same size, mass and chemical properties. The atoms of one element are different from the atoms of all other elements.
- (iii) Compounds are composed of atoms of more than one element. In any compound, the ratio of the numbers of atoms of any two of the elements present is either an integer or a simple fraction.
- (iv) A chemical reaction involves only the separation, combination or rearrangement of atoms ; it does not result in their creation or destruction.

John Dalton (1766 - 1844), an Englishman, began teaching at a Quaker school when he was 12. His fascination with science included an intense interest in meterology (he kept careful daily weather records for 46 years), which led to an interest in the gases of the air and their ultimate components, atom. Dalton is best known for his atomic theory, in which he postulated that the fundamental differences among atoms are their masses. He was the first to prepare a table of relative atomicweight.

Modern atomic hypothesis : The main modifications made in Dalton's hypothesis as a result of new discoveries about atoms are :

(i) Atom is no longer considered to be indivisible.

(ii) Atoms of the same element may have different atomic weights. e.g. isotopes of oxygen O¹⁶, O¹⁷ and O¹⁸.
 (iii) Atoms of different element may have same atomic weights. e.g. isobars Ca⁴⁰ and Ar⁴⁰.

(iv) Atom is no longer indestructible. In many nuclear reactions, a certain mass of the nucleus is converted into energy along with a, b and g rays.

(v) Atoms may not always combine in simple whole number ratios. e.g. in sucrose $(C_{12}H_{22}O_{11})$, the elements carbon, hydrogen and oxygen are present in the ratio of 12 : 22 : 11 and the ratio is not a simple whole number ratio.

ATOMIC & MOLECULAR MASSES :

DIFFERENT TYPES OF ATOMIC MASSES :

The mass of an atom depends on the number of electrons, protons, and neutrons it contains. Knowledge of an atom's mass is important in laboratory work. But atoms are extremely small particles - even the smallest speck of dust that our unaided eyes can detect contains as many as 1×10^{16} atoms ! Clearly we cannot weigh a single atom, but it is possible to determine the mass of one atom relative to another experimentally. The first step is to assign a value to the mass of one atom of a given element so that it can be used as a standard.

RELATIVE ATOMIC MASS :

Hydrogen, being lightest atom was arbitrarily assigned a mass of 1 (without any units) and other elements were assigned masses relative to it. However, the present system of atomic masses is based on carbon - 12 as the standard and has been agreed upon in 1961. Here, Carbon - 12 is one of the isotopes of carbon and can be represented as ¹²C. In this system, ¹²C is assigned a mass of exactly 12 atomic mass unit **(amu)** and masses of all other atoms are given relative to this standard.

Relative Atomic Mass is defined as the number which indicates how many times the mass of one atom of an element is heavier in comparison to 1/12th part of the mass of one atom of C-12.

Relative atomic mass of an element = $\frac{\text{mass of one atom of an element}}{\frac{1}{12}[\text{mass of one C - 12 atom}]}$

 $= \frac{\text{Mass of one atom of an element}}{1}$

1amu

ATOMIC MASS UNIT (a.m.u. or u) : The quantity 1/12th mass of an atom of C¹² is known as atomic mass unit.

Since mass of 1 atom of C - 12 = $1.9924 \times 10^{-23} \text{ g}$

 $\therefore \quad 1/12^{\text{th}} \text{ part of the mass of 1 atom} = \frac{1.9924 \times 10^{-23} \text{g}}{12} = 1.67 \times 10^{-24} \text{g} = \frac{1}{6.022 \times 10^{23}} \text{g}$

It may be noted that the atomic masses as obtained above are the relative atomic masses and not the actual masses of the atoms. These masses on the atomic mass scale are expressed in terms of atomic mass units (abbreviated as amu). Today, 'amu' has been replaced by 'u' which is known as **unified mass**.

GRAM ATOMIC MASS OR MASS OF 1 GRAM ATOM :

When numerical value of atomic mass of an element is expressed in grams then the value becomes gram atomic mass or GAM.

gram atomic mass (GAM) = mass of 1 gram atom = mass of 1 mole atoms

= mass of N_A atoms = mass of 6.022 × 10^{23} atoms.

Ex. GAM of oxygen = mass of 1 g atom of oxygen = mass of 1 mol atoms of oxygen.

= mass of N_A atoms of oxygen =
$$\left(\frac{16}{N_A}g\right) \times N_A$$
 = 16 g

Ex. Mass of one atom of Oxygen = 16 amu or $16 \times 1.67 \times 10^{-24}$ g Mass of N_A atoms of Oxygen = $16 \times 1.67 \times 10^{-24} \times 6.022 \times 10^{-23}$ g = 16 g Now see the table given below and understand the definition given before.

Element	R.A.M.	Atomic mass	Gram Atomic
	(Relative Atomic Mass)	(mass of one atom)	mass or weight
Ν	14	14 amu	14 gm
He	4	4 amu	4 gm
С	12	12 amu	12 gm

Ex. The atomic mass of an element is 50

- (i) Calculate the mass of one atom, in amu
- (ii) Calculate the mass of 6.022×10^{23} atoms, in gm
- (iii) Calculate the number of atoms in its 10 gm
- (iv) What mass of the element contains 3.011 \times 10²⁰ atoms

(iii) ∵ 50 gm of element contains 6.022 × 10²³ atoms

:. 10 gm of element will contain $\frac{6.022 \times 10^{23}}{50} \times 10$ = 1.2044 × 10²² atoms

(iv) ∵ 6.022 × 10²³ atoms weighs 50 gm

:. 3.011 × 10²⁰ atoms weighs
$$\frac{50}{6.022 \times 10^{23}} \times 3.011 \times 10^{20}$$
 = 0.025 gm

RELATIVE MOLECULAR MASS:

The number which indicates how many times the mass of one molecule of a substance is heavier in comparison to 1/12th part of the mass of an atom of C-12.

