SOME PREVIOUS YEAR SOLVED EXAMPLES

 Find the solubility product of a saturated solution of Ag₂CrO₄ in water at 298 K if the emf of the cell Ag|Ag⁺ (satd.Ag₂ CrO₄ soln.) || Ag ⁺(0.1 M) | Ag is 0.164 V at 298K. [JEE 1998]
 Ans.(K_{sp} = 2.287 × 10⁻¹²)
 Sol. Ag|Ag⁺ sat. solⁿ || Ag⁺ (0.1 M) | Ag AgClO₄)

$$0.164 = 0 - \frac{.059}{1} \log \frac{[Ag^+]A}{0.1}$$

$$\therefore [Ag^+]_A = (1.66 \times 10^{-4}) \times (.83 \times 10^{-4})$$

$$= 2.287 \times 10^{-12}$$

- 2. Calculate the equilibrium constant for the reaction, $2Fe^{3+} + 3I^- \rightleftharpoons 2Fe^{2+} + I_3^-$. The standard reduction potentials in acidic conditions are 0.77 and 0.54 V respectively for $Fe^{3+} | Fe^{2+}$ and $I_3^- | I^-$ couples. [JEE 1998]
- 2. Ans. ($K_C = 6.26 \times 10^7$)

Sol.
$$2Fe^{+3} + 3I^{-} \longrightarrow 2Fe^{2+} + I_{3}^{-}$$

$$E^{\circ} = 0.77 + (-.54) = 0.23$$
, $Keq = 10^{\frac{2 \times 23}{.059}}$
 $Keq = 6.26 \times 10^{7}$

- 3.A gas X at 1 atm is bubbled through a solution containing a mixture of 1 M Y and 1 M Z at 25°C.If the reduction potential of Z > Y > X, then[JEE 1999]
 - (A) Y will oxidise X and not Z (B) Y will oxidise Z and X
 - (C) Y will oxidise both X and Z
- 3. Ans. (A)
- 4. The following electrochemical cell has been set up

$$Pt_{(I)} | Fe^{3+}, Fe^{2+}(a=1) || Ce^{4+}, Ce^{3+}(a=1) | Pt_{(II)}$$

$$E_{Fe^{3+}/Fe^{2+}}^{\circ} = 0.77 \text{ V} \text{ and } E_{Ce^{4+}/Ce^{3+}}^{\circ} = 1.61 \text{ V}$$

If an ammetter is connected between the two platinum electrodes. predict the direction of flow of current. Will the current increase or decrease with time? [JEE 2000]

(D) Y will reduce both X and Z.

4. Ans. (decrease with time)

- **Sol.** E°_{cell} is (+) ve so cell will work and current will flow from cathode to anode. Current will decrease with time
- Copper sulphate solution (250 mL) was electrolysed using a platinum anode and a copper cathode. A constant current of 2 mA was passed for 16 mintue. It was found that after electrolysis, the absorbance (concentration) of the solution was reduced to 50% of its original value. Calculate the concentration of copper sulphate in the solution to begin with. [JEE 2000]
- 5. Ans. $(7.95 \times 10^{-5} \text{M})$

Sol. $(n_{Cu^{+2}})_{reduced} = \frac{2 \times 10^{-3} \times 16 \times 60}{96500 \times 2} = \frac{.96}{96500}$ $(n_{Cu^{+2}})_{\text{originally present}} = \frac{1.92}{96500}$:. $M = \frac{1.92}{96500} \times \frac{1000}{250} = 7.958 \times 10^{-5}$ $E^{\circ}_{cell} = -.77 + 1.61 = 0.84$ For the electrochemical cell, $M | M^+ || X^- | X$, $E^\circ (M^+|M) = 0.44$ V and $E^\circ (X|X^-) = 0.33$ V. From 6. this data, one can deduce that [JEE 2000] (A) $M + X \longrightarrow M^+ + X^-$ is the spontaneous reaction (B) $M^+ + X^- \longrightarrow M + X$ is the spontaneous reaction (C) $E_{cell} = 0.77 V$ (D) $E_{cell} = -0.77 V$ 6. Ans.(B) $E^{\circ}_{cell} = E^{0}_{MM^{+}} + E^{\circ}_{M/M^{+}} + E^{\circ}_{X^{-}/X} = -.44 + -.33 = -0.77 V$ Sol. so (B) The standard potential of the following cell is 0.23 V at 15° C & 0.21 V at 35° C 7. $Pt | H_2(g) | HCl (aq) | AgCl(s) | Ag(s)$ Write the cell reaction. (i) Calculate ΔH^0 , ΔS^0 for the cell reaction by assuming that these quantities remain unchanged in the (ii) range 15°C to 35°C.

(iii) Calculate the solubility of AgCl in water at 25°C. Given standard reduction potential of the Ag⁺|Ag couple is 0.80 V at 25°C. [JEE 2001]

7. Ans. $\Delta H^0 = -49987 \text{ Jmol}^{-1}$, $\Delta S^0 = -96.5 \text{ J mol}^{-1} \text{ K}^{-1}$, s =1.47 ×10⁻⁵ M

Sol. (i) Anode :
$$\frac{1}{2}$$
 H₂ \longrightarrow H⁺ + e⁻
Cathode : $\frac{\text{AgCl} + e^{-} \longrightarrow \text{Ag} + \text{Cl}^{-}}{\frac{1}{2}$ H₂ + AgCl \longrightarrow H⁺ + Cl⁻ + Ag
(ii) $\frac{\partial E}{\partial T} = \frac{.21 - .23}{.308 - .288} = \frac{.02}{.10} = -2 \times 10^{-3}$
 $\Delta G^{\circ} = -nFE^{\circ}$ so $(\Delta G^{\circ})_{288K} = -22195$ (ΔG°)

$$\Delta G^{\circ} = -nFE^{\circ} \text{ so } (\Delta G^{\circ})_{288K} = -22195 (\Delta G^{\circ})_{308K} = -20265 \text{ J}$$

now using $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} \Rightarrow \Delta H^{\circ} = -49987 \text{ J}, \Delta S^{\circ} = -96.5 \text{ J}$

(iii)
$$E_{25^{\circ}C}^{\circ} = 0.22V E_{cell}^{\circ} = E_{CT/AgCl/Ag}^{\circ} = 0.22$$

so $-.8 + 0.22 = \frac{0.59}{1} \log Ksp$

$$\therefore \qquad \text{Ksp} = 1.47 \times 10^{-10} \Rightarrow \text{S} = 1.21 \times 10^{-5}$$

8. Saturated solution of KNO3 is used to make salt bridge because (A) velocity of K^+ is greater than that of NO_3^- (B) velocity of NO_3^- is greater than that of K^+ (C) velocities of both K^+ and NO_3^- are nearly the same (D) KNO₃ is highly soluble in water [JEE 2001] 8. Ans.(C) Sol. Fact 9. The correct order of equivalent conductance at infinite dilution of LiCl, NaCl and KCl is (B) KCl > NaCl > LiCl[JEE 2001] (A) LiCl > NaCl > KCl(C) NaCl > KCl > LiCl(D) LiCl > KCl > NaCl9. Ans.(B) Sol. Fact 10. The reaction, [JEE 2001] $3ClO^{-}(aq) \longrightarrow ClO^{-}_{3}(aq) + 2Cl^{-}(aq)$ is an example of (A) Oxidation reaction (B) Reduction reaction (C) Disproportionation reaction (D) Decomposition reaction 10. Ans.(C)

- Sol Fact
- 11. Standard electrode potential data are useful for understanding the suitability of an oxidant in a redox titration. Some half cell reactions and their standard potentials are given below: [JEE 2002]

$$MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \longrightarrow Mn^{2+}(aq) + 4H_{2}O(l); E^{\circ} = 1.51 V$$

$$Cr_{2}O_{7}^{2-}(aq) + 14 H^{+}(aq) + 6e^{-} \longrightarrow 2Cr^{3+}(aq) + 7H_{2}O(l); E^{\circ} = 1.38 V$$

$$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq); E^{\circ} = 0.77 V$$

$$Cl_{2}(g) + 2e^{-} \longrightarrow 2Cl^{-}(aq); E^{\circ} = 1.40 V$$

Identify the only incorrect statement regarding quantitative estimation of aqueous Fe(NO₃)₂

- (A) MnO_4^- can be used in aqueous HCl
- (B) $Cr_2O_7^{2-}$ can be used in aqueous HCl
- (C) MnO_4^- can be used in aqueous H_2SO_4

(D) $Cr_2O_7^{2-}$ can be used in aqueous H_2SO_4

- 11. Ans.(A)
- **Sol.** MnO_4^- will oxidise Cl⁻ into Cl₂ so MnO_4^- can not be used in aqueous HCl

12. Two students use same stock solution of $ZnSO_4$ and a solution of $CuSO_4$. The e.m.f of one cell is 0.03 V higher than the other. The conc. of $CuSO_4$ in the cell with higher e.m.f value is 0.5 M. Find

out the conc. of CuSO₄ in the other cell
$$\left(\frac{21300 \text{ K}}{\text{F}} = 0.06\right)$$
. [JEE 2003]

12. Ans.(0.05)

Sol. $E_1 = E^\circ - \log \frac{[Zn^{+2}]}{[Cn^{+2}]}$ $E_2 = E^\circ - \log \frac{[Zn^{+2}]}{[Cn^{+2}]}$ $E_2 - E_1 = -.03 \log \frac{[Cu^{+2}]_1}{[Cu^{+2}]_1} \Rightarrow 0.03 = -\frac{.059}{2} \log \frac{[Cu^{+2}]_2}{5}$:. $0.03 = -03 \log \frac{[Cu^{+2}]}{5} \Rightarrow [Cu^{+2}] = .05 \text{ M}$ 13. In the electrolytic cell, flow of electrons is from: (A) Cathode to anode in solution (B) Cathode to anode through external supply (C) Cathode to anode through internal supply (D) Anode to cathode through internal supply. [JEE 2003] 13. Ans.(C) 14. Find the equilibrium constant at 298 K for the reaction, $Cu^{2+}(aq) + In^{2+}(aq) \rightleftharpoons Cu^{+}(aq) + In^{3+}(aq)$ Given that $\mathbf{E}_{Cu^{2+}|Cu^{+}}^{\circ} = 0.15 \mathrm{V}$, $\mathbf{E}_{In^{3+}|In^{+}}^{\circ} = -0.42 \mathrm{V}$, $\mathbf{E}_{In^{2+}|In^{+}}^{\circ} = -0.40 \mathrm{V}$ [JEE 2004] Ans. $(K_{C} = 10^{10})$ 14. **Sol.** $E_{Cell}^{\circ} = E_{In^{+2}/In^{+3}}^{\circ} + E_{Cu^{+2}/Cu^{+3}}^{\circ}$ = 44 + 15 = 59 $E_{\ln^{+2}/\ln^{+3}}^{\circ} = \frac{1\alpha - 0.4 + 2\alpha 0.42}{1} = .44$ $K_{eq} = \frac{10^{1 \times .59}}{.059} = 10^{10}$ $Zn | Zn^{2+} (a = 0.1M) || Fe^{2+} (a = 0.01M)|Fe$. The emf of the above cell is 0.2905 V. Equilibrium 15. constant for the cell reaction is (A) $10^{0.32|0.0591}$ (B) $10^{0.32|0.0295}$ (C) $10^{0.26|0.0295}$ (D) $e^{0.32|0.295}$ [JEE 2004] 15. Ans.(B) **Sol.** $0.2905 = E^{\circ} - \frac{.059}{2} \log \frac{.1}{0.01} \Rightarrow E^{\circ} = .32$

:.
$$K_{sp} = 10^{\frac{2 \times .32}{0.0591}} = 10^{\frac{.32}{0.0295}} \Rightarrow B$$

(a) Calculate ΔG_f^0 of the following reaction 16. $Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$ Given : ΔG_f^0 (AgCl) = -109 kJ|mole, ΔG_f^0 (Cl⁻) = -129 kJ|mole, ΔG_f^0 (Ag⁺) = 77 kJ|mole Represent the above reaction in form of a cell Calculate E^0 of the cell. Find $\log_{10} K_{SP}$ of AgCl (b) 6.539×10^{-2} g of metallic Zn (amu = 65.39) was added to 100 ml of saturated solution of AgCl. Calculate $\log_{10} \frac{[Zn^{2+}]}{[Ag^+]^2}$, given that $Zn^{2+} + 2e^{-} \longrightarrow Zn$ $E^0 = -0.76V$ $Ag^+ + e^- \longrightarrow Ag \qquad E^0 = 0.80 V$: Also find how many moles of Ag will be formed? [JEE 2005] Ans. (a) $E^0 = 0.59$ V, $\log_{10}K_{SP} = -10$ (b) 52.8, 10^{-6} moles 16. $\Delta G^{\circ} = (-109) - [-129 + 77] = -57$ Sol. (a) $E^{\circ} = \frac{-57 \times 1000}{1 \times 96500} = 0.59$ $\Delta G^{\circ} = -2.303 \text{RT} \log \text{K}_{\text{sp}} \Rightarrow \log \text{K}_{\text{sp}} = \frac{-57 \times 1000}{-2.303 \times 8.314 \times 298}$ $\log K_{sp} = 9.989 \cong 10$ $Zn + 2Ag^{+} \longrightarrow Zn^{+2} + 2Ag E_{cell}^{\circ} = 1.56$ (b) $\therefore \log_{10} \frac{[Zn^{+2}]}{[\Delta q^{+}]^{2}} = \frac{1.56 \times 2}{0.59} = 52.8$ $[Ag^+] = \sqrt{Ksp} = \sqrt{10^{-10}} = 10^{-5}$ $\therefore n_{A\sigma^+} = 10^{-5} \times .1 = 10^{-6}$ 17. The half cell reactions for rusting of iron are: [JEE 2005] $2H^{+} + \frac{1}{2}O_{2} + 2e^{-} \longrightarrow H_{2}O; E^{0} = +1.23 \text{ V}, Fe^{2+} + 2e^{-} \longrightarrow Fe; E^{0} = -0.44 \text{ V}$ ΔG^0 (in kJ) for the reaction is: (A) - 76(B) - 322(C) - 122(D) - 17617. Ans.(B) **Sol.** $\Delta G^{\circ} = -nFE^{\circ}$ $=\frac{-2\times96500\times1.67}{1000}-322$

18. We have taken a saturated solution of AgBr.K_{sp} of AgBr is 12×10^{-14} . If 10^{-7} mole of AgNO₃ are added to 1 litre of this solution find conductivity (specific conductance) of this solution in terms of 10^{-7} S m⁻¹ [JEE 2006]

Given :
$$\lambda_{(Ag^+)}^0 = 6 \times 10^{-3} \text{ S m}^2 \text{ mol}^{-1}$$
; $\lambda_{(Br^-)}^0 = 8 \times 10^{-3} \text{ S m}^2 \text{ mol}^{-1}$; $\lambda_{(NO_3^-)}^0 = 7 \times 10^{-3} \text{ S m}^2 \text{ mol}^{-1}$

18. Ans.(55 S m^{-1})

Sol. AgBr
$$\implies$$
 Ag⁺ + Br⁻
s s
AgNO₃ \implies Ag⁺ + NO₃⁻
10⁻⁷ 10⁻⁷
 $\therefore (K_{sp})_{AgBr} = [Ag^+] [Br^-] \Rightarrow 12 \times 10^{-14} = (s + 10^{-7}) \cdot (s)$
s² + 10⁻⁷ s - 12 × 10⁻¹⁴ = 0 \Rightarrow s = 3 × 10⁻⁷
 $\therefore [Ag^+] = 4 \times 10^{-7} [Br] = 3 \times 10^{-7} [NO_3] = 10^{-7}$

now $\Lambda_{\rm M}^{\infty} = \frac{1000}{\rm M}$

for

19.

