Chapter 2 STRUCTURE OF ATOM

INTRODUCTION

1. Cathode rays originate from cathode. T/F 2. Charge to mass ratio was determined by the scientist -3. Oil drop experiment was devised by the scientist -4. Neutron was discovered by the scientist -5. Charge of electron is -6. Mass of electron is -7. Mass of proton is -8. Rutherford gold foil was _____ atoms thick. 9. Define isobars 10. All the isotopes of a given element show same chemical behaviour. T/F II. The radius of nucleus are usually expressed in terms of ____ unit. 12 Define wave number. 13. SI unit of wave number is -14. Wavelength of visible spectrum of light varies from ____ nm to ____ nm. 15. What is a black body ? 16. Planck constant value -17. Work function is equal to -18. Planck's law -19. Photoelectric effect equation -20. Balmar series is described by the formula -21. Rydberg constant value -22. The name of respective series for $n_1 = 1, 2, 3, 4, 5, 6$ is -23. Which series of transitions in the spectrum of H atom falls in visible region ? (NEET)

BOHR MODEL

24. According to Bohr, the angular momentum of an electron in a given stationary state can be expressed as -25. $r_n =$ 26. $E_n =$ 27. velocity: $V_n =$

28. K.E.n =

- 29. P.E.n =
- 30. frequency: vn =
- 31. (Wave number)n =
- 32. Time taken to complete one revolution is proportional to which powers of n & Z ?
- 33. Total number of spectral lines obtained in H atom (when electron jump from n2 to n1) equal to -
- 34. The Bohr model could not explain the ability of atoms to form molecules by chemical bonds. T/F
- 35. Splitting of spectral lines in the presence of magnetic field is called -
- 36. Splitting of spectral lines in the presence of electric field is called -
- 37. Bohr was able to explain the occurrence of Zeeman and Stark effect. T/F
- 38. Describe Heisenberg's Uncertainty Principle and write its equation.

QUANTUM MECHANICAL MODEL OF ATOM

39. When an electron is in any energy state, the wave function corresponding to that energy state contains all information about the electron. T/F

- 40. The energy of electrons in atoms is not quantized. T/F
- 41. The number which identifies the shell is -
- 42. Azimuthal quantum number is also called ______ or ______.
- 43. _____ identifies the three dimensional shape of the orbital.
- 44. For n = 3, tell the possible values of I.
- 45. For any subshell I, _____ values of m are possible.
- 46. _____ number refers to the orientation of spin of electrons.
- 47. Spin angular momentum of the electron is a vector quantity. T/F
- 48. _____ gives information about the spatial orientation of the orbital with respect to standard set of coordinate axis. (NEET)
- 49. For 1 = 2, m can be -
- 50. Subsidiary quantum number also determine the energy of the orbital to some extent. T/F
- 51. What is the total no. of orbitals associated with n = 3?
- 52. A 4s orbital have _____ number of nodes.
- 53. Boundary surface diagrams enclose the area where probability of finding electrons is ___ %.
- 54. Electron is located further away from the nucleus as the principal quantum number increases. T/F
- 55. There is no simple relation between the values of m (-1, 0 and +1) and the x, y and z directions. T/F
- 56. Maximum no. of electrons in a subshell I = (NEET)
- 57. Total no. of nodes =
- 58. Angular nodes =
- 59. Radial nodes =

DigaQ. I Identify which one is plot of Is and which one is of 2s.

- 60. What are angular nodes ?
- 61. Angular momentum of the electron in an orbital = (NEET)
- 62. Spin angular momentum of the electron =
- 63. Spin multiplicity =
- 64. No. of sub shells in nth shells =
- 65. No. of orbitals in nth shell =

DigaQ. 2 This is the boundary surface diagram of -

ENERGIES OF ORBITALS

66. What is the main reason for having different energies of the subshells in multi-electron species ?

67. In general, the repulsive interaction of the electrons in the outer shell with the electrons in the inner shell are more important. T/F

68. Despite the shielding of the outer electrons from the nucleus by the inner shell electrons, the attractive force experienced by the outer shell electrons increases with increase of nuclear charge. T/F

69. p-orbital electron spends more time close to the nucleus in comparison to s orbital. T/F

70. The Zeff experienced by the electron increases with increase of azimuthal quantum number (1). T/F

71. If two orbitals have same value of (n + 1), then how will we decide when one is lower in energy ?

72. Energies of the orbitals in the same subshell decrease with increase in the atomic number (Zeff). T/F

73. In the H atom, 4s have less energy than 3d. T/F

74. Energy of 2s orbital of hydrogen atom is greater than that of 2s orbital of lithium. T/F

FILLING OF ORBITALS

- 75. Aufbau principle is based on (3)
- 76. Write order of filling orbitals till 7s orbital.
- 77. What is Pauli Exclusion Principle ? (NEET)
- 78. The maximum number of electrons in the shell with principal quantum number n is equal to -