OR

The molecular mass of a substance is the sum of atomic masses of the elements present in a molecule. It is obtained by multiplying the atomic mass of each element by the number of its atoms and adding them together.

molecular mass of oxygen (O_2)	=	32
molecular mass of (O_3)	=	48
molecular mass of HCI	=	1 + 35.5 = 36.5
molecular mass of H_2SO_4	=	2 + 32 + 64 = 98
	molecular mass of oxygen (O_2) molecular mass of (O_3) molecular mass of HCI molecular mass of H ₂ SO ₄	molecular mass of oxygen (O_2) =molecular mass of (O_3) =molecular mass of HCI=molecular mass of H2SO4=

GRAM MOLECULAR MASS (MASS OF 1 GRAM MOLECULE) :

When numerical value of molecular mass of the substance is expressed in grams then the value becomes gram molecular mass or GMM.

	gram molecular mass (GMM)	=	mass of 1 gram molecule = mass of 1 mole molecules
		=	mass of N_A molecules = mass of 6.022 × 10 ²³ molecules
Ex.	GMM of H_2SO_4	= = =	mass of 1 gram molecule of H_2SO_4 mass of 1 mole molecules of H_2SO_4 mass of N_A molecules of H_2SO_4
		=	$\left(\frac{98}{N_A}g\right) \times N_A = 98 g$

Ex. Molecular Mass of N₂ = 28 amu = $28 \times 1.67 \times 10^{-28}$ g Mass of N₄ molecules of N₂ = $28 \times 1.67 \times 10^{-24} \times 6.022 \times 10^{23}$ g = 28 g

INTRODUCTION TO MOLE

Atoms and molecules are extremely small in size and their numbers in even a small amount of any substance is really very large. To handle such large numbers, a unit of similar magnitude is required. The 14th Geneva conference on weight and measures adopted mole as a **seventh basic SI unit of the amount of a substance**. Mole concept is essential tool for the fundamental study of chemical calculations. This concept is simple but its application requires a thorough practice. There are many ways of measuring the amount of substance, weight and volume being the most common, but basic unit of chemistry is the atom or a molecule and measuring the number of molecule is more important.

DEFINITION OF MOLE AND MOLAR MASS :

- A mole is the amount of a substance that contains as many entities (Atoms, Molecules, Ions or any other particles) as there are atoms in exactly 12 g of C-12 isotope.
- A mole of a substance contains Avogadro's number (6.022 × 10²³) of particles.

The term mole, like a dozen or a gross, thus refers to a particular number of things. A dozen eggs equals 12 eggs, a gross of pencils equals 144 pencils, and a mole of ethanol equal 6.022×10^{23} ethanol molecules.

• The **molar mass** of a substance is the mass of one mole of the substance. Carbon-12 has a molar mass of exactly 12 g/mol, by definition.

- 1 gram-atom = 1 mole atoms = N_A atoms
- 1 gram-molecule = 1 mole molecules = N_A molecules
- 1 gram-ion = 1 mole ions = N_A ions
- **S.T.P.** (Standard Temperature and Pressure)

At S.T.P. condition : temperature = 0° C or 273 K

pressure = 1 bar

and volume of one mole of gas at STP is found to be experimentally equal to 22.7 litres which is known as molar volume.

Methods to calculate moles :

(i) If number of particles (molecules or atoms) is given then,

$$mole = \frac{Given number of molecule / atom}{N_A}$$

(ii) If mass is given then, number of mole = $\frac{\text{Given mass of substance (in gm)}}{\text{GAM}/\text{GMM}}$

(iii) If volume of gas is given then, mole

$$= \frac{V \circ lum e \circ f g a s a t STP}{22.7 L} = \frac{V \circ lume \circ f g a s a t \circ C and 1 a tm}{22.4 L}$$

(Standard molar volume is the volume occupies by 1 mole of any gas at STP, which is equal to 22.7 L)

(iv) Under any condition of temperature and pressure, moles of gases may be calculated using IDEAL GAS EQUATION : PV = nRT,

where, R = Universal Gas Constant

= 0.0821 L-atm/K-mol

= 8.314 J/K-mol

 \approx 2 cal/K-mol

Units of pressure and their relation:

- 1 atm = 76 cm Hg
 - = 760 mm Hg
 - = 760 torr (1 torr = 1 mm Hg)
 - = $1.01325 \times 10^{6} \text{ dyne/cm}^{2}$
 - = 1.01325 \times 10 5 N/m 2 or Pa
 - = 1.01325 bar (1 bar $= 10^5$ Pa)

1 bar = 75 cm Hg

Units of Volume and their relation :

$$1 \text{ ml} = 1 \text{ cm}^3 = 1 \text{ c.c.}$$

1 Litre = 1000 ml = 1 dm³

1 m³ = 1000 L

Units of Temperature and their relation :

T = 273 + t

where, T = Absolute temperature (in Kelvin) and t = temperature in °C

Relation between °F and °C is $\frac{^{\circ}C}{5} = \frac{^{\circ}F - 32}{9}$

AVERAGE MOLECULAR MASS OF NON-REACTING GAS MIXTURE :

 $M_{avg.} = \frac{Total mass of mixture}{Total mole}$

Ex. A gaseous mixture contains 40% H₂ and 60% He, by volume. What is the average molecular mass of mixture ?