19.

$$Ag^{+} \Rightarrow 6 \times 10^{-3} \times 10^{4} = \frac{1000 \text{ k}}{4 \times 10^{-7}} \Rightarrow k_{Ag^{+}} = 24$$

Br^ $\Rightarrow 8 \times 10^{-3} \times 10^{4} = \frac{1000 \text{ k}}{3 \times 10^{-7}} \Rightarrow k_{Br^{-}} = 24$
NO₃⁻ $\Rightarrow 7 \times 10^{-3} \times 10^{4} = \frac{1000 \text{ k}}{10^{-7}} \Rightarrow R_{NO_{3}^{-}} = 7$

Ans. 55

Question No. 19 to 21 (3 questions)

Tollen's reagent is used for the detection of aldehyde when a solution of $AgNO_3$ is added to glucose with NH_4OH then gluconic acid is formed

$$Ag^{+} + e^{-} \longrightarrow Ag \quad ; E_{red}^{0} = 0.8 V$$

$$C_{6}H_{12}O_{6} + H_{2}O \longrightarrow C_{6}H_{12}O_{7} \text{ (Gluconic acid)} + 2H^{+} + 2e^{-} ; E_{red}^{0} = -0.05 V$$

$$Ag(NH_{3})_{2}^{+} + e^{-} \longrightarrow Ag(s) + 2NH_{3} ; E^{0} = -0.337 V$$

$$[Use 2.303 \times \frac{RT}{F} = 0.0592 \text{ and } \frac{F}{RT} = 38.92 \text{ at } 298 \text{ K}] \qquad [JEE 2006]$$

$$2Ag^{+} + C_{6}H_{12}O_{6} + H_{2}O \longrightarrow 2Ag(s) + C_{6}H_{12}O_{7} + 2H^{+}$$
Find ln K of this reaction
$$(A) 66.13 \qquad (B) 58.38 \qquad (C) 28.30 \qquad (D) 46.29$$

$$Ans.(A)$$

Sol.
$$\log K = \frac{2.303 \times n \times E^{\circ}}{.059} = \frac{2.303 \times 2 \times .85}{.059} = 66.13$$

20. When ammonia is added to the solution, pH is raised to 11. Which half-cell reaction is affected by pH and by how much?

(A) E_{oxd} will increase by a factor of 0.65 from E_{oxd}^0

(B) E_{oxd} will decrease by a factor of 0.65 from E_{oxd}^0

(C) E_{red} will increase by a factor of 0.65 from E_{red}^0

(D) E_{red} will decrease by a factor of 0.65 from E_{red}^0

20. Ans.(A)

Sol. Since H^+ is involved in oxidation half reaction so E_{oxd} will be affected and it will increase

$$E_{oxd} = E_{oxd}^{\circ} - \frac{.059}{2} \log \frac{[C_6 H_{12} O_7] [H^+]^2}{[C_2 H_{12} O_6]}$$

21. Ammonia is always is added in this reaction. Which of the following must be incorrect? (A) NH_3 combines with Ag^+ to form a complex.

(B) $Ag(NH_3)_2^+$ is a weaker oxidising reagent than Ag^+ .

(C) In absence of NH₃ silver salt of gluconic acid is formed.

(D) NH₃ has affected the standard reduction potential of glucose|gluconic acid electrode.

21. Ans.(D)

Sol. E°_{Red} in a constant quantity

Paragraph for Question Nos. 22 to 24 (3 questions)

Chemical reactions involve interaction of atoms and molecules. A large number of atoms/molecules (approximately 6.023×10^{23}) are present in a few grams of any chemical compound varying with their atomic/molecular masses. To handle such large numbers conveniently, the mole concept was introduced. This concept has implications in diverse areas such as analytical chemistry, biochemistry, electrochemistry and radiochemistry. The following example illustrates a typical case, involving chemical/electrochemical reaction, which requires a clear understanding of the mole concept.

A 4.0 molar aqueous solution of NaCl is prepared and 500 mL of this solution is electrolysed. This leads to the evolution of chlorine gas at one of the electrodes (atomic mass : Na = 23, Hg = 200; 1 Faraday = 96500 coulombs) [JEE 2007]

- 22. The total number of moles of chlorine gas evolved is (A) 0.5 (B) 1.0 (C) 2.0 (D) 3.0
- 22. Ans.(B)
- Sol. At anode $2Cl^{-} \longrightarrow Cl_2 + 2e^{-2}$

23. If the cathode is a Hg electrode, the maximum weight (g) of amalgam formed from this solution is (A) 200 (B) 225 (C) 400 (D) 446

Sol. At cathode $2Na^+ + 2e^- \longrightarrow 2Na(s)$

 $2 \qquad 2$ 2Na + 2Hg \longrightarrow 2Na-Hg 2 2 \therefore W = 446

24.	The total charge (coulombs) required for complete electrolysis is				
	(A) 24125	(B) 48250	(C) 96500	(D) 193000	

24. Ans.(D)

Sol. 2 moles on $e^- = 2F = 193000$ C

Paragraph for Question Nos. 25 & 26 (2 questions)

Redox reactions play a pivoted role in chemistry and biology. The values of standard redox potential (E°) of two half-cell reactions decide which way the reaction is expected to proceed. A simple example is a Daniel cell in which zinc goes into solution and copper gets deposited. Given below are a set of half-cell reactions (acidic medium) along with their E° (V with respect to normal hydrogen electrode) values. Using this data obtain the correct explanations to Questions 14-16.

$I_2 + 2e^- \rightarrow 2I^-$	$E^{\circ} = 0.54$	
$Cl_2 + 2e^- \rightarrow 2Cl^-$	$E^{\circ} = 1.36$	
$Mn^{3+} + e^- \rightarrow Mn^{2+}$	$E^{\circ} = 1.50$	
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	$E^{\circ} = 0.77$	
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	E° = 1.23	[JEE 2007]

25. Among the following, identify the correct statement.

(A) Chloride ion is oxidised by O_2	(B) Fe^{2+} is oxidised by iodine
(C) Iodine ion is oxidised by chlorine	(D) Mn^{2+} is oxidised by chlorine

25. Ans.(C)

Sol. as E° will be positive

- 26. While Fe^{3+} is stable, Mn^{3+} is not stable in acid solution because
 - (A) O_2 oxidises Mn^{2+} to Mn^{3+}
 - (B) O_2 oxidises both Mn^{2+} to Mn^{3+} and Fe^{2+} to Fe^{3+}
 - (C) Fe^{3+} oxidises H_2O to O_2
 - (D) Mn^{3+} oxidises H_2O to O_2

26. Ans.(D)

- **Sol.** as E° will be positive
- 27. For the reaction of NO_3^- ion in an aqueous solution, E° is +0.96 V. Values of E° for some metal ions are given below

$V^{2+}(aq) + 2e^- \rightarrow V$	$E^{\circ} = -1.19 V$
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe$	$E^{\circ} = -0.04 V$
$Au^{3+}(aq) + 3e^- \rightarrow Au$	$E^{\circ} = +1.40 V$
$\mathrm{Hg}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Hg}$	$E^{\circ} = +0.86 V$

[JEE 2009]

The pair(s) of metal that is(are) oxidised by NO_3^{-1} in aqueous solution is(are)

(A) V and Hg (B) Hg and Fe

(C) Fe and Au (D) Fe and V

27. Ans.(A,B,D)

Sol. (A,B,D) as E° will be positive

Paragraph for Questions 28 to 29

The concentration of potassium ions inside a biological cell is at least twenty times higher than the outside. The resulting potential difference across the cell is important in several processes such as transmission of nerve impulses and maintaining the ion balance. A simple model for such a concentration cell involving a metal M is : [JEE 2010]

 $M(s)|M^{+}(aq; 0.05 \text{ molar})||M^{+}(aq; 1 \text{ molar})|M(s)|$

For the above electrolytic cell the magnitude of the cell potential $|E_{cell}| = 70$ mV.

28. For the above cell :-

(A) $E_{cell} < 0$; $\Delta G > 0$	(B) $E_{cell} > 0$; $\Delta G < 0$
(C) $E_{cell} < 0$; $\Delta G^0 > 0$	(D) $E_{cell} > 0$; $\Delta G^0 < 0$

28. Ans.(B)

Sol.
$$E_1 = -\frac{.059}{1} \log \frac{.05}{1} = (+)ve \Rightarrow so$$

29. If the 0.05 molar solution of M⁺ is replaced by a 0.0025 molar M⁺ solution, then the magnitude of the cell potential would be :-

(A) 35 mV	(B) 70 mV	(C) 140 mV	(D) 700 mV

- **29. Ans.**(C)
- Sol. $E_2 = -\frac{.059}{1}\log \frac{0.0025}{1}$ = 2 × El = 140 mV \Rightarrow so

EXERCISE # (S-I)

	Note : If not given in question Use	$\therefore \frac{2.303 \text{RT}}{\text{F}} = 0.059$	
	Elect	rode potential cell emf.	
1.	Write cell reaction of the following cells	:	
	(a) Ag $ $ Ag $^+$ (aq) $ $ Cu $^{2+}$ (aq) $ $ Cu	(b) Pt Fe^{2+} , Fe^{3+} MnO_4^- , Mn^{2+} , H^+	Pt
	(c) $Pt, Cl_2 Cl^-(aq) Ag^+(aq) Ag$	(d) Pt, $H_2 H^+(aq) Cd^{2+}(aq) Cd$	EC0001
2.	Write cell representation for following ce (a) $Cd^{2+}(aq) + Zn(s) \longrightarrow Zn^{2+}(aq)$ (b) $2Ag^{+}(aq) + H_{2}(g) \longrightarrow 2H^{+}(aq)$	+ Cd (s)	ECOUT
	(c) $\operatorname{Cr}_2 \operatorname{O}_7^{2-}(a) + 14 \operatorname{H}^+(aq) + 6 \operatorname{F} e^{2+}(aq) +$	$(aq) \longrightarrow 6Fe^{3+} (aq) + 2Cr^{3+} (aq) + 7H_2O (l)$	
3.	For the cell reaction $2Ce^{4+} + Co -$	$\longrightarrow 2Ce^{3+} + Co^{2+}$	EC0002
	E_{cell}^{o} is 1.89 V. If $E_{Co^{2+} Co}^{o}$ is -0.28 V.	, what is the value of $E^{o}_{Ce^{4+} Ce^{3+}}$?	EC0003
4.	Determine the standard reduction poten $Cl_2 + 2e^- \longrightarrow 2Cl^-$	tial for the half reaction :	20000
	Given $Pt^{2+} + 2Cl^- \longrightarrow Pt + Cl_2$,	$E_{Cell}^{o} = -0.15 V$	
		$E^{\circ} = 1.20 V$	EC0193
5.	If $E^{o}_{Fe^{2^+} Fe} = -0.44 \text{ V}, \ E^{o}_{Fe^{3^+} Fe^{2^+}} = 0.7$	77 V. Calculate $E^{o}_{Fe^{3+} Fe}$.	
ſ			EC0005
6.	If for the half cell reactions $Cu^{2+} + e^{-} \longrightarrow Cu^{+}$	$E^{\circ} = 0.15 V$	
	$Cu^{2+} + 2e^{-} \longrightarrow Cu^{2+}$	$E^{\circ} = 0.15 V$ $E^{\circ} = 0.34 V$	
	$Cu^2 + 2e \longrightarrow Cu$ Calculate E° of the half cell reaction	E = 0.34 V	
	$Cu^+ + e^- \longrightarrow Cu$		
	also predict whether Cu^+ undergoes dis	proportionation or not	
	also product michael ou undergoes dis		EC0004
7.	The reduction potential of hydrogen	electrode when placed in a buffer solution is	found to be

- EC0014
- 8. Calculate the EMF of a Daniel cell when the concentration of $ZnSO_4$ and $CuSO_4$ are 0.001 M and 0.1M respectively. The standard potential of the cell is 1.1V.

-0.413V. The pH of the buffer is -

- 9. Calculate E^0 and E for the cell $Sn | Sn^{2+} (1M) || Pb^{2+} (10^{-3}M) | Pb, E^0 (Sn^{2+}| Sn) = -0.14V$, $E^0 (Pb^{2+}|Pb) = -0.13V$. Is cell representation is correct?
- 10. At what concentration of Cu^{2+} in a solution of $CuSO_4$ will the electrode potential be zero at 25°C? Given : $E^0 (Cu | Cu^{2+}) = -0.34 \text{ V}. [10^{-11.525} = 2.99 \times 10^{-12}]$

EC0006

EC0007

Is 1.0 M H⁺ solution under H₂SO₄ at 1.0 atm capable of oxidising silver metal in the presence of 11.

1.0 MAg⁺ ion?
$$E^{o}_{Ag^{+}|Ag} = 0.80 \text{ V}, \ E^{o}_{H^{+}|H_{2}(Pt)} = 0.0 \text{ V}$$
 EC0194

12. For a cell Mg(s) $|Mg^{2+}(aq)| Ag^{+}(aq)| Ag$, (i) Calculate the equilibrium constant at 25°C. (ii) Also find the maximum work per mole Mg that can be obtained by operating the cell in standard condition.

