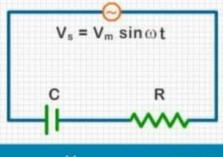
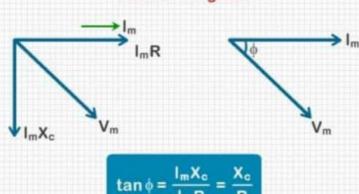


# ALTERNATING CURRE


It is the movement of electrical charge through a medium that changes direction periodically

# SUMMARY

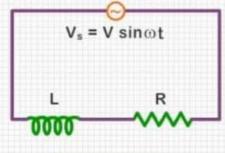
| AC SOURCE<br>CONNECTED WITH | PHASE            | PHASE DIFFERENCE                                    | IMPEDANCE<br>Z | PHASOR DIAGRAM                  |
|-----------------------------|------------------|-----------------------------------------------------|----------------|---------------------------------|
| Pure Resistor               | 0                | V <sub>R</sub> is in same phase with i <sub>R</sub> | R              | $\xrightarrow{V_{m}}$           |
| Pure Inductor               | $\frac{\pi}{2}$  | V <sub>L</sub> leads i <sub>L</sub> by 90°          | XL             | V <sub>m</sub> \                |
| Pure Capacitor              | $-\frac{\pi}{2}$ | V <sub>c</sub> lags i <sub>c</sub> by 90⁰           | Xc             | V <sub>m</sub> → I <sub>m</sub> |


# RC SERIES CIRCUIT WITH AN AC SOURCE

#### **Circuit Diagram**

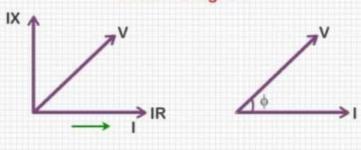


$$I_{m} = -\frac{V_{m}}{\sqrt{R^{2} + X_{c}^{2}}} \Rightarrow Z = \sqrt{R^{2} + X_{c}^{2}}$$


#### **Phasor Diagram**



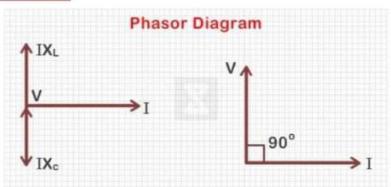
$$\tan \phi = \frac{I_{m}X_{c}}{I_{m}R} = \frac{X_{c}}{R}$$


# LR SERIES CIRCUIT WITH AN AC SOURCE

#### **Circuit Diagram**

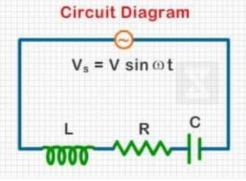


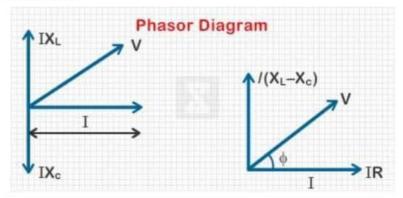
$$V = I\sqrt{R^2 + X_L^2}$$


#### **Phasor Diagram**



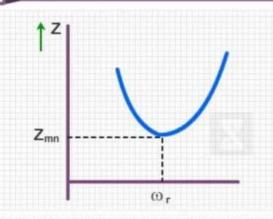
$$\tan \phi = \frac{IX_L}{IR} = \frac{X_L}{R}$$


# LC SERIES CIRCUIT WITH AN AC SOURCE


# **Circuit Diagram** Vs = V sin@t 0000



From the phasor diagram  $V = I |(X_L - X_c)| = IZ$ ,  $\varphi = 90^\circ$ 


### **RLC SERIES CIRCUIT WITH AN AC SOURCE**





From the phasor diagram  $V = \sqrt{(IR)^2 + (IX_L - IX_c)^2}$ ,  $Z = \sqrt{R^2 + (X_L - X_c)^2}$  $tan\phi = \frac{I(X_L - X_c)}{IR} = \frac{(X_L - X_c)}{R}$ 

# RESONANCE





Amplitude of current (and therefore Irms also) in an RLC series circuit is maximum for a given value of V<sub>m</sub> and R, if the impedance of the circuit is minimum, which will be when  $X_L-X_C = 0$ . This condition is called resonance.

So at resonance: 
$$X_L - X_C = 0 \implies \omega = \frac{1}{\sqrt{LC}}$$