Sol.
$$M_{av} = \frac{\Sigma(\% \text{ by vol.} \times \text{molecular mass})}{100} = \frac{40 \times 2 + 60 \times 4}{100} = 3.20$$

AVERAGE ATOMIC MASS :

If an element exists in different isotopic forms (or allotropic forms) having relative abundance X_1 %, X_2 % X_n %, with relative atomic masses M_1 , M_2 M_n respectively then ,

Avg. Atomic mass of element = $\frac{X_1}{100}(M_1) + \frac{X_2}{100}(M_2) + \dots + \frac{X_n}{100}(M_n) = \sum_{i=1 \text{ to } n} \frac{X_i}{100}(M_i)$

Ex. An element exist in nature in two isotopic forms : X³⁰ (90%) and X³²(10%). What is the average atomic mass of element ?

Sol. Av. atomic mass = $\frac{\Sigma(\%abundance \times atomic mass)}{100} = \frac{90 \times 30 + 10 \times 32}{100} = 30.2$

Ex. The molecular mass of a compound is 75

(i) Calculate the mass of 100 molecules, in amu.
(ii) Calculate the mass of 5000 molecules, in gm.
(iii) What is the mass of 6.022 × 10²⁰ molecules, in gm
(iv) How many molecules are in its 2.5 mg

Sol. (i) mass of 1 molecules = 75 amu

... mass of 100 molecules = 7500 amu (ii) Mass of 5000 molecules = 5000 × 75 amu = 5000 × 75 × 1.67 × 10^{-24} = 6.26 25 × 10^{-19} gm (iii) ... 6.022 × 10^{23} molecules weighs 75 gm

: 6.022 × 10²⁰ molecules weighs
$$\frac{75}{6.022 \times 10^{23}} \times 6.022 \times 10^{20} = 0.075 \text{ gm}$$

(iv) ∴ 75 gm compound contains 6.022 × 10²³ molecules

: 2.5 × 10⁻³ gm will contain
$$\frac{6.022 \times 10^{23}}{75} \times 2.5 \times 10^{-3} = 2.007 \times 10^{19}$$
 molecules.

- Ex. Calculate the number of g-molecules (mole of molecules) in the following : (i) 3.2 gm CH₄ (ii) 70 gm nitrogen (iii) 4.5×10^{24} molecules of ozone (iv) 2.4×10^{21} atoms of hydrogen (v) 11.2 L ideal gas at 0°C and 1 atm (vi) 4.54 ml SO₃ gas at STP (vii) $8.21 \text{ L C}_2\text{H}_6$ gas at 400K and 2atm (viii) 164.2 ml He gas at 27°C and 570 torr [N_A = 6 × 10²³]
- **Sol.** (i) 3.2 gram CH₄

number of moles (CH₄) = $\frac{w}{M} = \frac{3.2}{16} = 0.2 \text{ moles}$ (ii) 70 gram N₂ Number of moles = $\frac{w}{M} = \frac{70}{28} = 2.5$ (iii) 4.5 × 10²⁴ molecules of O₃ Number of moles = $\frac{n0.0 \text{ fmolecules}}{N_A} = \frac{4.5 \times 10^{24}}{6 \times 10^{23}} = 7.5$ (iv) 2.4 × 10²¹ atoms of hydrogen Number of gram molecules of H₂ = $\frac{n0.0 \text{ fmolecules}}{N_A} = \frac{2.4 \times 10^{21}}{2 \times 6 \times 10^{23}} = 0.002$ (v) 11.2 litre ideal gas at 0°C and 1 atm Number of moles = $\frac{\text{Volume at 0° C \& 1 atm}}{22.4 \text{ litre}} = \frac{11.2}{22.4} = 0.5$ (vi) 4.54 ml SO₃ gas at STP Number of moles = $\frac{V_{\text{STP}}(\text{ml})}{20700 \text{ moles}} = \frac{4.54}{22700}$

$$\frac{1}{22700} = 2 \times 10^{-4}$$

(vii) 8.21 litre C_2H_6 at 400 K and 2 litre

$$n = \frac{PV}{R.T} = \frac{2 \times 8.21}{0.0821 \times 400} = 0.5$$

(viii) 164.2 ml He gas at 27°C and 570 torr

$$n = \frac{PV}{RT} = \left(\frac{570}{760} atm\right) \times \frac{164.2 \times 10^{-3} litre}{0.0821 \times 300} = 0.005$$

Ex. Find no. of protons in 180 ml H_2O . Density of water = 1 gm/ml.

Sol. Mass of water = density × volume = 180 g

Moles of water =
$$\frac{180}{18} = 10$$

1 mol water has 10 mol protons

10 mol water has 100 mol protons

- 10 mol water has 100 $\rm N_{A}$ protons
- 10 mol water has 6.023×10^{25} protons

Ex. What mass of Na_2SO_4 .7H₂O contains exactly 6.023 × 10²² atoms of oxygen ?