 $E^{0}_{(Mg^{2+}|Mg)} = -2.3565V, E^{0}_{(Ag^{+}|Ag)} = 0.8 V.$

- The pK_{sp} of Agl is 16.07 . If the E^o value for $Ag^+ |\, Ag$ is 0.7991 V . Find the E^o for the half cell reaction 13. $\operatorname{AgI}(s) + e^{-} \longrightarrow \operatorname{Ag} + I^{-}.$ $[16.07 \times 0.059 = 0.94813]$
- A zinc electrode is placed in a 0.1M solution at 25°C. Assuming that the salt (ZnX) is 20% dissociated at 14. this dilutions calculate the electrode reduction potential. $E^0(Zn^{2+}|Zn) = -0.76V$.

EQUILIBRIUM CONSTANT

- Calculate the equilibrium constant for the reaction : $[10^{12.88} = 7.585 \times 10^{12}]$ 15. $Fe^{2+}+Ce^{4+} \rightleftharpoons Fe^{3+} + Ce^{3+}$, [Given : $E^{0}Ce^{4+}Ce^{3+} = 1.44$ V: $E^{0}Fe^{3+}Fe^{2+} = 0.68$ V]
- Calculate the equilibrium constant for the reaction $\text{Fe} + \text{CuSO}_4 \rightleftharpoons \text{FeSO}_4 + \text{Cu} \text{ at } 25^{\circ}\text{C}$. 16. E^0 (Cu|Cu²⁺) = -0.337V. [$10^{26.3389} = 2.18 \times 10^{26}$] Given E^0 (Fe|Fe²⁺) = 0.44V.
- At 25^oC the value of K for the equilibrium $Fe^{3+} + Ag \rightleftharpoons Fe^{2+} + Ag^+$ is 0.531mol|litre. The standard 17. electrode potential for $Ag^+ + e^- \rightleftharpoons Ag$ is 0.799V. What is the standard potential for $Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}? [log (0.531 = -0.27)]$
- 18. The standard reduction potential at 25°C for the reduction of water $2H_2O + 2e^- \rightleftharpoons H_2 + 2OH^-$ is -0.8277 volt. Calculate the equilibrium constant for the reaction $2H_2O \rightleftharpoons H_3O^+ + OH^-$ at 25°C. [193 × 0.8277 = 159.75] [2.303 RT = 5705.35 J/mol] EC0198
- For the reaction, $4Al(s) + 3O_2(g) + 6H_2O + 4 OH^- \rightleftharpoons 4 [Al(OH)_4^-]$; $E_{cell}^\circ = 2.73 V.$ 19. If $\Delta G_{f}^{\circ}(OH^{-}) = -157 \text{ kJ mol}^{-1}$ and $\Delta G_{f}^{\circ}(H_{2}O) = -237.2 \text{ kJ mol}^{-1}$, determine $\Delta G_{f}^{\circ}[Al(OH)_{4}^{-}]$. $[96.5 \times 2.73 = 263.445]$
- For the cell reaction : $Hg_2Cl_2(s) + 2Ag(s) \rightarrow 2Hg(l) + 2AgCl(s)$ 20. temperature coefficient of cell emf is found to be 0.02 VK⁻¹. Find $\Delta_r S^o$ for cell reaction in kJ mole⁻¹ EC0012
- 21. From the standard potential in acidic medium as shown in the following latimer diagram, the value of $(E_1^{o} + E_2^{o})$, in volts, is -

$$MnO_{4}^{-} \xrightarrow{0.55V} MnO_{4}^{2-} \xrightarrow{2.26V} MnO_{2}^{-} \xrightarrow{0.96V} Mn^{3+} \xrightarrow{1.66V} Mn^{2+}$$

$$E_{2}^{0}$$

EC0013

EC0195

EC0196

EC0197

EC0011

EC0199

EC0009

CONCENTRATION CELLS :

22. Calculate the EMF of the following cell $Zn\,|\,Zn^{2+}\,(0.01M)\,\|\,Zn^{2+}\,(0.1\,M)\,|\,Zn^{2+}\,(0.1\,M)$

at 298 K.

- 23. Calculate pH using the following cell : Pt $(H_2) | H^+(x M) | | H^+(1 M) | Pt (H_2) \text{ if } E_{cell} = 0.2364 \text{ V}.$ 1 atm 1 atm
- 24. Equinormal Solutions of two weak acids, HA ($pK_a = 3$) and HB ($pK_a = 5$) are each placed in contact with equal pressure of hydrogen electrode at 25°C. When a cell is constructed by interconnecting them through a salt bridge, find the emf of the cell.
- 25. In two vessels each containing 500ml water, 0.5m mol of aniline ($K_b = 10^{-9}$) and 50mmol of HCl are added separately. Two hydrogen electrodes are constructed using these solutions. Calculate the emf of cell made by connecting them appropriately.

ELECTROLYTIC CELL:

- 26. Calculate the no. of electrons lost or gained during electrolysis of
 (a) 3.55 gm of Cl⁻ ions
 (b) 1 gm Cu²⁺ ions
 (c) 2.7 gm of Al³⁺ ions
- 27. How many faradays of electricity are involved in each of the case (a) 0.25 mole Al³⁺ is converted to Al.

(b) 27.6 gm of SO₃ is convered to SO_3^{2-}

(c) The Cu^{2+} in 1100 ml of 0.5 M Cu^{2+} is converted to Cu.

- 28. 0.5 mole of electron is passed through two electrolytic cells in series. One contains silver ions, and the other zinc ions. Assume that only cathode reaction in each cell is the reduction of the ion to the metal. How many gm of each metals will be deposited. [At weight Zn = 65, Ag = 108]
- 29. If 0.224 litre of H_2 gas is formed at the cathode, how much O_2 gas is formed at the anode under identical conditions?
- 30. Chromium metal can be plated out from an acidic solution containing CrO₃ according to following equation : CrO₃(aq) + 6H⁺ (aq) + 6e⁻ → Cr(s) + 3H₂O Calculate :
 (i) How many grams of chromium will be plated out by 24125 coulombs and
 (ii) How long will it take to plate out 1.5 gm of chromium by using 12.5 ampere current

EC0202

31. The electrosynthesis of MnO_2 is carried out from a solution of $MnSO_4$ in H_2SO_4 (aq). If a current of 25.5 ampere is used with a current efficiency of 85%, how long would it take to produce 1 kg of MnO_2 ?

$$\left[\frac{965}{87 \times 25.5 \times 85} = 5.12 \times 10^{-3}\right]$$

EC0020

32. Calculate the quantity of electricity that would be required to reduce 12.3 g of nitrobenzene to aniline, if the current efficiency for the process is 50 percent. If the potential drop across the cell is 3.0 volts, how much energy will be consumed? EC0203

EC0016

EC0015

EC0200

EC0201

EC0017

EC0018

EC0019

- 33. A constant current of 30 A is passed through an aqueous solution of NaCl for a time of 1.0 hr. How many grams of NaOH are produced? What is volume of Cl₂ gas at 1atm,273K produced (in litre)? EC0021
- 34. Assume 96500 C as one unit of electricity. If cost of electricity of producing x gm Al is Rs x, what is the cost of electricity of producing x gm Mg?

EC0023

EC0024

EC0025

EC0026

35. A metal is known to form fluoride MF_2 . When 10A of electricity is passed through a molten salt for 330 sec., 1.95g of metal is deposited. Find the atomic weight of M. What will be the quantity of electricity required to deposit the same mass of Cu from $CuSO_4$?

 $\left[\frac{1.95 \times 965}{63.5} = 29.63, \frac{1.95 \times 965}{33} = 57\right]$

- 36. After electrolysis of NaCl solution with inert electrodes for a certain period of time. 600 mL of the solution was left. Which was found to be 1N in NaOH. During the same time, 31.75 g of Cu was deposited in the copper voltameter in series with the NaCl electrolytic cell. Calculate the percentage yield of NaOH obtained. EC0204
- 37. A solution of $Ni(NO_3)_2$ is electrolysed between platinum electrodes using a current of 5 ampere for 20 mintue. What mass of Ni is deposited at the cathode?
- 38. A current of 3.7A is passed for 6hrs. between Ni electrodes in 0.5L of 2M solution of $Ni(NO_3)_2$. What will be the molarity of $Ni(NO_3)_2$ solution at the end of electrolysis?

CONDUCTANCE

39. A solution containing 2.08 g of anhydrous barium chloride is 500 CC of water has a specific conductivity 0.005 ohm⁻¹cm⁻¹. What are molar and equivalent conductivities of this solution.

EC0031

Application of Kohlrausch's law

- 40. The resistance of a conductivity cell filled with 0.01N solution of NaCl is 200 ohm at 18°C.Calculate the equivalent conductivity of the solution. The cell constant of the conductivity cell is 0.88 cm⁻¹. EC0027
- 41. The molar conductivity of 0.1 M CH₃COOH solution is 4 S cm² mole⁻¹. What is the specific conductivity and resistivity of the solution?

EC0028

- 42. The conductivity of pure water in a conductivity cell with electrodes of cross sectional area 4 cm² and 2 cm apart is 8 × 10⁻⁷ S cm⁻¹.
 (i) What is resistance of conductivity cell ?
 - (ii) What current would flow through the cell under an applied potential difference of 1 volt?
- 43. For 0.01N KCl, the resistivity 800 ohm cm. Calculate the conductivity and equivalent conductance. EC0030
- 44. Specific conductance of a saturated solution of AgBr is 8.075×10^{-7} ohm⁻¹cm⁻¹ at 25°C. Specific conductance of pure water at 25°C is 0.75×10^{-7} ohm⁻¹ cm⁻². Λ_m^{∞} for KBr, AgNO₃ and KNO₃ are 140, 130, 110 (S cm² mol⁻¹) respectively. Calculate the solubility of AgBr in gm|litre.

- 45. Equivalent conductance of 0.01 N Na₂SO₄ solution is 120 ohm⁻¹ cm² eq⁻¹. The equivalent conductance at infinite dilution is 150 ohm⁻¹ cm² eq⁻¹. What is the degree of dissociation in 0.01 N Na₂SO₄ solution?
- 46. Saturated solution of AgCl at 25°C has specific conductance of 1.12×10^{-6} ohm⁻¹ cm⁻¹. The λ_{∞} (Ag⁺) and λ_{∞} (Cl⁻) are 54 and 58 ohm⁻¹ cm² | equi. respectively. Calculate the solubility product of AgCl at 25°C.

EC0206

47. The value of Λ_m^{∞} for HCl, NaCl and CH₃CO₂Na are 425, 125 and 100 S cm² mol⁻¹ respectively. Calculate the value of Λ_m^{∞} for acetic acid. If the equivalent conductivity of the given acetic acid is 48 at 25° C, calculate its degree of dissociation.

EC0034

48. For the strong electroytes NaOH, NaCl and BaCl₂ the molar ionic conductivities at infinite dilution are 240 ×10⁻⁴, 125 ×10⁻⁴ and 280.0 ×10⁻⁴ mho cm² mol⁻¹ respectively. Calculate the molar conductivity of Ba(OH)₂ at infinite dilution.

EC0035

49. Hydrofluoric acid is weak acid. At 25°C, the molar conductivity of 0.002M HF is 200 ohm⁻¹ cm² mole⁻¹. If its $\Lambda_{\rm m}^{\infty} = 400$ ohm⁻¹ cm² mole⁻¹, calculate its degree of dissociation and equilibrium constant at the given concentration.

EC0033

50. At 25°C, $\lambda_{\infty}(H^+) = 3.5 \times 10^{-2} \text{ S m}^2 \text{ mol}^{-1}$ and $\lambda_{\infty}(OH^-) = 2 \times 10^{-2} \text{ S m}^2 \text{ mol}^{-1}$. Given: Sp. conductnace = $5.5 \times 10^{-6} \text{ S m}^{-1}$ for H₂O, determine pH and K_w. EC0207

EXERCISE # S-II

1.	Calculate the emf of the cell : $[log (1.8) = 0.26]$ Pt, H ₂ (1.0 atm) CH ₃ COOH (0.1M) NH ₃ (aq, 0.01M) H ₂ (1.0 atm), Pt K _a (CH ₃ COOH) = 1.8×10^{-5} , K _b (NH ₃) = 1.8×10^{-5} .
2.	EC0036 The Edison storage cell is represented as $Fe(s) FeO(s) KOH(aq) Ni_2O_3(s) NiO(s)$ The half-cell reaction are
	$Ni_2O_3(s) + H_2O(i) + 2e^- \rightleftharpoons 2NiO(s) + 2OH^-, \qquad E^0 = + 0.40V$
	$FeO(s) + H_2O(l) + 2e^- \rightleftharpoons Fe(s) + 2OH^-, \qquad E^0 = -0.87V$ (i) What is the cell reaction?
	 (ii) What is the cell e.m.f.? How does it depend on the concentration of KOH? (iii) What is the maximum amount of electrical energy that can be obtained from one mole of Ni₂O₃?
3.	EC0037 The standard reduction potential for Cu^{2+} Cu is 0.34 V. Calculate the reduction potential at $pH = 14$ for the above couple K = of Cu(OH) is 1×10^{-19}
	pH = 14 for the above couple. K_{sp} of Cu(OH) ₂ is 1×10^{-19} . EC0038
4.	The emf of the cell Ag AgI KI(0.05M) AgNO ₃ (0.05M) Ag is 0.788V. Calculate the solubility product of AgI. $[10^{-0.788/0.059} = 4.4 \times 10^{-14}]$
5.	EC0039 Consider the cell Ag AgBr(s) Br ⁻ Cl ⁻ AgCl(s) Ag at 25°C. The solubility product constants of AgBr & AgCl are respectively 5×10^{-13} & 1×10^{-10} . For what ratio of the concentrations of Br ⁻ & Cl ⁻ ions would the emf of the cell be zero?
	EC0208
6.	For the galvanic cell : Ag AgCl(s) KCl (0.2M) K Br (0.001 M) AgBr(s) Ag, Calculate the EMF generated and assign correct polarity to each electrode for a spontaneous process after taking into account the cell reaction at 25° C. [log (4.24) = 0.627]
	$[K_{sp(AgCl)} = 2.8 \times 10^{-10}; K_{sp(AgBr)} = 3.3 \times 10^{-13}]$
	EC0209
7.	Given, $E^{\circ} = -0.268 \text{ V}$ for the $Cl^{-} PbCl_{2} Pb$ couple and -0.126 V for the $Pb^{2+} Pb$ couple, determine
	K_{sp} for PbCl ₂ at 25°C ? $[10^{-0.284/0.059} = 1.54 \times 10^{-5}]$ EC0210
8.	Calculate the equilibrium constant for the reaction:
	$3Sn(s) + 2Cr_2O_7^{2-} + 28H^+ \longrightarrow 3Sn^{4+} + 4Cr^{3+} + 14H_2O$
	E^{0} for Sn Sn ²⁺ =0.136 V E^{0} for Sn ²⁺ Sn ⁴⁺ = -0.154 V E^{0} for Cr ₂ O ₇ ²⁻ Cr ³⁺ = 1.33 V
	$\left[\frac{15.852}{0.059} \approx 268\right]$
0	EC0211
9.	One of the methods of preparation of per disulphuric acid, $H_2S_2O_8$, involve electrolytic oxidation of H_2SO_4 at anode $(2H_2SO_4 \rightarrow H_2S_2O_8 + 2H^+ + 2e^-)$ with oxygen and hydrogen as by-products. In such an electrolysis, 2.27 L of H_2 and 0.5675 L of O_2 were generated at STP. What is the weight of H_2SO_4 formed?
	the weight of $H_2S_2O_8$ formed? EC0040
10.	A current of 3 amp was passed for 2 hour through a solution of $CuSO_4$, 3 g of Cu^{2+} ions were deposited as Cu at cathode. Calculate percentage current efficiency of the process.
	EC0041

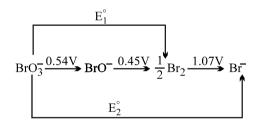
11. Dal lake has water 8.2×10^{12} litre approximately. A power reactor produces electricity at the rate of 1.5×10^6 coulomb per second at an appropriate voltage. How many years would it take to electrolyse the lake?