- ----

- 79. What is Hund's Rule ?
- 80. What are valence electrons ?
- 81. Write electronic configuration of Cr.
- 82. Write electronic configuration of Cu.
- 83. Fully filled orbitals and half filled orbitals have extra stability. T/F
- 84. Causes of stability of completely filled and half filled subshells are (2)

ANSWERS

INTRODUCTION	27. 2.18 × 10 ⁶ (Z/n)
I. T	$28.2.18 \times 10^{-18} (Z^2/n^2)$
2. J.J. Thomson	29. 4.36 x 10-18 (Z ² /n ²)
3. R.A. Milikan	30. $v = 3.29 \times 10^{15} \left(\frac{1}{n^2} - \frac{1}{n^2} \right) \text{Hz}$
4. Chadwick	
51.6 × 10 ⁻¹⁹ C	31. $\bar{\nu} = 1.09677 \times 10^7 Z^2 \left(\frac{1}{n_r^2} - \frac{1}{n_r^2} \right) m^{-1}$
6. 9.1 x 10-31 kg	$(n_{\tilde{i}} n_{\tilde{i}})$ 32. n^{3}/Z^{2}
7. 1.67 x 10-27 kg	$\frac{32}{33} (n_2 - n_1)(n_2 - n_1 + 1)/2$
8. 1000	34 T
9. atoms with same mass number but different	35. Zeeman effect
atomic number	36. Stark effect
10. T	37. F
II. fermi	38. It states that it is impossible to determine
12. 1/ λ	simultaneously, the exact position and exact
13. m ⁻¹	momentum (or velocity) of an electron.
14. 400-750	
15. The ideal body, which emits and absorbs radiation	$\Delta x \ \Delta p_x \ge \frac{h}{4\pi} \text{or} \Delta x \ \Delta v_x \ge \frac{h}{4\pi m}$
of all frequencies, is called a black body	QUANTUM MECHANICAL MODE
16. 6.626 x 10-34 Js	OF ATOM
17. hvo	39. T
18. E = hv	40. F
19. $hv = hv_0 + mv^2/2$	41. Principal quantum number
20. $\bar{\nu} = 109,677 \left(\frac{1}{2^2} - \frac{1}{n^2}\right) \mathrm{cm}^{-1}$	42. orbital angular momentum or subsidiary quantur
(2° n°) 21, 109,677 cm ⁻¹ or 2.18 x 10 ⁻¹⁸ J	number
22. Lyman, Balmer, Paschen, Bracket, Pfund,	43. Azimuthal quantum number 44. I = O, I, 2
Humphrey	45. 21 + 1
23. Balmar	46 Spin quantum number
23. Balmar • BOHR MODEL	46. Spin quantum number 47. T
	47. T
BOHR MODEL	

51. Total no. of orbitals = n ² . Hence 3 ² = 9	76. ls, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d,
52. 3	6p, 7s
53. 90%	[Trick - Remember this sequence - S SP SP SDP SDP
54. T	SFDP SFDP {which implies - Is(S) 2s2p(SP) 3s3p(SP)
55. T	4s3d4p(SDP)} Using this, you will not have to make
56. 41 + 2	that hard diagram of Order of filling every time]
57. n - I	77. No two electrons in an atom can have the same set
58. /	of four quantum numbers
59. n - I - I	78. 2n ²
60. Nodal planes passing through origin which have zero	79. pairing of electrons in the orbitals belonging to the
probability of electrons	same subshell (p, d or f) does not take place until each
61. $(h/2\pi)$ $\sqrt{[l(l+l)]}$	orbital belonging to that subshell has got one electron
62. $(h/2\pi) \sqrt{[s(s + 1)]}$	each i.e., it is singly occupied
63. 2s + 1	80. electrons that are added to the electronic shell with
64. n	the highest principal quantum number are called valence
65. n ²	electrons
ENERGIES OF ORBITALS	81. [Ar] 3d ⁵ 4s ¹
66. Mutual repulsion among the electrons	82. [Ar] 3d ¹⁰ 4s ¹
67. T	83. T
68. T	84. Causes of stability of completely filled and half filled
69. F	subshells are
70. F	(i) Symmetrical distribution of electrons
71. The one with lower value of n will have lower energy	(ii) exchange energy
72. T	• DigaQs
73. F	DigaQ. 1
74. T	A - Is
FILLING OF ORBITALS	B - 2s
75. Pauli's exclusion principle, the Hund's rule of	DigaQ. 2 - Boundary surface diagrams of 3d orbitals
maximum multiplicity and the relative energies of the	A - d(yz)
orbitals	$B - d(x^2 - y^2)$
	$C - d(z^2)$