Sol. Molar mass of Na₂SO₄.7H₂O = 275 gm. 1 mole Na₂SO₄.7H₂O has 11 mol O-atoms. \Rightarrow 11 N_A O – atoms are in 275 g Na₂SO₄.7H₂O \Rightarrow 6.023 × 10²² O – atoms are in

$$=\frac{275}{11\times6.023\times10^{23}}\times6.023\times10^{22}\,\mathrm{g}=2.5\,\mathrm{g}$$

- Ex. What is number of atoms and molecules in 112 L of $O_3(g)$ at 0°C and 1atm?
- **Sol.** Moles of molecules $=\frac{112}{22.4}=5$

Moles of atoms $= 5 \times 3 = 15$ No. of molecules $= 5N_A$ No. of atoms $= 15N_A$.

Prefixes used in the SI System			
Multiple	Prefix	Symbol	
10-24	yocto	У	
10-21	zepto	z	
10 ⁻¹⁸	atto	а	
10 ⁻¹⁵	femto	f	
10-12	pico	р	
10 ⁻⁹	nano	n	
10 ⁻⁶	micro	μ	
10 ⁻³	milli	m	
10 ⁻²	centi	С	
10-1	deci	d	
10	deca	D	
10 ²	hecto	h	
10 ³	kilo	k	
10 ⁶	mega	M	
10 ⁹	giga	G	
10 ¹²	tera	Т	
10 ¹⁵	peta	P	
10 ¹⁸	exa	E	
10 ²¹	zeta	Z	
10 ²⁴	yotta	Y	

			EXERCISE			
	PART - I : SUBJECTIVE QUESTIONS					
1.	A flask cor (i) Moles o (ii) Moles o (iii) Total n	ntains 16 gm helium If He of proton umber of neutrons	$\left({}^4_2 He ight)$ gas (Gram atomic mass of He = 4). Find			
2.	The weight	of one atom of Uraniu	m is 238 amu. Its actual weight is g.			
3.	Calculate th	ne weight of 12.044 $ imes$ 1	0 ²³ atoms of carbon.			
4.	How many	grams of silicon is pres	sent in 35 gram atoms of silicon (Given at. wt. of $Si = 28$).			
5.	Find the tot	al number of nucleons	present in 12 g of ¹² C atoms.			
6.	Calculate th	Calculate the number of electrons, protons and neutrons in 1 mole of $^{16}O^{-2}$ ions.				
7.	How much time (in years) would it take to distribute one Avogadro number of wheat grains if 10^{10} grains are distributed each second ?					
8.	How many atoms are there in 100 amu of He ?					
9.	The density of liquid mercury is 13.6 g/cm ³ . How many moles of mercury are there in 1 litre of the metal ? (Atomic mass of Hg = 200.)					
10.	Calculate th ³⁵ Cl ³⁷ Cl	ne atomic mass (averag % Natural Abun 75.77 24.23	ge) of chlorine using the following data : dance Molar Mass 34.9689 36.9659			
11.	2 moles of (i) Moles o (ii) Moles o (iii) Moles (iv) Numbe	H ₂ SO ₄ is kept in a l of H-atom of S-atom of O-atom er of O-atoms	beaker. Find			
12.	The numbe	er of molecules in 16 g	of methane is :			
13.	Calculate th	ne number of molecule	s in a drop of water weighing 0.09 g.			
14.	6.4 gm of	SO ₂ will contain how	many			

- (i) Moles of SO_2 molecule
- (ii) Number of SO_2 molecules

- **15.** Glycine $(H_2N CH_2 COOH)$ is one of the proteinogenic amino acid. Find moles of glycine in it's 7.5 gm
- **16.** The number of neutrons in 5 g of D_2O (D is ${}_1^2H$) are :
- 17. Calculate the weight of 6.022×10^{23} formula units of CaCO₃.
- **19.** If, from 10 moles NH_3 and 5 moles of H_2SO_4 , all the H-atoms are removed in order to form H_2 gas, then find the number of H_2 molecules formed.
- **20.** If the components of air are $N_2 78\%$; $O_2 21\%$; Ar 0.9% and $CO_2 0.1\%$ by volume (or mole), what would be the molecular weight of air ?
- 21. A flask of 8.21 litre contains CH₄ gas at a pressure of 2 atm. Find moles of CH₄ gas at 400K?
- 22. Find moles of O-atom in 5.6 litres of O₃ at 0°C, 1 atm?
- **23.** The volume of a gas at 0° C and 700 mm pressure is 760 cc. The number of molecules present in this volume is :
- **24.** The weight of 350 mL of a diatomic gas at 0°C and 2 atm pressure is 1 g. The weight of one atom is :
- 25. Fill in the blanks :
 - (i) 1µm = nm (iv) 1dm = mm

(ii) 10 MJ = J (v) 10 pm = cm (iii) 100 Pa = kPa

PART - II : OBJECTIVE QUESTIONS

SINGLE CORRECT QUESTIONS (SCQ)

- 1. Which is not a basic postulate of Dalton's atomic theory ?
 - (A) Atoms are neither created nor destroyed in a chemical reaction.
 - (B) Different elements have different types of atoms.
 - (C) Atoms of an element may be different due to presence of isotopes.
 - (D) Each element is composed of extermely small particles called atoms.
- 2. The modern atomic weight scale is based on : (A) ${}^{12}C$ (B) ${}^{16}O$ (C) ${}^{1}H$ (D) ${}^{18}O$
- **3.** 1 amu is equal to
 - (A) $\frac{1}{12}$ of C 12 (B) $\frac{1}{14}$ of O 16 (C) 1g of H₂ (D) 1.66 × 10⁻²³ kg