EC0212

12. The equivalent conductance of 0.10 N solution of MgCl₂ is 97.1 mho cm² equi⁻¹ at 25°C. a cell with electrode that are 1.5 cm² in surface area and 0.5 cm apart is filled with 0.1 N MgCl₂ solution. How much current will flow when potential difference between the electrodes is 5 volt.

EC0042

- 13. When a solution of specific conductance $1.342 \text{ ohm}^{-1} \text{ metre}^{-1}$ was placed in a conductivity cell with parallel electrodes, the resistance was found to be 170.5 ohm. Area of electrodes is $1.86 \times 10^{-4} \text{ m}^2$. Calculate separation of electrodes. **EC0043**
- 14. The specific conductance at 25°C of a saturated solution of $SrSO_4$ is 1.482×10^{-4} ohm⁻¹ cm⁻¹while that of water used is 1.5×10^{-6} mho cm⁻¹. Determine at 25°C the solubility in gm per litre of $SrSO_4$ in water. Molar ionic conductance of Sr^{2+} and SO_4^{2-} ions at infinite dilution are 59.46 and 79.8 ohm⁻¹ cm² mole⁻¹ respectively. [**Sr = 87.6**, **S = 32**, **O = 16**]


$$\left[\frac{1.467}{139.26} = 1.05 \times 10^{-2}\right]$$

15. The EMF of the cell M | Mⁿ⁺ (0.02M) || H⁺ (1M) | H₂(g) (1 atm), Pt at 25°C is 0.81V. Calculate the valency of the metal if the standard oxidation of the metal is 0.76V.

EC0214

EC0213

16. From the standard potentials shown in the following diagram, calculate the potentials E_1° and E_2° .

EC0215

17. Calculate the EMF of the cell,

 $Zn - Hg(c_1M) | Zn^{2+} (aq) | Hg - Zn(c_2M)$

at 25°C, if the concentrations of the zinc amalgam are: $c_1 = 10g$ per 100g of mercury and $c_2 = 1g$ per100 g of mercury. EC0044

- 18. How long a current of 2A has to be passed through a solution of $AgNO_3$ to coat a metal surface of $80cm^2$ with 5µm thick layer? Density of silver = $10.8g|cm^3$. EC0045
- 19. 10g solution of CuSO₄ is electrolyzed using 0.01F of electricity. Calculate: (a) The weight of resulting solution
 - (b) Equivalents of acid or alkali in the solution.

EC0216

20. Cadmium amalgam is prepared by electrolysis of a solution of $CdCl_2$ using a mercury cathode. How long should a current of 5A be passed in order to prepare 12% Cd – Hg amalgam on a cathode of 2 gm Hg (Cd = 112.4)

EXERCISE # O-I

NO	TE : If not given in que	estion use : $\frac{2.303 \text{RT}}{\text{F}} = 0$).059		
			ANIC CELL		
1.	A standard hydrogen	electrode has zero elect	rode potential because		
	(A) hydrogen is easie	er to oxidise	(B) electrode poter	itial is assumed to be z	ero
	(C) hydrogen atom h	as only one electron	(D) hydrogen is the	lighest element.	
2.	The thermodynamic	efficiency of cell is give	en by-		EC0047
	-		-		
	(A) $\frac{\Delta H}{\Delta G}$	(B) $\frac{\text{nFE}_{\text{cell}}}{\Lambda G}$	$(C) - \frac{nFE_{cell}}{\Delta H}$	(D) Zero	
	40	20			EC0050
3.	From the following H	E° values of half cells,			
	(i) $A + e \rightarrow A^-$; E°	= -0.24 V	(ii) $B^- + e \rightarrow B^{2-}$;	$E^{\circ} = +1.25 V$	
	(iii) $C^- + 2e \rightarrow C^{3-}$	$; E^{\circ} = -1.25 V$	(iv) $D + 2e \rightarrow D^{2-}$; $E^{\circ} = +0.68 \text{ V}$	
	What combination o	f two half cells would re	sult in a cell with the la	rgest potential?	
	(A) (ii) and (iii)	(B) (ii) and (iv)	(C)(i) and (iii)	(D) (i) and (iv)	
4.	Which of the followi	ng will increase the volta	use of the cell with follo	wing cell reaction	EC0055
т.	$\operatorname{Sn}_{(s)} + 2\operatorname{Ag}_{(aq)}^{+} \rightarrow S$	-	ige of the cell with folio	wing een reaction	
		concentration of Ag^+ io	ns (B) Increase in the	concentration of Sn ⁺	² ions
		concentration of Ag^+ ion			10115
					EC0059
5.		ode potentials for the rea			
		\rightarrow Ag(s) Sn ²⁺ (a) +			
		olt and -0.14 volt, respe	ectively. The standard	emf of the cell.	
	$Sn_{(s)} Sn_{(aq)}^{2+}(1M) Ag $	(····)			
	(A) 0.66 volt	(B) 0.80 volt	(C) 1.08 volt	(D) 0.94 volt	EC0049
6.	$E^{\circ}(Ni^{2+} Ni) = -0.25$	volt, $E^{\circ}(Au^{3+} Au) =$	= 1.50 volt. The standa	rd emf of the voltaic	
	$Ni_{(s)} Ni^{2+}_{(aq)} (1.0 \text{ M})$	$\ Au_{(aq)}^{3+} (1.0 \text{ M}) Au_{(s)} $	s:		
	(A) 1.25 volt	(B) - 1.75 volt		(D) 4.0 volt	
7					EC0053
7.	-	$2F^{-}$ is 2.8 V, E° for	-	$(\mathbf{D}) = 1 4 \mathbf{V}$	
	(A) 2.8 V	(B) 1.4 V	(C) = 2.8 V	(D) –1.4 V	EC0054
8.	If ΔG° of the cell re	action,			
	$AgCl(s) + \frac{1}{2}H_2(g) \rightarrow$	$Ag(s) + H^+ + CI^-$ is -21.	52 KJ then		
		ΔG° of 2AgCl(s) +	$H_2(g) \rightarrow 2Ag(s) + 2H^+$	+2Cl ⁻ is :	
	(A) –21.52 KJ	(B) –10.76 KJ	(C) -43.04 KJ	(D) 43.04 KJ	
					EC0056

9.	The standard emf for t	he cell reaction,			•
	$Zn_{(s)} + Cu^{2+}_{(aq)} \longrightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$ is 1.10 volt at 25 °C. The emf for the cell reaction when 0.1 M Cu ²⁺ and 0.1 M Zn ²⁺ solution are used at 25°C is :				
	(A) 1.10 volt	(B) 0.110 volt	(C) –1.10 volt	(D) -0.110 volt	EC0064
10.	Given : $E_{Cr^{3+}/Cr}^{0} = -0.7$	72 V, $E_{Fe^{2+}/Fe}^0 = -0.42V$	The potential for the c	cell	
	$Cr_{(s)} Cr^{3+}_{(aq)} (0.1 \text{ M}) $	$ Fe^{2+}_{(aq)}(0.01 \text{ M}) Fe_{(s)} $	İS		
	(A) 0.26 V	(B) 0.339 V	(C) – 0.339 V	(D) – 0.26 V	EC0218
11.	-	f the cell containing tw) $\parallel H^+_{(aq)}(0.001 \text{ M}) \mid H_2(g)$		as represented below	
	(A) – 0.295 V	(B) – 0.0591 V	(C) 0.295 V	(D) 0.0591 V	EC0065
12.	Consider the cell, Cu C of the cell :-	$ u^{+2} Ag^{+} Ag$. If the conce	entration of Cu ⁺² and Ag	ions becomes ten tin	
	(A) Becomes 10 times(C) Increase by 0.029		(B) Remains same(D) Decrease by 0.0	205 V	
	. , .				EC0066
13.		galvanic cell involving ant of the reaction woul		is found to be 0.295	V at 25°C.
	(A) 1.0×10^{20}		(C) 4.0×10^{12}	(D) 1.0×10^2	EC0068
14.	The cell $Zn Zn^{+2}_{(aq)}(1)$			ved to be completely	
	at 298 K. The relative	concentration of Zn ⁺² t	o Cu ⁺² , $\left\{ \frac{\left[Zn^{+2} \right]}{\left[Cu^{+2} \right]} \right\}$ is :		
	(A) 9.65×10^4	(B)Antilog (24.08)	(C) 37.3	(D) 10 ^{37.3}	EC0219
15.	Given the data at 25°C	· · · · · · · · · · · · · · · · · · ·			
	$Ag_{(s)} + I_{(aq)} \rightarrow AgI_{(aq)}$	$e_{s)} + e^{-}, E^{\circ} = 0.152V$			
	$Ag_{(s)} \rightarrow Ag^{+}_{(aq)} + e^{-}$	$E^{\circ} = -0.800 V$			
		g K _{sp} for AgI? (Where	K_{sp} = solubility product		
	$\left(2.303\frac{\text{RT}}{\text{F}}=0.059\text{V}\right)$				
	(A) -8.12	(B) +8.612	(C) -37.83	(D)-16.13	EC0220
16.	In a cell that utilises the	e reaction,			
	$Zn(s) + 2H^{+}(A) \longrightarrow Z$	$Zn^{2+}(aq) + H_2(g)$ addition	on of H_2SO_4 to cathode	compartment, will :	
	(A) increase the E_{cell} and	d shift equilibrium to the	e right		
	••••	hift equilibrium to the r			
	(C) lower the E_{cell} and s	shift equilibrium to the l	ett		

(D) increase the E_{cell} and shift equilibrium to the left

17.	By how much times will p 100 times at 298 K :	ootential of half	cell Cu ⁺² Cu change	e if, the solution is	diluted to
	(A) Increases by 59 mV		(B) Decrease by 59	0 mV	
	(C) Increases by 29.5 mV		(D) Decreases by 2	9.5 mV	
		EI ECTDOI			EC0071
10	When an alastria surrant is not		YTIC CELL	luta nasitiva iang ma	va tavvarda
18.	When an electric current is part the cathode and negative ions to (A) The positive ions will start (B) The negative ions will con (C) Both positive and negative (D) None of these movements	wards the anode. W t moving towards atinue to move tow e ions will move to	/hat will happen if the c the anode and negativ /ards the anode and th	athode is pulled out of the ions will stop movin	he solution? g. op moving
10		1		1. 111	EC0072
19.	The products formed when an are :	aqueous solution	of NaBr is electrolyze	ed in a cell having iner	electrodes
	(A) Na and Br_2		(B) Na and O_2		
	(C) H_2 , Br_2 and NaOH		(D) H_2 and O_2		
• •				1	EC0074
20.	A solution of sodium sulphate and anode are respectively.	in water is electrol	ysed using inert electi	odes. The products at 1	the cathode
	(A) H_2, O_2 (B) (0 ₂ , H ₂	(C) O ₂ , Na	(D) none	EC0076
21.	When an aqueous solution of li (A) Cl_2 is liberated at the anod (B) Li is deposited at the cathor (C) as the current flows, pH of (D) as the current flows, pH of	le. ode the solution remai	ns constant	hite electrodes	EC0077
22.	The Gibbs energy for the dece	omposition of Al ₂	O ₃ at 500 °C is as fol	lows	20001
	$\frac{2}{3}\operatorname{Al}_2\operatorname{O}_3 \longrightarrow \frac{4}{3}\operatorname{Al} + \operatorname{O}_2, \Delta_r\operatorname{G}$	$d = +966 \text{ KJ mol}^{-1}$			
	The potential difference need (A) 5.0 V (B)	ed for electrolytic 4.5 V	reduction of Al ₂ O ₃ a (C) 3.0 V	t 500 °C is at least :- (D) 2.5 V	EC0222
23.	Electrolysis of a CuSO ₄ prod	uces :			
	(A) An increase in pH		(B) A decrease in p	рН	
	(C) Either decrease or increa	se	(D) None		
24.	The amount of an ion dischar (A) resistance (B) time	ged during electro	olysis is not directly p	proportional to :	EC0075
	(C) current strength				
	(D) electrochemical equivalen	nt of the element			EC0078