4.	If the atomic mass of So (A) 1	odium is 23, the number (B) 2	of moles in 46 g of sodiur (C) 2.3	m is : (D) 4.6	
5.	The Kohinoor diamond was the largest diamond ever found. How many moles of carbon atom				
	were peresent in it, if it i (A) 110	s weigh 3300 carat. [Giv (B) 55	ren: 1 carat = 200 mg] (C) 60	(D) 120	
6.	How many grams are co	ontained in 1 gram-atom	of Na ?		
	(A) 13 g	(B) 23 g	(C) 1 g	(D) $\frac{1}{23}$ g	
7.	1.0 g of hydrogen conta atoms in 1 g of He is :	ains 6×10^{23} atoms. The a	atomic weight of helium i	s 4. It follows that the number of	
	(A) $\frac{1}{4} \times 6 \times 10^{23}$	(B) $4 \times 6 \times 10^{23}$	(C) 6×10^{23}	(D) 12 × 10 ²³	
8.	One atomic mass unit i	n kilogram is			
	(A) 1/N _A	(B) 12 / N _A	(C) 1/1000 N _A	(D) 1000 / N _A	
9.	The atomic weights of two elements A and B are 40u and 80u respectively. If x g of A contains y atoms, how many atoms are present in 2x g of B?				
	(A) $\frac{y}{2}$	(B) <u>y</u>	(C) y	(D) 2y	
10.	A sample of aluminium atoms? (At. wt. Al = 27,	has a mass of 54.0 g. Wl Mg = 24)	nat is the mass of the san	ne number of magnesium	
	(A) 12 g	(B) 24 g	(C) 48 g	(D) 96 g.	
11.	The number of atoms in	1 558.5 g of Fe (at wt.= 55	5.85) is :		
	(A) Twice that in 60 g ca	arbon	(B) 6.022 × 10 ²²		
	(C) Half in 8 g He		(D) $558.5 \times 6.023 \times 10^{2}$	23	
12.	Which of the following h	as the Maximum mass ?			
	(A) 1 g-atom of C		(B) $\frac{1}{2}$ mole of CH ₄		
	(C) 10 mL of water		(D) 3.011 × 10^{23} atoms of	of oxygen	
13.	The charge on 1 gram ions of AI^{3+} is : ($N_A = Avogadro number, e = charge on one electron)$				
	(A) $\frac{1}{27}$ N _A e coulomb	(B) $\frac{1}{3} \times N_A e$ coulomb	(C) $\frac{1}{9} \times N_{A} e$ coulomb	(D) $3 \times N_A e$ coulomb	
14.	It is known that an atom to half of its original valu the atomic mass of $\frac{14}{c}$ C	contains protons, neutro e whereas that of proton will be :	ons and electrons. If the n is assumed to be twice o	nass of neutron is assumed f its original value, then	

the atomic mass of ${}^{14}_{6}C$	will be :		
(A) same	(B) 114.28 % less	(C) 14.28 % more	(D) 28.56 % less

15.	Which of the following o	contain largest number of	carbon atoms?	
	(A) 15 gm ethane, $C_2 H_6$	3	(B) 45 gm Oxalic acid, I	$H_2C_2O_4$
	(C) 72 gm glucose, C ₆ H	I ₁₂ O ₆	(D) 35 gm pentene, C ₅ H	H ₁₀
16.	The number of molecul	es of CO ₂ present in 44 g	of CO ₂ is :	
	(A) 6.0×10 ²³	(B) 3×10 ²³	(C) 12×10 ²³	(D) 3×10 ¹⁰
17.	The number of mole of (A) 0.425	ammonia in 4.25 g of am (B) 0.25	monia is : (C) 0.236	(D) 0.2125
18.	Which one of the follow (A) 16 g of O_2 and 14 g	ring pairs of gases contain of N_2	ns the same number of m (B) 8 g of O ₂ and 22 g c	olecules : of CO ₂
	(C) 28 g of N_2 and 22 g	of CO ₂	(D) 32 g of O ₂ and 32 g	of N ₂
19.	The weight of a molecu (A) 1.09 × 10 ⁻²¹ g	le of the compound $C_{60}H_2$ (B) 1.24 × 10 ⁻²¹ g	₂₂ is : (C) 5.025 × 10 ^{−23} g	(D) 16.023 × 10 ⁻²³ g
20.	Number of electrons in (A) 6.02×10^{23}	1.8 mL of $H_2O(\ell)$ is about (B) 3.011 × 10 ²³	ut : (C) 0.6022 × 10 ²¹	(D) 60.22 × 10 ²⁰
21.	One mole of P ₄ molecu (A) 1 molecule	les contain :	(B) 4 molecules	
	(C) $\frac{1}{4} \times 6.022 \times 10^{23}$ at	oms	(D) 24.088 × 10 ²³ atom	S
22.	The number of electron $(N_A = 6 \times 10^{23})$	in 3.1 mg NO_3^- is		
	(A) 32	(B) 1.6 × 10 ⁻³	(C) 9.6 × 10 ²⁰	(D) 9.6 × 10 ²³
23.	An iodized salt contains	s 0.5 % of Nal. A person o	consumes 3 gm of salt ev	eryday. The number of
	iodide ions going into h	is body everyday is (I = 1	27)	
	(A) 10 ⁻⁴	(B) 6.02 ×10 ⁻⁴	(C) 6.02 × 10 ¹⁹	(D) 6.02 × 10 ²³
24.	A sample of ammonium	h phosphate $(NH_4)_3PO_4$ co	ontains 3.18 mole of H ato	ms. The number of mole
	of O atoms in the samp	ble is :	(a)	
	(A) 0.265	(B) 0.795	(C) 1.06	(D) 3.18
25.	The percentage by mole	of NO_2 in a mixture of NO_2	(g) and NO(g) having avera	age molecular
	mass 34 is :			
	(A) 25%	(B) 20%	(C) 40%	(D) 75%
26.	Torr is unit of :			
	(A) Temperature	(B) Pressure	(C) Volume	(D) Density
27.	The atmospheric press	ure on Mars is 0.61 kPa.	What is the pressure in r	nm Hg ?
	(A) 0.63	(B) 4.6	(C) 6.3	(D) 3.2
28.	At what temperature, be (A) 100°	oth Celsius and Fahrenhe (B) 130º	eit scale read the same va (C) 60°	alue : (D) –40º

29.	The value of universal g	as constant R depends or	ו:		
	(A) temperature of gas(C) number of moles of gas	gas	(B) volume of gas (D) units of volume and p	pressure	
30.	The value of gas consta (A) 1 cal	nt in calorie per degree te (B) 2 cal	mperature per mol is app (C) 3 cal	proximately : (D) 4 cal	
31.	The value of R in SI unit (A) 8.314×10^{-7} erg K ⁻¹ (C) 0.082 litre atm K ⁻¹ m	: is : mol ⁻¹ iol ⁻¹	(B) 8.314 JK ⁻¹ mol ⁻¹ (D) 2 cal K ⁻¹ mol ⁻¹		
32.	The pressure of sodium container?	vapour in a 1.0 L contain	er is 10 torr at 1000ºC. H	ow many atoms are in the	
	(A) 9.7 × 10 ⁷	(B) 7.6 × 10 ¹⁹	(C) 4.2 × 10 ¹⁷	(D) 9.7 × 10 ¹⁹	
33.	The pressure of a gas h (A) 1 atm	aving 2 mole in 44.8 litre (B) 2 atm	vessel at 546 K is : (C) 3 atm	(D) 4 atm	
34.	Equal volumes of oxyge	n gas and a second gas v	veigh 1.00 and 2.375 gra	ms respectively under the	
	(A) NO	(B) SO_2	(C) CS_2	(D) CO	
35.	Four 1-1 litre flasks are and pressure. The ratio (A) 1 : 1 : 1 : 1	separately filled with the g of total number of atoms (B) 1 : 2 : 2 : 3	gases H_2 , He, O_2 and O_3 of these gases present in (C) 2 : 1 : 2 : 3	at the same temperature different flask would be : (D) 3 : 2 : 2 : 1	
36.	Under the same condition (A) be noble gases (C) have a volume of 22	ons, two gases have the s .4 dm³ each	ame number of molecule (B) have equal volumes (D) have an equal numb	es. They must er of atoms	
37.	16 g of an ideal gas SO (A) x = 3	_x occupies 5.6 L. at 0°C a (B) x = 2	nd 1atm. The value of x i (C) x = 4	s (D) none of these	
38.	Avogadro number is : (A) Number of atoms in one gram of the element (B) Number of mililitre which one mole of a gaseous substance occupies at 1 atm & 0°C. (C) Number of molecules present in one gram molecular mass of a substance. (D) All are correct				
39.	The weight of 1×10^{22} n (A) 41.59 g	nolecules of CuSO ₄ . 5H ₂ C (B) 415.9 g	0 is : (C) 4.159 g	(D) None of these	
40.	How many moles of electron weigh one kilogram :				
	(A) 6.023 × 10 ²³	(B) $\frac{1}{9.108} \times 10^{31}$	(C) $\frac{6.023}{9.108} \times 10^{54}$	(D) $\frac{1}{9.108 \times 6.023} \times 10^8$	
41.	Number of atoms in 560 (A) Twice that in 70 g N (C) Both (A) and (B)) g of Fe (atomic mass 56	i gmol⁻¹) is : (B) Half that in 20 g H (D) None of these		
42.	Which has maximum no (A) 24 g of C (12)	umber of atoms : (B) 56 g of Fe (56)	(C) 27 g of Al (27)	(D) 108 g Ag (108)	

43.	How many moles of ma	oles of magnesium phosphate, $Mg_3(PO_4)_2$ will contain 0.25 mole of oxygen atoms ?		
	(A) 0.02	(B) 3.125 × 10 ⁻²	(C) 1.25 × 10 ⁻²	(D) 2.5 × 10 ⁻²
44.	Given that the abundant atomic mass of Fe is : (A) 55.85	ces of isotopes ⁵⁴ Fe, ⁵⁶ Fe (B) 55.95	and ⁵⁷ Fe are 5%, 90% ar (C) 55.75	nd 5% respectively, the (D) 56.05
MULTI	PLE CORRECT QUESTIC	ONS (MCQ)		
A E	Which property of an alo	mant may have non-inte	relyclus	
45.	(A) Atomic weight	(B) Atomic number	(C) Atomic volume	(D) None of these
46.	Which of the following w	vould contain 1 mole of pa	articles :	
	(A) 0.5 mole of H_2	(B) 1 g of H-atoms	(C) 16 g of O-18 (D) 16 g	g of methane
47.	Which of the following w	vill have the same numbe	r of electrons :	
	(A) 1 g Hydrogen	(B) 2 g Oxygen	(C) 2 g Carbon	(D) 2 g Nitrogen
48.	Which the following is equal to 10^{-2} atm :			
	(A) 0.76 cm of Hg	(B) 7.6 torr	(C) 0.076 dm of Hg	(D) 0.0076 torr
49.	Pressure exerted by a s	ample of oxygen is same	e for the following condition	ins :
-	(A) 2 L, 27ºC	(B) 1 L, 150 K	(C) 4 L, 54ºC	(D) 10 L, 1227ºC

ASSERTION / REASONING (A/R)

Each question has 5 choices (A), (B), (C), (D) and (E) out of which ONLY ONE is correct.