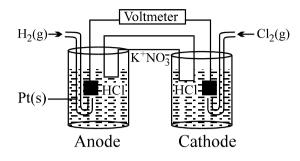
25.	Number of electrons involved in the electrodeposition of 63.5 g of Cu from a solution of $CuSO_4$ is : ($N_4 = 6 \times 10^{23}$)				s :
	(A) 6×10^{23}	(B) 3×10^{23}	(C) 12×10^{23}	(D) 6×10^{22} EC007	79
26.	When one coulomb of electrode is equal to :	electricity is passed thr	ough an electrolytic solu	ition the mass deposited on the	
	(A) equivalent weight		(B) molecular weight		
	(C) electrochemical equ	iivalent	(D) one gram	EC008	20
27.	Electro chemical equiv	valent of a substance is	0.0006; its equivalent w		50
	(A) 57.9		(B) 28.95	-	
	(C) 115.8		(D) cannot be calcula		51
28.	The same amount of ele	ectricity was passed thro	ough two separate electro	EC008 blytic cells containing solutio	
-0.		• •	•	. If 0.3 g of nickel was deposite	
		52	5 5	Ni = 59, at. wt. of $Cr = 52$)	
	(A) 0.1 g (B) 0.	.17 g (C) 0	.3 g (D) 0.		
29.	W g of copper deposit	ed in a copper voltame	ter when an electric cu	EC008 rent of 2 ampere is passed f	
_>.	• • • •			ne voltameter, copper doposite	
	(A) W	(B) W 2	(C) W 4	(D) 2W EC008	27
30.	When the same electric	current is passed through	the solution of different e	electrolytes in series the amour	
	of elements deposited			-	
	(A) atomic number	(B) atomic masses	(C) specific gravities	(D) equivalent masses EC008	83
31.		ity that can deposit 108	g. of silver from silver	nitrate solution is:	
	(A) 1 ampere(C) 1 Faraday		(B) 1 coulomb		
	(C) I Faladay		(D) 2 ampere	EC008	84
32.	The ratio of weights of h H_2SO_4 and fused MgS		deposited by the same an	nount of electricity from aqueo	us
	(A) 1 : 8	(B) 1 : 12	(C) 1 : 16	(D) None of these	• <i>=</i>
33.	A current of 9.65 amp. is :	flowing for 10 minute d	leposits 3.0 g of a metal.	EC008 The equivalent wt. of the met	
	(A) 10	(B) 30	(C) 50	(D) 96.5 EC00	36
34.	-	•	•••••	ium nitrate solution. The numb	er
	(A) 3	(B) 4	lectricity from silver nitra (C) 2	(D) 1	
	(A) 3	(B) 4	(C) 2	(D) 1 EC009	92
35.	-	-	equivalent of a substar	nce is :	
	(A) one ampere per se		(B) 4 faraday	1 6 1 4	
	(C) one ampere for on	e nour	(D) charge on one m	ole of electrons EC008	88

36.	. 3.17 g., of a substance was deposited by the flow of 0.1 mole of electrons. The equivalent weight of the substance is :				
	(A) 3.17	(B) 0.317	(C) 317	(D) 31.7	EC0089
37.	-	b. passing for 16 min. 4 The tin in the salt is : (-	n tin salt deposits 5.	
	(A) +4	(B) +3	(C) +2	(D) +1	EC0090
38.	The time required for	a current of 3 amp. to c	lecompose electrolytic	ally 18 g of H_2O is:	
	(A) 18 hour	(B) 36 hour	(C) 9 hour	(D) 18 seconds	EC0091
39.	of the ion is :	ne element when it abso		_	equivalents
	(A) 0.10	(B) 0.01	(C) 0.001	(D) 0.0001	EC0093
40.		of electric charge are re		on of 1 mole of H_2O	to O_2 ?
	(A) $9.65 \times 10^4 \text{ C}$		(B) $4.825 \times 10^5 \text{ C}$		
	(C) 1.93×10^5 C		(D) 1.93×10^4 C		EC0095
41.	The time required to c	coat ameter surface of 8	80 cm^2 with 5×10^{-3} cm	m thick layer of silv	
	-	bassage of 9.65A currer		-	er (density
	(A) 10 sec.	(B) 40 sec.	(C) 30 sec.	(D) 20 sec.	EC0099
42.	One gm metal M ⁺² was metal?	discharged by the passa	age of 1.2×10^{22} electro	ns. What is the atomi	
	(A) 25	(B) 50	(C) 100	(D) 75	E C0100
43.	One male of electron no	assas through agab of the	solution of AgNO Cu	SO and AICL when	EC0100
43.		asses through each of the node. The molar ratio of	5	. 5	Ag, Cu anu
	(A) 1 : 1 : 1	(B) 6 : 3 : 2	(C) 6 : 3 : 1	(D) 1 : 3 : 6	
					EC0101
44.		f an aqueous solution volume of hydrogen at	-		t STP was
	(A) 1.2 L	(B) 2.4 L	(C) 2.6 L	(D) 4.8 L	EC0102
45.	The charge required for	the oxidation of one mole	Mn_3O_4 into MnO_4^{2-} in	presence of alkaline n	nedium is
	(A) 5 × 96500 C	(B) 96500 C	(C) 10 × 96500 C	(D) 2 × 96500 C	EC0103
		CONDL	<i>VCTANCE</i>		
46.	Equivalent conductand conductance of BaCl ₂ a	ces of Ba ⁺² and Cl ⁻ ions	are 127 & 76 ohm ⁻¹ cr	m ² eq ⁻¹ respectively.	Equivalent
	(A) 379	(B) 139.5	(C) 203	(D) 330	

(A) 379 (B) 139.5 (C) 203 (D) 330 **EC0114**

70	JEE-Chemistry	
	/	

47.	If x is specific resistant	ice of the electrolyte sol	lution and y is the molarit	ty of the solution, then	$h_{\rm m}$ is given by
	$(A) \frac{1000 x}{y}$		(C) $\frac{1000}{xy}$	(D) $\frac{xy}{1000}$	EC0115
48.	The conductivity of a	a saturated solution of	BaSO ₄ is 3.06×10^{-6} oh	m ⁻¹ cm ⁻¹ and its molar	
	is 1.53 ohm ⁻¹ cm ² m	ol ⁻¹ . The K _{sp} of BaSO	₄ will be :		
	(A) 2×10^{-4}		(C) 4×10^{-3}	(D) 4×10^{-6}	EC0113
49.	The limiting molar co	nductivities Λ^0 for NaC	Cl, KBr and KCl are 126,	152 and 150Scm ² mol ⁻¹	
	The Λ^0_m for NaBr is :				
	(A) 278 S cm ² mol ⁻¹		(B) 176 S cm ² m	ol ⁻¹	
	(C) 128 S cm ² mol ⁻¹		(D) $302 \text{ S cm}^2 \text{ m}$		
					EC0223
50.	Electrolyte	$\Lambda^{\infty} (\mathbf{S} \ \mathbf{cm}^2 \ \mathbf{mol}^{-1})$			
	KCl	149.9			
	KNO ₃	145.0			
	HCl NaOAC	426.2 91.0			
	NaCl	126.5			
			nductances of the electro	lytes listed above at in	finite dilution
	in H ₂ O at 25°C	······································		-)	
	(A) 390.7	(B) 217.5	(C) 517.2	(D) 552.7	
51.	The highest electrical	conducitivity of the fo	llowing aqueous solution	nisof	EC0224
51.	(A) 0.1 M fluoroacet	-	(B) 0.1 M difluoro		
	(C) 0.1 M acetic acid		(D) 0.1 M chloroa		
	(C) 0.1 Wildeetic action	u	(D) 0.1 WI CHIOIO		EC0225
52.	The molar conduct	ivities, Λ^0_{NaOAc} and Λ^0_{NaOAc}	Λ^{0}_{HCl} at infinite dilution	n in water at 25°C a	are 91.0 and
	426.2 S cm ² mol resp	pectively. To calculate	Λ^0_{HOAc} the additional va	lue required is :	
	(A) KCl	(B) NaOH	(C) NaCl	(D) H ₂ O	ECOM
52	Desistance of a condu	notivity call filled with	a solution of an alastrol	ute of concentration 0	EC0226
53.		5	a solution of an electrol	5	
	2		⁻¹ . Resistance of the sam		
			vity of 0.02M solution of (D) 1240 × 10-4 s	2	Ю.
	(A) 124×10^{-4} Sm ²	- 11101-1	(B) 1240×10^{-4} S		


(A) $124 \times 10^{-4} \text{ Sm}^2 \text{ mol}^{-1}$ (B) $1240 \times 10^{-4} \text{ Sm}^2 \text{ mol}^{-1}$ (C) $1.24 \times 10^4 \text{ Sm}^2 \text{ mol}^{-1}$ (D) $12.4 \times 10^{-4} \text{ Sm}^2 \text{ mol}^{-1}$

EXERCISE	#	0	-II
----------	---	---	-----

Single	e correct :					
1.	The emf of the cell	h, $\operatorname{Cl}_{2(g)} + 2\operatorname{Br}_{(aq)} \longrightarrow$ l when $[\operatorname{Cl}^{-}] = [\operatorname{Br}^{-}] = 0$. for the above reaction	01M and	Cl ₂ gas at 1	atm pressure while	$\operatorname{Br}_2(g)$ at
	(A) 0.54 volt	(B) 0.35 volt	(C) 0.24	4 volt	(D)-0.29 volt	EC0116
2.	How much will the reputer $pH = 0$ is neutralised	eduction potential of a l d to $pH = 7$?	nydrogen e	electrode chan	ge when its solution	
	(A) increase by 0.059			rease by 0.059		
	(C) increase by 0.413	5 V	(D) deci	rease by 0.413) V	EC0117
3.	M, the change in redu	gas is increased from 1 action potential of hydro	ogen half c	ell at 25°C wi	ll be	onstant at 1
	(A) 0.059 V	(B) 0.59 V	(C) 0.02	295 V	(D) 0.118 V	EC0228
4.	A silver wire dipped	l in 0.1 M HCl solution	n saturated	l with AgCl d	evelops oxidation p	otential of
	–0.209 V. If $E^{\circ}_{Ag/Ag^{+}}$	= -0.799 V, the K _{sp} of	AgCl in pu	ure water will	be	
	(A) 3×10^{-11}	(B) 10 ⁻¹¹	(C) 4 ×	10-11	(D) 3×10^{-11}	EC0229
5.	under identical condi deposited, the weigh respectively are	eight = 7), B (atomic we tions using the same qua hts of B and C deposit (B) 1, 3 and 2	antity of ele ted were 2	ectricity. It was 2.7 and 7.2 g.	found that when 2.1 The valencies of A	gofAwas
6.	2.5 g of Cu is deposit (A) decrease of more	g of Cu by electrolysis o ted at cathode, then at a than 2.5 g of mass take deposited	node es place	(B) 450 ml of	uSO_4 using copper el O_2 at STP is liberated c of 2.5 g of mass tak	ectrodes, if d
7.	$1.50 \times 10^{-4} \text{ S m}^2 \text{ equ}$	saturated solution of A ivalent ⁻¹ . The K_{sp} of A	g_3PO_4 is		nd its equivalent con	
	(A) 4.32×10^{-18}	(B) $1.8 \times 10^{-9^{-1}}$	(C) 8.64	4×10^{-13}	(D) None of these	EC0119
8.)15 M $CH_3COOH \& 0$. Ire if conductivity of CH				
		(B) $84 \text{ S cm}^2 \text{ mol}^{-1}$				EC0120
9.	For the fuel cell react	tion $2H_2(g) + O_2(g)$ —	$\rightarrow 2H_2O(1)$; $\Delta_{f} H_{298}^{o}(H_{2}$	O, l) = -285.5 kJ mos	ol
	What is ΔS_{298}^{o} for the	e given fuel cell reaction	?			
	_, ,	$aq) + 4e^{-} \longrightarrow 2H_2O(l)$		1.23 V		
	-	(B) - 0.635 kJ K			(D) - 0.322 kJ K	EC0231

13.

10. Consider the following Galvanic cell.

By what value the cell voltage change when concentration of ions in anodic and cathodic compartments both increased by factor of 10 at 298 K

(A) + 0.0590 (B) - 0.0590 (C) - 0.1180 (D) 0

11. The standard reduction potentials at 25°C for the following half reactions are :

$$Zn^{2+} (aq) + 2e^{-} \implies Zn(s), E^{\circ}_{RP} = -0.762V$$

$$Cr^{3+} (aq) + 3e^{-} \implies Cr(s), E^{\circ}_{RP} = -0.740V$$

$$2H^{+}_{(aq)} + 2e^{-} \implies H_{2}(g), E^{\circ}_{RP} = 0.00 V$$

$$Fe^{3+}_{(aq)} + 2e^{-} \implies Fe^{2+}_{(aq)}, E^{\circ}_{RP} = 0.77V$$
Which is the strongest reducing agent ?
(A) Zn (B) Cr (C) H_{2}(g) (D) Fe^{2+} (aq) EC0122

12. Using the standard electrode potential values given below, decide which of the statements, I, II, III and IV are correct. Choose the right answer from (A), (B), (C) and (D).