- (A) STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is correct explanation for STATEMENT-1.
- (B) STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is not correct
- explanation for STATEMENT-1.
 - (C) STATEMENT-1 is true, STATEMENT-2 is false.
 - (D) STATEMENT-1 is false, STATEMENT-2 is true.
 - (E) Both STATEMENTS are false.
- **50. STATEMENT-1** : Gram molecular weight of O_2 is 32 g. **STATEMENT-2** : Relative atomic weight of oxygen is 32.
- **51. STATEMENT-1**: 1 mole of all ideal gases exert same pressure in same volume at same tempera ture.

STATEMENT-2: Behaviour of ideal gases is independent of their nature.

52. STATEMENT-1: Value of the universal gas constant depends upon the choice of sytem of units.
 STATEMENT-2: Values of universal gas constant are 8.314 J/molK, 0.0821 L.atm/molK, 2 cal/ molK.

COMPREHENSION

A vessel of 25 L contains 20 g of ideal gas X at 300K. The pressure exerted by the gas is 1 atm. 20 g of ideal gas Y is added to the vessel keeping the same temperature. Total pressure became 3 atm. Upon further addition of 20 g ideal gas Z the presure became 7 atm. Answer the following questions. (Hint: Ideal gas equation is applicable on mixture of ideal gases) [Take R = 1/12 L.atm / mol K]

53.	Find the molar mass of gas X.				
	(A) 20 g	(B) 10 g	(C) 30 g	(D) 5 g	
54.	Identify the correct statement(s) : I. gas Y is lighter than gas X II. gas Z is lighter than gas Y				
	(A) I only		(B) II only		
	(C) Both I and II		(D) None of the statement	nts	

 55.
 Find the average molar mass of the mixture of gases X,Y and Z.

 (A) 40/7
 (B) 50/7
 (C) 20
 (D) 60/7

56. The recommended daily dose is 17.6 milligrams of vitamin C (ascorbic acid) having formula $C_6H_8O_6$. Match the following. Given : $N_A = 6 \times 10^{23}$

Column I	Column II
(A) O-atoms present in daily dose	(P) 10 ⁻⁴ mole
(B) Moles of vitamin C in 1 gm of vitamin C	(Q) 5.68 × 10 ⁻³
(C) Moles of vitamin C that should be consumed daily	(R) 3.6 × 10 ²⁰

57. Match The Column

Column-l			Column-II (% composition of heavier isotope)			
(Atomic mas	ss (M))					
Isotope-I	Isotope-II	Average				
(z – 1)	(z + 3)	Z	(p) 25% by moles			
(z + 1)	(z + 3)	(z + 2)	(q) 50% by moles			
z	3z	2z	(r) % by mass dependent on z			
(z – 1)	(z + 1)	Z	(s) 75% by mass			
	Column-I (Atomic matrix Isotope-I (z - 1) (z + 1) z (z - 1)	Column-I (Atomic mass (M)) Isotope-I Isotope-II $(z - 1)$ $(z + 3)$ $(z + 1)$ $(z + 3)$ z $3z$ $(z - 1)$ $(z + 1)$	Column-I(Atomic mass (M))Isotope-IIsotope-IIAverage $(z-1)$ $(z+3)$ z $(z+1)$ $(z+3)$ $(z+2)$ z $3z$ $2z$ $(z-1)$ $(z+1)$ z			

ANSWER KEY

PART - I

1. (i) Ans. 4

(ii) Ans. 8

(iii) Ans. 8N_A

2. 3.95×10^{-22} No. of atoms = mole $\times N_a$

 $1 = \frac{x}{238} \times N_{a} \text{ (x is wt. of uranium)}$ $x = \frac{238}{6} \times 10^{-23}$ $x = 3.95 \times 10^{-22}$

3. No. of moles of C =
$$\frac{12.044 \times 10^{23}}{6.022 \times 10^{23}}$$
 = 2.
Wt. of C atoms = 2 × 12 = 24 g.

- 4. 980 g of Si mass of Si = mole × Atomic mass = 35 × 28 = 980gm
- **5.** $12 \times 6.022 \times 10^{23}$.
- 6. $10 \times 6.022 \times 10^{23}, 8 \times 6.022 \times 10^{23}, 8 \times 6.022 \times 10^{23}$.
- 7. 10¹⁰ grains are distributed in 1 second

:. 6.02×10^{23} grains are distributed in $\frac{6.02 \times 10^{23}}{10^{10}}$ sec = $\frac{6.02 \times 10^{23}}{10^{10} \times 60 \times 60 \times 24 \times 365}$ years

- = 1.9×10^6 years (approx.)
- 8. We know that, $1 \text{ amu} = \frac{1}{12} \times \text{weight of one} \, {}^{12}\text{C} \text{ atom}$ or weight of one ${}^{12}\text{C}$ atom = 12 amu (at. wt. of C = 12 amu). Similarly, as the atomic weight of He is 4 amu, weight of one He atom = 4 amu.

Thus, the number of atoms in 100 amu of He = $\frac{100}{4}$ = 25.

9. 68 mole 1 litre Hg metal volume = 1000

 $d = \frac{m}{v} \qquad mass = d \times V = 13.6 \times 1000$

No of mole of Hg metal = $\frac{13.6 \times 1000}{200}$ = 68 mole

10.	Fractional abundance of ³ Fractional abundance of ³⁷ ∴ Average atomic m	${}^{5}CI = 0.7577$, Mola CI = 0.2423, Mola ass = (0.7577) (34.9 = 26.4959 + 8.9	r mass = 34.9689 r mass = 36.9659 689 amu) + (0.2423) (3 568 = 35.4527	6.9659 amu)					
11.	(i) Ans. 4 (i	i) Ans. 2	(iii) Ans. 8	(iv) Ans. 8N _A					
12.	6.02 × 10 ²³								
	No. of molecules = mole × $N_a = \frac{16}{16} \times N_a$								
13.	3.01 × 10^{21} molecules of H ₂ O In 18 g, no. of molecules = N _A								
so in 0.09 g no. of molecules = $\frac{N_A}{18} \times 0.09 = \frac{N_A}{2 \times 100} = 3.01 \times 10^{21}$.									
14.	(i) Ans. 0.1 mole	(ii) Ans. (0.1	× N _A)						
15.	0.1 mole								
16.	2.5 N _A								
17.	No. of moles of $CaCO_3 =$	$\frac{\text{no. of molecules}}{\text{Av. cons.}} =$	$\frac{6.022 \times 10^{23}}{6.022 \times 10^{23}} = 1$						
	Weight of $CaCO_3 = 1 \times 10$	0 = 100 g.							
18.	(a) $H = 4N_A$, $S = 2N_A$, $O = 8N_A$ atoms (b) $H = 4$ atoms, $S = 2$ atoms, $O = 8$ atoms. (c) $H = 10N_A$, $S = 10N_A$, $O = 40 N_A$ atoms (d) $H = 6$ atoms, $S = 6$ atoms, $O = 18$ atoms.								
	(a) mole of $H_2SO_4 = \frac{mass}{molar mass} = \frac{196}{98} = 2.$								
	1 molecule H_2SO_4 contains 2 atom hydrogen, 1 atom sulphur and 4 atom of oxygen. Hence : H = 4N _A atoms, S = 2N _A atoms, O = 8N _A atoms								
	(b) molecule of $H_2SO_4 = \frac{196}{98} = 2$.								
	Hence : $H = 4$ atoms, $S =$ (c) 5 mole $H_2S_2O_8$ contains $H = 10N_A$ atoms, $S = 10N_A$ (d) 3 molecules $H_2S_2O_6$ co H = 6 atoms, $S = 6$ atoms	= 2 atoms, O = 8 ato s atoms, O = 40 N _A a ontains , O = 18 atoms.	ms. toms						

(A)

(C)

(D) (D)

(C)

(A)

(B)

(D) (A)

(B)

(C)

(C)

(ABD)

7. 14.

21.

28.

35.

42.

19.	$20 N_A$ $10 \text{ mole NH}_3 \text{ have mole of 'H' atom = 10 x 3}$ $5 \text{ mole of H}_2 SO_4 \text{ have mole of 'H' atom = 10}$ Total mole of 'H' atom = 40 mole of H ₂ = 20 Hence : number of H ₂ molecules = $20N_A$									
20.	Mol. wt. of air = $\frac{78 \times 28 + 21 \times 32 + 0.9 \times 40 + 0.1 \times 44}{78 + 21 + 0.9 + 0.1} = 28.964.$									
	$(\mathrm{N_2}=28,\mathrm{O_2}=32$, Ar = 40 and $\mathrm{CO_2}=44)$									
21.	0.5 mole									
22.	0.75 moles									
23.	1.88×10^{22} PV = nRT, N = n × N _A									
24.	16 amu PV = nRT, n = W/M 16 AMU									
25.	(i) 1000	(ii) 10 ⁷		(iii) 0.1		(iv) 100 (v) 10 ⁻⁹				
	PART - II									
SINGLE CORRECT QUESTIONS (SCQ)										
1.	(C)	2.	(A)	3.	(A)	4.	(B)	5.	(B)	6.
8.	(C)	9.	(C)	10.	(C)	11.	(A)	12.	(A)	13.
15.	(D)	16.	(A)	17.	(B)	18.	(A)	19.	(B)	20.
22.	(C)	23.	(C)	24.	(C)	25.	(A)	26.	(B)	27.
29.	(D)	30.	(B)	31.	(B)	32.	(B)	33.	(B)	34.
36.	(B)	37.	(B)	38.	(C)	39.	(C)	40.	(D)	41.
43.	(B)	44.	(B)							
MULTIF	PLE COF	RRECT	QUESTI	ONS (MC	CQ)					
45.	(AC)	46.	(BD)	47.	(ABCD)		48.	(ABC)		49.
ASSER	TION / F	REASON	IING (A/	R)						
50.	(C)	51.	(A)	52.	(B)					
COMPREHENSION										
53.	(A)	54.	(C)	55.	(D)					
56.	(A–R), ((B-Q), (C	C-P)							

57. (A) - (p,r) ; (B) - (q,r) ; (C) - (q,s) ; (D) - (q,r)