 $\operatorname{Fe}_{(aq)}^{2+} + 2e^{-} \longrightarrow \operatorname{Fe}_{(s)};$ $E^{\circ} = -0.44 V$ $\operatorname{Cu}_{(aq)}^{2+} + 2e^{-} \cong \operatorname{Cu}_{(s)}^{(s)};$ $E^{\circ} = +0.34 V$ $Ag^{+}_{(aq)} + e^{-}$ $\longrightarrow Ag_{(s)};$ $E^{\circ} = +0.80 V$ I. Copper can displace iron from $FeSO_4$ solution. II. Iron can displace copper from $CuSO_4$ solution. III. Silver can displace copper from $CuSO_4$ solution. IV. Iron can displace silver from AgNO₃ solution. (A) I and II (B) II and III (C) II and IV (D) I and IV EC0232 The following facts are available :- $2X^- + Y_2 \rightarrow 2Y^- + X_2$ $2W - Y_2 \rightarrow NO$ reaction $2Z^- + X_2 \rightarrow 2X^- + Z_2$ Which of the following statements is correct :-(A) $E^{\circ}_{W^{-}/W_{2}} > E^{\circ}_{Y^{-}/Y_{2}} > E^{\circ}_{X^{-}/X_{2}} > E^{\circ}_{Z^{-}/Z_{2}}$ (B) $E^{\circ}_{W^{-}/W_{2}} < E^{\circ}_{Y^{-}/Y_{2}} < E^{\circ}_{X^{-}/X_{2}} < E^{\circ}_{Z^{-}/Z_{2}}$ (C) $E^{\circ}_{W^{-}/W_{2}} < E^{\circ}_{Y^{-}/Y_{2}} > E^{\circ}_{X^{-}/X_{2}} > E^{\circ}_{Z^{-}/Z_{2}}$

 $(D) \ E^{\circ}_{\ W^{-}/W_{2}} \ > \ E^{\circ}_{\ Y^{-}/Y_{2}} \ < \ E^{\circ}_{\ X^{-}/X_{2}} \ < \ E^{\circ}_{\ Z^{-}/Z_{2}}$

EC0233

14.		icity required to deposition $Al = 27$, $Mg = 24$)	t 1 g of Mg is Rs. 5.00.]	How much would it cost	to deposit
	(A) Rs. 10	(B) Rs. 27	(C) Rs. 40	(D) Rs. 60	EC0234
15.	-	The volume of hydrogen	-	Al ³⁺ solution by a certation in solution by the sar	in quantity
	(A) 45.4L	(B) 11.35L	(C) 22.7L	(D) 5.675 L	EC0123
16.	thickness of 10 ⁻²	² cm using ASO ₄ solution	n would be (Atomic mas		10 cm to a
	(A) 5000 C	(B) 10000 C	(C) 40000 C	(D) 20000 C	EC0124
17.	cell are 2.2 cm a solution is		f 4.4 cm ² then the molar	nd to be 50 Ω . If the electric conductivity (in S m ² me	
	(A) 0.2	(B) 0.02	(C) 0.002	(D) None of these	EC0125
18.	-	uctance of 0.1 M HA(w cm ² equivalent ⁻¹ Hence p		Scm ² equivalent ⁻¹ and tha	
	(A) 1.3	(B) 1.7	(C) 2.3	(D) 3.7	EC0126
19.		nol ⁻¹ . The specific condu Sm ⁻¹	d is 1.6×10^{-3} and the mo uctance of the 0.01 M ac (B) 1.52×10^{-2} S (D) None		
Mul	tiple correct :				EC0127
20.	(A) H_2SO_4 is pro-	oduced	which of the following $(B) H_2O$ is consumed as $(B) H_2O$ is (B)	ned	
	(C) $PbSO_4$ is for	med at both electrodes	(D) Density of ele	ctrolytic solution decrease	EC0128
21.	(A) Dilute H_2SO (B) Dilute H_2SO (C) Fused NaOF	owing arrangement will $_{4}$ solution with Cu electr $_{4}$ solution with inert elect I with inert electrodes. solution with inert electrode	trodes.	during electrolysis ?	
22.	If 270.0 g of wate efficiency then	er is electrolysed during a	an experiment performed	by miss Abhilasha with 7	EC0235 5% current
	2	(g) will be evolved at ar	node at 1 atm & 273 K		
		gases will be produced a			
	-	(g) will be evolved at an ty will be consumed	node at 1 atm & 273 K		
					FC0129

23. Pick out the correct statements among the following from inspection of standard reduction potentials (Assume standard state conditions).

$Cl_{2}(a) + 2e$	\rightleftharpoons	2Cl ⁻ (a)	$E_{Cl_2/Cl^-}^{o} = +1.36$ volt
$\operatorname{Br}_{2}(a) + 2e$	$\stackrel{\leftarrow}{\rightarrow}$	2Br ⁻ (a)	$E^{o}_{Br_2/Br^-} = +1.09 \text{ volt}$
$I_2(s) + 2e$	⇒	2I ⁻ (a)	$E^{o}_{I_2/I^-} = +0.54$ volt
$S_2O_8^{2-}(a) + 2e$	$\stackrel{\rightarrow}{\leftarrow}$	$2SO_4^{2-}(a)$	$E^{o}_{S_2O_8^{2^-}/SO_4^{2^-}} = +2.00 \text{ volt}$

(A) Cl_2 can oxidise SO_4^{2-} from solution

(B) Cl₂ can oxidise Br⁻ and I⁻ from aqueous solution

- (C) $S_2O_8^{2-}$ can oxidise Cl⁻, Br⁻ and I⁻ from aqueous solution
- (D) $S_2O_8^{2-}$ is added slowly, Br⁻ can be reduce in presence of Cl⁻
- 24. The EMF of the following cell is 0.22 volt.
 - $Ag(s) | AgCl(s) | KCl(1M) | H^{+}(1M) | H_{2}(g) (1atm); Pt(s).$

Which of the following will decrease the EMF of cell.

- (A) increasing pressure of $H_2(g)$ from 1 atm to 2 atm
- $(B) increasing \, Cl^- \, concentration \, in \, Anodic \, compartment$
- (C) increasing H^+ concentration in cathodic compartment
- (D) decreasing KCl concentration in Anodic compartment.

Assertion & Reasoning type questions :

- 25. Statement -1: The voltage of mercury cell remains constant for long period of time.
 - Statement -2: It is because net cell reaction does not involve active species.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.
- 26. Statement -1 : The SRP of three metallic ions A^+, B^{2+}, C^{3+} are -0.3, -0.5, 0.8 volt respectively, so oxidising power of ions is $C^{3+} > A^+ > B^{2+}$.

Statement -2: Higher the SRP, higher the oxidising power.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

EC0131

EC0237

EC0236

EC0130

- 27. Statement -1 : We can add the electrode potential in order to get electrode potential of net reaction.Statement -2 : Electrode potential is an intensive property.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.

Table	type	:
-------	------	---

1 a.o.	(Column-I		1 TABLE (3G Column-II	<u>}</u>)		Column-III
		$Zn(s) ZnSO_4(0.1M) Zn(NO_3) (0.01M)Zn(s)$	(A)	Has metal -in salt - anion e		I)	$E_{cell} < 0$
		$Pt, Cl_2(0.1bar) KCl(1M) NaCl(1M) Cl_2(1bar), Pt$	(B)	Electrolytic c cell	oncentration (II)	$E^0_{cell} = 0$
	(Ag(s) AgCl(s) KCl $0.1M) Ag^{+}(0.1M) Ag(s)$ $Ksp[AgCl] = 10^{-10}$.	(C)	Electrode con cell	centration (III)	$E_{cell} > 0$
	(1	$0.05M) HNO_{3}(0.1M) $ H ₂ (1bar), Pt	(D)	Has gas-ion e	electrode (IV)	$E_{cell} = 0$
	(1) U	se : $\frac{2.303 \text{RT}}{\text{F}} = 0.06$					
		ssume constant P,T cond	litior	n of operation.			
28.	Whie	h option is incorrectly m	atch	ed ?			
		- B - II			Q - C - II		
	(C) R	- A - I		(D)	S - D - IV		EC0133
29.	For g	alvanic cell in option 'Q'	on i	increasing conc	entration of KC	l, ce	
		ncrease		. ,	decrease		
	(C) r	emains constant		(D)	cannot predict		EC0134
30.		$\operatorname{hcreasing} \operatorname{Ag}^{+} \operatorname{concentrat}$	ion i	n anodic compa	artment in optio	n (I	
		emain same		(B) increase			
	(C) d	ecrease		(D)	can't predict		EC0135
	ch the	column					
31.		Column I			Column II	_	
							ct using inert electrode)
	(A)	Dilute solution of HCl		(P)	O_2 evolved at an		
	(B)	Dilute solution of NaCl	_	(Q)	H_2 evolved at cat		
	(C)	Concentrated solution of	f NaC		Cl_2 evolved at an		
	(D)	AgNO ₃ solution		(S)	Ag deposition at	cath	ecol36

32.	. Column-I					Column-II	
	Cell notation :					${ m E_{cell}}$	
	(P) $Mn \Big _{(0.1M)}^{Mn^{2+}} \Big _{(0.01M)}^{Cu^{2+}} \Big Cu$					(1)	0.33
	(Q)	$\operatorname{Ag}\left \operatorname{AgBr}\right _{(0)}^{\operatorname{Bi}}$	$ \begin{array}{c c} \mathbf{r}^{-} & \mathbf{Ag}^{+} \\ \mathbf{.1M} & (0.01\mathrm{M}) \end{array} $	Ag		(2)	0.6
	(R) Pt, H ₂ (4atm) $\Big _{(0.01M)}^{\text{H}^{+}} \Big _{(0.2M)}^{\text{Cl}^{-}} \Big _{(1atm)}^{\text{Cl}_{2}} \Big $ Pt					(3)	1.49
	(S)	Pt, $ _{(0.2M)}^{\text{Fe}^{2+}} _{(0.2M)}^{\text{Fe}^{+3}}$	$\begin{array}{c c} MnO_4^- & Mn^{+2} \\ (0.1M) (0.1M) (0.1M) \end{array}$	[) 'pH=5	Pt	(4)	1.54
	Give	en :					
	$E^{0}_{Cu^{2*}/Cu} = 0.34V$ $K_{sp}(AgBr)$				= 10	-13	
	$E^0_{Mn^{2*}/Mn} = -1.18V \qquad \qquad \frac{2.303RT}{F} = -1.18V$			$\frac{2.303\text{RT}}{\text{F}} =$	= 0.06		
	$E^0_{Ag^{\scriptscriptstyle +}}$	$_{/Ag} = 0.8V$					
	$\mathrm{E}_{\mathrm{Fe}^{3+}}^{0}$	$_{\rm Fe^{2+}} = 0.77V$	V				
	${ m E}^0_{ m MnC}$	$D_4^-/Mn^{2+} = 1.52$	2V				
	$E^0_{Cl_2/Cl^-} = 1.36V$						
Code	e:						
		Р	Q	R	S		
	(A)	4	3	4	4		
	(B) (C)	$\frac{2}{3}$	$\frac{3}{2}$	$\frac{1}{4}$	41		
	(C) (D)	5 4	$\frac{2}{3}$	$\frac{4}{2}$	1		
	(\mathcal{D})	*	5	-	Ŧ		

EXERCISE # J-MAINS

1. Resistance of 0.2 M solution of an electrolyte is 50 Ω . The specific conductance of the solution is 1.3 S m⁻¹. If resistance of the 0.4M solution of the same electrolyte is 260 Ω , its molar conductivity is :- [AIEEE 2011]

(1) 6250 S m ² mol ⁻¹	(2) 6.25×10^{-4} S m ² mol ⁻¹
(3) $625 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$	(4) 62.5 S m ² mol ⁻¹

2. The reduction potential of hydrogen half-cell will be negative if :-

- (1) $p(H_2) = 2 \text{ atm } [H^+] = 1.0 \text{ M}$ (2) $p(H_2) = 2 \text{ atm and } [H^+] = 2.0 \text{ M}$
- (3) $p(H_2) = 1$ atm and $[H^+] = 2.0$ M (4) $p(H_2) = 1$ atm and $[H^+] = 1.0$ M
- 3. The standard reduction potentials for $Zn^{2+} | Zn$, $Ni^{2+} | Ni$ and $Fe^{2+} | Fe$ are -0.76, -0.23 and -0.44 V respectively. The reaction $X + Y^{+2} \rightarrow X^{2+} + Y$ will be spontaneous when [AIEEE 2012] (1) X = Zn, Y = Ni (2) X = Ni, Y = Fe (3) X = Ni, Y = Zn (4) X = Fe, Y = ZnEC0139
- 4. Given:

$$\begin{split} E^0_{Cr^{3+}/Cr} &= -0.74\,V \ ; \ E^0_{MnO\overline{4}/Mn^{2+}} = 1.51\,V \\ E^0_{Cr_2O_7^{2-}/Cr^{3+}} &= 1.33\,V \ ; \ E^0_{Cl/Cl^-} = 1.36\,V \end{split}$$

Based on the data given above, strongest oxidising agent will be :

(1) Cl⁻ (2) Cr³⁺ (3) Mn²⁺ (4) MnO₄⁻

EC0140

EC0137

EC0138

[AIEEE 2011]

[JEE-MAINS 2013]

5. The equivalent conductance of NaCl at concentration C and at infinite dilution are λ_{C} and λ_{∞} , respectively. The correct relationship between λ_{C} and λ_{∞} is given as : [JEE-MAINS 2014]

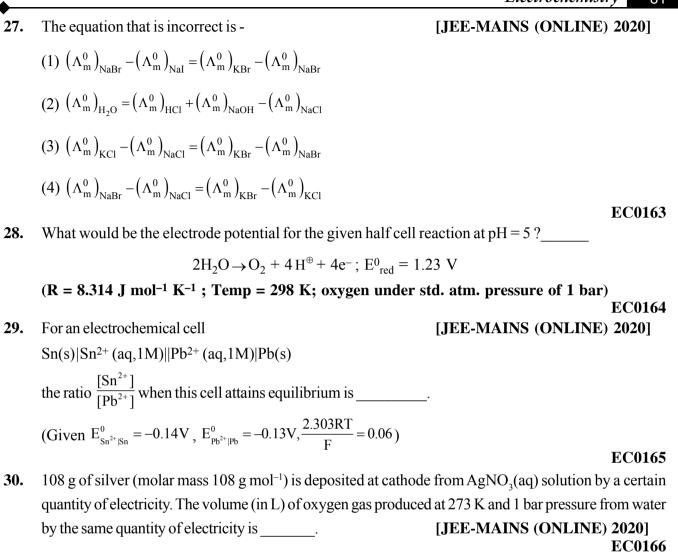
(where the constant B is postive)

(1) $\lambda_{\rm C} = \lambda_{\infty} - (2)\sqrt{\rm C}$	(2) $\lambda_{\rm C} = \lambda_{\infty} + (2)\sqrt{\rm C}$
(3) $\lambda_{\rm C} = \lambda_{\infty} + (2) {\rm C}$	(4) $\lambda_{\rm C} = \lambda_{\infty} - (2){\rm C}$

EC0141

EC0142

6. Resistance of 0.2 M solution of an electrolyte is 50 Ω. The specific conductance of the solution is 1.4 S m⁻¹. The resistance of 0.5 M solution of the same electrolyte is 280 Ω. The molar conductivity of 0.5 M solution of the electrolyte in S m² mol⁻¹ is : [JEE-MAINS 2014]
(1) 5 × 10³
(2) 5 × 10²
(3) 5 × 10⁻⁴
(4) 5 × 10⁻³

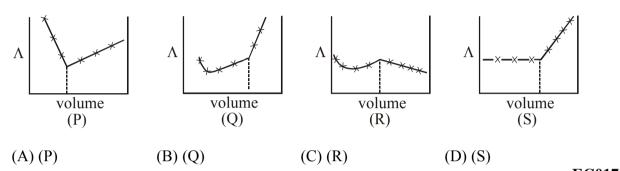

(1)
$$5 \times 10^3$$
 (2) 5×10^2 (3) 5×10^{-4} (4) 5×10^{-4}

- 7. At 298 K, the standard reduction potentials are 1.51 V for $MnO_{\overline{4}}|Mn^{2+}$, 1.36 V for $Cl_2|Cl^-$, 1.07 V for $Br_2|Br^-$, and 0.54 V for $I_2|I^-$. At pH = 3, permanganate is expected to oxidize $\left(\frac{RT}{F} = 0.059 V\right)$:-[JEE-MAINS (ONLINE) 2015]
 - (1) Cl⁻ and Br⁻ (2) Cl⁻, Br⁻ and I⁻ (3) Br⁻ and I⁻ (4) I⁻ only
- EC0143

8.	A variable, opposite external potential (E_{ext}) is applied to the cell $Zn Zn^{2+}(1 M) Cu^{2+}(1 M) Cu$, of potential 1.1 V. When $E_{ext} < 1.1 V$ and $E_{ext} > 1.1 V$, respectively electrons flow from : [JEE-MAINS (ONLINE) 2015]									
	(1) anode to cathode	e in both cases	(2) anode to cat	hode and cathode to an	ode					
	(3) cathode to anode	e in both cases	(4) cathode to an	node and anode to cath						
9.	Two Faraday of elec cathode is :	tricity is passed through	a solution of $CuSO_4$.	The mass of copper dep	EC0144 bosited at the					
	(at. mass of $Cu = 63$	8.5 amu)		[JEE-M	AINS 2015]					
	(1) 2g	(2) 127 g	(3) 0 g	(4) 63.5 g						
10	What will a court if a	hlash of some on motol is	duanced into a baalva	- antainin a a salution a	EC0145					
10.				r containing a solution o	$1 \text{ IVI } 2\text{h}\text{SO}_4$					
		l will dissolve and zinc	metal will be deposite		INE) 2016]					
	(2) No reaction will(3) The comparemental		ution of overgon and	[JEE-MAINS (ONL	INE) 2010j					
	.,	l will dissolve with evolution of the second s								
	(4) The copper metal	l will dissolve with evolution	ution of hydrogen gas		EC0146					
11.	Oxidation of suc	cinate ion produces	ethylene and carb	oon dioxide gases. (
	0.2 Faraday electrici	ity through on aqueous	solution of potassium	succinate, the total volu	ume of gases					
	(at both cathode and	d anode) at STP (1 atm	and 273 K) is :	[JEE-MAINS (ONL	INE) 2016]					
	(1) 8.96 L	(2) 2.24 L	(3) 4.48 L	(4) 6.72 L						
10	<i>C</i> .				EC0147					
12.	Given			[JEE-MA]	INS - 2017]					
	$E^{o}_{Cl_2/Cl^-} = 1.36 \text{ V}, E^{o}_{Cr^{3+}}$	$_{/Cr} = -0.74 \mathrm{V}$; $\mathrm{E}_{\mathrm{Cr}_{2}\mathrm{O}_{7}^{2-1}}^{\mathrm{o}}$	$E_{/Cr^{3+}} = 1.33 \text{ V}, E_{MnO_4^-/Mn}^{o}$	$_{2+} = 1.51 \mathrm{V}$.						
	Among the following	g, the strongest reducing	agent is							
	(1) Cr	(2) Mn^{2+}	(3) Cr ³⁺	(4) Cl-						
10	TT				EC0148					
13.		l reduction potential (E	°) for Fe ³⁺ → Fe ?	[JEE-MAINS (ONL	INE) 2017]					
	Given that :									
	$Fe^{2+} + 2e^{-} \rightarrow Fe$;									
	$\mathrm{Fe}^{3+} + \mathrm{e}^- \rightarrow \mathrm{Fe}^{2+}$;	10 /10								
	(1) +0.30 V	(2) +0.057 V	(3) –0.057 V	(4) –0.30 V	EC0149					
14.	To find the standar (0.001 mol L ⁻¹) Ag ⁺		electrode, the follow	ving cell is constituted [JEE-MAINS (ONL	d: $Pt M M^{3+}$					
	The emf of the cell	l is found to be 0.421	volt at 298 K. The	standard potential of h	alf reaction					
	$M^{3+} + 3e^- \rightarrow M$ at 2	298 K will be : (Given	n $E_{Ag^+/Ag}^{\ominus}$ at 298 K =	0.80 Volt)						
	(1) +0.30 V	(2) +0.057 V	(3) -0.057 V		EC0150					

15.	the oxygen released can completely burn 27.66 g of diborane? [JEE-MAINS (OFFLINE) 2017]									
	(Atomic weight of I (1) 0.8 hours	$\mathbf{B} = 10.8 \mathbf{u}$) (2) 3.2 hou	120	(3) 1	6 hours	(/	4) 6.4 hours			
	(1) 0.8 hours	(2) 5.2 1100	115	(5)1.	(3) 1.6 hours (4) 6.4			EC0151		
16.		-	t is passed through acidified water, 112 mL of hydrogen gas at N conds. The current passed, in ampere, is :							
			[JEE-MAINS (ONI							
	(1) 2.0	(2) 1.0	(3) 0.	1	(4	4) 0.5	EC0152			
17.	When 9.65 ampere cu p-aminophenol produ	current was passed for 1.0 hour into nitrobenzene in acidic medium, the amou								
	(1) 10.9 g	(2) 98.1 g		(3) 10)9.0 g	(4) 9.81 g				
10		2 ↓ζ \) 6 ₂ ↓ζ		1.00	1 10 11	1.1 .		EC0153		
18.	For the cell Zn(s) Zn are given below :	$^{2+}(aq) \parallel M^{x+}(a)$		different			AINS (ONLIN	-		
		$M^{x+}(aq/M(s))$	$Au^{3+}(aq)/$	$Ag^{+}(aq)/$	$\frac{\text{Fe}^{3+}(\text{aq})}{\text{Fe}^{2+}(\text{aq})}$	Fe ²⁺ (aq)/ Fe(s)				
		$E^{o}_{M^{x+}/M^{(v)}}$	Au(s) 1.40	Ag(s) 0.80	0.77	-0.44				
	If $E_{Zn^{2+}/Zn}^{o} = -0.76V$,		e will give	a mximu	m value o	of E ^o _{cell} per	electron transfe	rred?		
	(1) Fe^{3+} / Fe^{2+}	$(2) Ag^{+} / A$	Ag	(3) Au	u ³⁺ / Au	(4	4) Fe ²⁺ / Fe	EC0154		
19.	If the standard electro	de potential fo	or a cell is	2 V at 300) K, the eq	uilibrium	constant (K) for			
	$Zn(s) + Cu^{2+}(aq) =$	\rightarrow Zn ²⁺ (aq) -	+ Cu(s)			[JEE-M	AINS (ONLIN	E) 2019]		
	at 300 K is approxin	nately. ($\mathbf{R} = 8$	B JK ⁻¹ mo	$h^{-1}, F =$	96000 C	mol ⁻¹)				
	(1) e^{160}	(2) e^{320}		(3) e-	-160	(4	e-80			
20.	Given the equilibrium	constant :				[JEE-M	AINS (ONLIN	EC0155 E) 2019]		
	K_{C} of the reaction :									
	$Cu(s) + 2Ag^{+}(aq) -$	$\rightarrow Cu^{2+}(aq)$	+ 2Ag(s)) is 10 ×	10 ¹⁵ , ca	lculate tl	he E_{cell}^0 of this	reaction at		
	298 K.	-								
	$\left[2.303\frac{\text{RT}}{\text{F}}\text{ at }298\text{ K}=0\right]$).059V								
	(1) 0.04736 V		ν	(3) 0.	4736 mV	(4	4) 0.04736 mV	EC0156		

21	The standard alastra	do notontial Σ^{Θ} and its	tomonratura ca	efficient $\left(\frac{dE^{\odot}}{dT}\right)$ for a cell	oro W and			
21.		ode potential E^{\odot} and its						
		00 K respectively. The c $T_{r}^{2+(\alpha \alpha)} + C_{r}^{\alpha}(\alpha)$	ell reaction is	[JEE-MAINS (ONL	INE) 2019]			
	$Zn(s) + Cu^{2+}(aq) \rightarrow$							
		n enthalpy $(\Delta_r H^{\odot})$ at 30		lS,				
	_	nol^{-1} and F = 96,000 C	-					
	(1) -412.8	(2) - 384.0	(3) 206.4	(4) 192.0	EC0157			
22.	\wedge°_{m} for NaCl, HCl an	nd NaA are 126.4, 425.9	and 100.5 S cm^2	mol ⁻¹ , respectively. If the o				
				A is : [JEE-MAINS (ONL	-			
	(1) 0.75	(2) 0.125	(3) 0.25	(4) 0.50				
22	Consider the followin	a reduction processos :		THEE MAINS (ONITIN	EC0158			
23.		ng reduction processes : $\Gamma^{2} = -0.76 V$	$C_{-2+} + 2_{-}$	[JEE-MAINS (ONLIN)]	(E) 2019]			
	$Zn^{2+} + 2e^{-} \rightarrow Zn(s); E^{\circ} = -0.76 V \qquad Ca^{2+} + 2e^{-} \rightarrow Ca(s); E^{\circ} = -2.87 V$ $Mg^{2+} + 2e^{-} \rightarrow Mg(s); E^{\circ} = -2.36 V \qquad Ni^{2+} + 2e^{-} \rightarrow Ni(s); E^{\circ} = -0.25 V$							
	C							
		of the metals increases in		[JEE-MAINS (ONLIN	E) 2019]			
	(1) $Ca < Zn < Mg <$		(2) Ni < Zn <	e				
	(3) Zn < Mg < Ni <	Ca	(4) Ca < Mg	< Zn $<$ Ni	EC0159			
24.	In the cell :			[JEE-MAINS (ONLIN				
	$Pt(s) \mid H_2(g, 1) baselines$	ar HCl (aq) AgCl(s)	Ag(s) Pt(s)					
	_			sed. The standard electrode	potential of			
	(AgCl/Ag,Cl-) electr				1			
	$\begin{cases} \text{given}, \frac{2.303\text{RT}}{\text{F}} = 0.0 \end{cases}$	06Vat298K						
	Č.	,	$(2) \land \land \land \land \land$					
	(1) 0.20 V	(2) 0.76 V	(3) 0.40 V	(4) 0.94 V	EC0160			
25.	The anodic half-cell	of lead-acid battery is rec	harged unsing ele	ectricity of 0.05 Faraday. Th				
	PbSO ₄ electrolyzed	in g during the process i	in : (Molar mas s	s of $PbSO_4 = 303 \text{ g mol}^{-1}$)				
	(1) 22.8		(2) 15.2	[JEE-MAINS (ONLIN	E) 2019]			
	(3) 7.6		(4) 11.4		EC0171			
26.	Given that the standa	rd notentials (F°) of Cu2t	+/Cu and $Cu+/Cu$	are 0.34 V and 0.522 V resp	EC0161			
20.	E° of Cu^{2+}/Cu^{+} is :	ru potentiais (E.) or eu		[JEE-MAINS (ONLIN	-			
	(1) +0.158 V	(2) 0.182 V	(3) –0.182 V		,,			
	()	()	(-)	(.)	EC0162			


- 31. Amongst the following, the form of water with the lowest ionic conductance at 298 K is:
 - (1) distilled water
 - (2) water from a well

[JEE-MAINS (ONLINE) 2020]

- (3) saline water used for intravenous injection
- (4) sea water

EXERCISE # J-ADVANCED

- 1. Consider the following cell reaction : [JEE 2011] $2Fe_{(s)}+O_{2(g)}+4H^{+}_{(aq)} \rightarrow 2Fe^{2+}_{(a)}+2H_{2}O(\ell)$; $E^{\circ} = 1.67 \text{ V}$ $At[Fe^{2+}] = 10^{-3} \text{ M}, P(O_{2}) = 0.1 \text{ atm and } pH = 3, \text{ the cell potential at 25°C is -}$ (A) 1.47 V (B) 1.77 V (C) 1.87 V (D) 1.57 V EC0178
- 2. AgNO₃(a) was added to an aqueous KCl solution gradually and the conductivity of the solution was measured. the plot of conductance (Λ) versus the volume of AgNO₃ is [JEE 2011]

Paragraph for Question 3 and 4

The electrochemical cell shown below is a concentration cell. [JEE 2012]

M | M^{2+} (saturated solution of a sparingly soluble salt, MX₂) || M^{2+} (0.001 mol dm⁻³) | M

The emf of the cell depends on the difference in concentrations of M^{2+} ions at the two electrodes. The emf of the cell at 298 K is 0.059V.

- 3. The value of ΔG (kJ mol⁻¹) for the given cell is (take If = 96500 C mol⁻¹)
 - (A) -5.7 (B) 5.7 (C) 11.4 (D) -11.4
- 4. The solubility product $(K_{sp}; mol^3 dm^{-9})$ of MX₂ at 298 K based on the information available for the given concentration cell is (take $2.303 \times R \times 298 | F = 0.059 \text{ V}$)

(A)
$$1 \times 10^{-15}$$
 (B) 4×10^{-15} (C) 1×10^{-12} (D) 1×10^{-12}

EC0181

EC0180

5. The standard reduction potential data at 25°C is given below $E^{\circ} (Fe^{3+}, Fe^{2+}) = +0.77 V ;$ $E^{\circ} (Fe^{2+}, Fe) = -0.44 V ;$ $E^{\circ} (Cu^{2+}, Cu) = +0.34 V ;$ $E^{\circ} (Cu^{+}, Cu) = +0.52 V ;$ $E^{\circ} (O_{2}(g) + 4H^{+} + 4e^{-} \rightarrow 2H_{2}O] = +1.23 V ;$ $E^{\circ} [(O_{2}(g) + 2H_{2}O + 4e^{-} \rightarrow 4OH^{-})] = +0.40 V ;$

 $E^{o} (Cr^{3+}, Cr) = -0.74 V ;$ $E^{o} (Cr^{2+}, Cr) = -0.91 V ;$

Match E° of the redox pair in List-I with the values given in List-II and select the correct answer using the code given below the lists :

	List	-I				List-II						
(P)	E°(F	e ³⁺ , Fe)			(1)	-0.18 V	–0.18 V					
(Q)	$E^{\circ}(4H_{2}O \rightleftharpoons 4H^{+} + 4OH^{+})$					-0.4 V						
(R)	E°(C	$Cu^{2+} + C$	$u \rightarrow 2$	Cu ⁺)	(3)	–0.04 V						
(S)	E°(C	Cr^{3+}, Cr^{2}	+)		(4)	–0.83 V						
Code	s:											
	Р	Q	R	S			Р	Q	R	S		
(A)	4	1	2	3		(B)	2	3	4	1		
(C)	1	2	3	4		(D)	3	4	1	2 EC0182		

An aqueous solution of X is added slowly to an aqueous solution of Y as shown in List-I. The variation in conductivity of these reactions is given in List-II. Match List-I with List-II and select the correct answer using the code given below the lists : [JEE-Adv. 2013]

	List-I					List-II						
(P)	(C_2H_5)	$_{3}N + C$	CH ₃ COO	ЭH	(1)	Conductiv	Conductivity decreases and then increases					5
	X Y											
(Q)	$\frac{\text{KI}(0.1\text{M}) + \text{AgNO}_3(0.01\text{M})}{\text{X} \text{Y}}$				(2)	Conductiv much	vity o	decre	ases an	d then	does r	ot change
												_
(R)	CH ₃ COOH + KOH			(3)		Conductivity increases and then does not change much						
	X Y					much						
(S)	NaOH	(+ HI			(4)	Conductiv	Conductivity does not change much and then					
	Х	Y				increases						
Codes :												
	Р	Q	R	S				Р	Q	R	S	
(A)	3	4	2	1		(B)	4	3	2		
(C)	2	3	4	1		(D)	1	4	3	2	EC0183

7.

- In a galvanic cell, the salt bridge -
 - (A) Does not participate chemically in the cell reaction
 - (B) Stops the diffusion of ions from one electrode to another
 - (C) Is necessary for the occurence of the cell reaction
 - (D) Ensures mixing of the two electrolytic solutions
- 8. The molar conductivity of a solution of a weak acid HX (0.01 M) is 10 times smaller than the molar conductivity of a solution of a weak acid HY (0.1 M). If $\lambda_{X^-}^0 \approx \lambda_{Y^-}^0$, the difference in their pK_a values , pK_a(HX) pK_a(HY), is (consider degree of ionization of both acids to be <<1).

[JEE-Adv. 2015] EC0185

EC0184

9. All the energy released from the reaction $X \rightarrow Y$, $\Delta_r G^\circ = -193 \text{ kJ mol}^{-1}$ is used for the oxidizing M^+ and $M^+ \rightarrow M^{3+} + 2e^-$, $E^\circ = -0.25 \text{ V}$. [JEE-Adv. 2015]

Under standard conditions, the number of moles of M^+ oxidized when one mole of X is converted to Y is - $[F = 96500 \text{ C mol}^{-1}]$

10. For the following electrochemical cell at 298K, [JEE-Adv. 2016] Pt(s) | H₂(g, 1bar) | H⁺ (aq, 1M) || M⁴⁺(a), M²⁺(a) | Pt(s) $E_{cell} = 0.092 \text{ V when } \frac{[M^{2+}(aq.)]}{[M^{4+}(aq.)]} = 10^{x}$ Given : $E_{M^{4+}/M^{2+}}^{0} = 0.151 \text{ V}$; 2.303 $\frac{\text{RT}}{\text{F}} = 0.059 \text{ V}$

The value of x is -

- (A) -2 (B) -1 (C) 1 (D) 2
- 11. The conductance of a 0.0015 M aqueous solution of a weak monobasic acid was determined by using a conductivity cell consisting of platinized Pt electrodes. The distance between the electrodes is 120 cm with an area of cross section of 1 cm². The conductance of this solution was found to be 5×10^{-7} S. The pH of the solution is 4. The value of limiting molar conductivity (Λ_m^0) of this weak monobasic acid in aqueous solution is $Z \times 10^2$ S cm⁻¹mol⁻¹. The value of Z is.

EC0188

EC0187

[JEE-Adv. 2014]

12. For the following cell : [JEE-Adv. 2017] Zn(s) | ZnSO₄ (aq.) || CuSO₄ (aq.) | Cu(s) when the concentration of Zn²⁺ is 10 times the concentration of Cu²⁺, the expression for ΔG (in J mol⁻¹) is [F is Faraday constant , R is gas constant, T is temperature , E^o(cell) = 1.1V] (A) 2.303 RT + 1.1F (B) 2.303 RT - 2.2F (C) 1.1 F (D) -2.2 F EC0189
13. Consider an electrochemical cell: A(s) | Aⁿ⁺ (aq, 2M) || B²ⁿ⁺ (aq, 1M) | B(s). The value of ΔH^θ for the cell reaction is twice that of ΔG^θ at 300 K. If the emf of the cell is zero, the ΔS^θ

 $(in JK^{-1} mol^{-1})$ of the cell reaction per mole of B formed at 300 K is ____. [JEE-Adv. 2018]

(Given : $\ln (2) = 0.7$, R (universal gas constant) = 8.3 J K⁻¹ mol⁻¹. H, S and G are enthalpy, entropy and Gibbs energy, respectively.) **EC0190**

14. For the electrochemical cell,

 $Mg(s) | Mg^{2+}(aq, 1 M) | | Cu^{2+}(aq, 1M) | Cu(s)$

the standard emf of the cell is 2.70 V at 300 K. When the concentration of Mg^{2+} is changed to x M, the cell potential changes to 2.67 V at 300 K. The value of x is _____. [JEE-Adv. 2018]

(Given, $\frac{F}{R} = 11500 \text{ KV}^{-1}$, where F is the Faraday constant and R is the gas constant, $\ln(10) = 2.30$)

ANSWER KEY

EXERCISE # S-I

1.	Ans. (a) $2Ag + Cu^{2+} \longrightarrow 2Ag^{+} + Cu$,	
	(b) $MnO_4^- + 5Fe^{2+} + 8H^+ \longrightarrow Mn$	$n^{2+} + 5Fe^{3+} + 4H_2O$
	(c) $2Cl^{-} + 2Ag^{+} \longrightarrow 2Ag + Cl_{2}$,	(d) $H_2 + Cd^{2+} \longrightarrow Cd + 2H^+$
2.	Ans. (a) $Zn Zn^{2+} Cd^{2+} Cd$,	-
	(c) Pt Fe ²⁺ , Fe ³⁺ $Cr_2O_7^{2-}$, H ⁺ ,	Cr ³⁺ Pt
3.	Ans. 1.61 V	4. Ans.1.35 V
5.	Ans. – 0.0367 V	6. Ans. 0.53 V, disproportionation
7.	Ans. (7)	8. Ans. E =1.159V
9.	Ans. $E_{cell}^0 = +0.01V$, $E_{cell} = -0.0785V$, co	prrect representation is $Pb Pb^{2+} (10^{-3}M) Sn^{2+}(1M) Sn^{$
10.	Ans. $[Cu^{2+}] = 2.97 \times 10^{-12} M$ for E =0	11. Ans 0.80 V, No
12.	Ans. (i) $K_c = 10^{107}$ (ii) 609.20 kJ	13. Ans. $E^0 = -0.15$ volt
14.	Ans. $E = -0.81 V$	15. Ans. $K_c = 7.6 \times 10^{12}$
16.	Ans. $K_c = 2.18 \times 10^{26}$	17. $E^0 = 0.7826 V$
18.	Ans. K _w ≈ 10 ⁻¹⁴	19. –1303.14 kJ/mol
20.	Ans 3.86	21. Ans.(3)
22.	Ans. 0.0295 V	23. Ans. $pH = 4$
24.	Ans. E = 0.059	25. Ans.E = 0.41 Volt
26.	Ans. (a) 6.02×10^{22} electrons lost,	(b) 1.89×10^{22} electrons gained,
	(c) (b) 1.80 × 10 ²³ electrons gained	1
27.	Ans. (a) 0.75 F, (b) 0.69 F, (c)1.1 F	28. Ans.(i) 54 gm, (ii) 16.35 gm
29.	Ans.0.112 litre	30. Ans.(i) 2.17 gm ; (ii) 1336. 15 sec
31.	Ans. 1.023 × 10 ⁵ sec	32. Ans. 115800C, 347.40 kJ
33.	Ans. 44.77 gm , 12.54 litre	34. Ans.Rs. 0.75 x
35.	Ans.A = 114, Q = 5926C	36. Ans.60 %
37.	Ans.1.83g	38. Ans. 2M
39.	Ans. (i) 250 mho $cm^2 mol^{-1}$,	(ii) 125 mho cm ² equivalent ⁻¹
40.	Ans. 440 S cm ² equivalent ⁻¹	41. Ans. 0.00040 S cm ⁻¹ ; 2500 ohm cm
42.	Ans. (i) 6.25×10^5 ohm,	(ii) 1.6×10^{-6} amp
43.	Ans. 0.0125 mho g equiv ⁻¹ m ² , $1.25 \times$	
44.	Ans.8.60 ×10 ⁻⁴ gm litre	45. Ans. 0.8 46. Ans. 10 ⁻¹⁰ mole ² litre ²
47.	Ans. (i) 400 S cm ² mol ⁻¹ (ii) 12 %	48. Ans. 510 ×10 ⁻⁴ mho cm ² mol ⁻¹
49.	Ans. $\alpha = 0.5$, k = 10^{-3}	50. Ans.(i) 7 (ii) 1×10^{-14}

1.	Ans. – 0.46 V			2.	Ans. (ii). 1.27 V, (iii) 245.1 kJ					
3.	Ans. $E^0 = -0.22 V$			4.	Ans. $K_{sp} = 1.10 \times 10^{-16}$					
5.	Ans. [Br [–]] : [Cl [–]] =	= 1 : 200		6.	Ans0.037 V					
7.	Ans. 1.54 ×10 ⁻⁵			8.	Ans. $K = 10^{268}$					
9.	Ans. 9.70gm			10.	Ans. 42.20 %					
11.	Ans. 1.86 × 10 ⁶ yea		12.	Ans. 0.145						
13.	Ans. 0.04 metre		14.	Ans. 0.19 gm litre						
15.	Ans. n = 2			16.	Ans. 0.52 V, 0.61 V					
17.	Ans. 0.0295 V			18.	Ans. t = 193 sec					
19.	Ans. Final weight =	= 9.60g,	0.01 Eq of acid	20.	Ans. t = 93.65 sec.					
	EXERCISE # O-I									
1.	Ans.(B)	2.	Ans.(C)	3.	Ans.(A)	4.	Ans.(C)			
5.	Ans.(D)	6.	Ans.(C)	7.	Ans.(A)	8.	Ans.(C)			

1.	Ans.(B)	2.	Ans.(C)	з.	Ans.(A)	4.	Ans.(C)
5.	Ans.(D)	6.	Ans.(C)	7.	Ans.(A)	8.	Ans.(C)
9.	Ans.(A)	10.	Ans.(A)	11.	Ans.(C)	12.	Ans.(C)
13.	Ans.(A)	14.	Ans.(D)	15.	Ans.(D)	16	Ans.(A)
17.	Ans.(B)	18.	Ans.(D)	19.	Ans.(C)	20.	Ans.(A)
21.	Ans.(A)	22	Ans.(D)	23.	Ans.(B)	24.	Ans.(A)
25.	Ans.(C)	26.	Ans.(C)	27.	Ans.(A)	28.	Ans.(B)
29.	Ans.(A)	30.	Ans.(D)	31.	Ans.(C)	32.	Ans.(B)
33.	Ans.(C)	34.	Ans.(A)	35.	Ans.(D)	36.	Ans.(D)
37.	Ans.(C)	38.	Ans.(A)	39.	Ans.C)	40.	Ans.(C)
41.	Ans.(B)	42.	Ans.(C)	43.	Ans.(B)	44.	Ans.(D)
45.	Ans.(C)	46.	Ans.(C)	47.	Ans.(C)	48.	Ans.(D)
49	Ans.(C)	50	Ans.(A)	51	Ans.(B)	52	Ans.(C)
53.	Ans.(A)						

EXERCISE # O-II

1.	Ans. B	2.	Ans. D	3.	Ans. A	4.	Ans. B
5.	Ans. B	6.	Ans. A	7.	Ans. A	8.	Ans. B
9.	Ans. D	10.	Ans. C	11.	Ans. A	12.	Ans. C
13.	Ans. B	14.	Ans. D	15.	Ans. D	16.	Ans. B
17.	Ans. C	18.	Ans. C	19.	Ans. B	20.	Ans. C,D
21.	Ans. B,C,D	22.	Ans. A,B	23.	Ans. B,C	24.	Ans. A,D
25.	Ans. A	26.	Ans. A	27.	Ans. D	28.	Ans. C
29. 32.	Ans. A Ans.(C)	30.	Ans. C	31.	Ans. (A) P, Q (I	B) P,	Q (C) Q, R, (D) P,S

88	JEE-Chemistry						_
			EXERCIS	E # J-1	MAINS		
1.	Ans.(2)	2.	Ans.(1)	3.	Ans.(1)	4.	Ans.(4)
5.	Ans. (1)	6.	Ans.(3)	7.	Ans. (3)	8.	Ans. (2)
9.	Ans.(4)	10.	Ans.(2)	11	Ans. (1)	12.	Ans. (1)
13.	Ans.(3)	14.	Ans.(1)	15.	Ans.(2)	16.	Ans.(2)
17.	Ans.(4)	18.	Ans.(2)	19.	Ans.(1)	20.	Ans.(2)
21.	Ans.(1)	22.	Ans.(2)	23.	Ans.(2)	24.	Ans.(1)
25.	Ans.(3)	26.	Ans.(1)	27.	Ans.(1)	28.	Ans.(-0.93 to -0.94)
29.	Ans.(2.13 to 2.17)	30.	Ans.(5.66 to	5.68)		31.	Ans.(1)
		E	XERCISE ;	#J-AD	VANCED		
1.	Ans.(D)	2.	Ans.(D)	3.	Ans.(D)	4.	Ans.(B)
5.	Ans.(D)	6.	Ans.(A)	7.	Ans.(A,B)	8.	Ans. (3)
9.	Ans. (4)	10.	Ans.(D)	11.	Ans.(6)	12.	Ans.(B)
13.	Ans.(-11.62)	14.	Ans.(10)				