	Exercise-	1					
🔈 Mar	ked Questions can be u	 sed as Revision Ques	tions.				
		OBJECTIVE	QUESTIONS				
1.	The fundamental source	e of e.m. waves					
	(1) is varying magnetic f	ield	(2) constant magnetic a	and electric fields			
	(3) are continous oscilla	tions of electric charge	(4) is planets				
2.2	The speed of e.m. wave	es is given by the relation	on				
	(1) μ ₀ ε ₀	(2) $\sqrt{\mu_0 \varepsilon_0}$	(3) 1/μ ₀ ε ₀	(4) 1/ $\sqrt{(\mu_0 \epsilon_0)}$			
3.	In an electromagnetic w	ave, electric field E and	magnetic field B are				
	(1) mutually perpendicul	ar to each other	(2) all parallel				
	(3) at 30 ⁰ to each other		(4) at 60° to each other				
4.	If E and B be the e	lectric and magnetic f	ields of electromagnetic	c waves, then the direction of			
	propagation of e.m. wave is along the direction of						
	(1) Ē	(2) B	(3) $\vec{E} \times \vec{B}$	(4) None of the above			
5.	Red light differs from blu	ue light in its					
	(1) speed.	(2) frequency	(3) intensity	(4) amplitude			
6.	The electromagnetic wa	ves used in the telecom	munication are				
	(1) ultraviolet	(2) infra-red	(3) visible	(4) microwaves.			
7.a	If an electromagnetic wa	ave propagating through	n vacuum is described by	,			
	$E = E_0 \sin (kx - \omega t)$; $B =$	= B₀ sin (kx – ωt)					
	(1) $E_0 k = B_0 \omega$	(2) $E_0B_0 = \omega k$	(3) $E_0 \omega = B_0 k$	(4) $E_0 B_0 = \omega / k$			
8.	Which of the following ra	ays are not electromagr	netic waves ?				
	(1) β – rays	(2) Heat rays	(3) X- rays	(4) γ–rays			
9.2	The frequency of light w of material will be :	ave in a material is 2 \times	10 ¹⁴ Hz and wavelength	n is 5000 Å. The refractive index			
	(1) 1.40	(2) 1.50	(3) 3.00	(4) 1.33			
10.	The electric and magnet	ic field of an electromag	gnetic wave are :				
	(1) in phase and parallel	to each other					
	(2) in opposite phase an	d perpendicular to each	n other				
	(3) in opposite phase an	d parallel to each other					
	(4) in phase and perpen	dicular to each other.					

11. The electric field part of an electromagnetic wave in a medium is represented by $E_x = 0$;

$$E_{y} = 2.5 \frac{N}{C} \cos \left[\left(2\pi \times 10^{6} \frac{\text{rad}}{\text{s}} \right) t - \left(\pi \times 10^{-2} \frac{\text{rad}}{\text{m}} \right) x \right]$$

 $E_z = 0$. The wave is :

(1) moving along y direction with frequency $2\pi \times 10^6$ Hz and wavelength 200 m.

- (2) moving along x direction with frequency 10⁶ Hz and wavelength 100m
- (3) moving along x direction with frequency 10^6 Hz and wavelength 200m

(4) moving along -x direction with frequency 10⁶ Hz and wavelength 200m

- **12.**The electric field of an electromagnetic wave in free space is given by $\vec{E} = 10\cos(10^7 t + kx)\hat{j}$ V/m, where
t and x are in seconds and metres respectively. It can be inferred that
(i) the wavelength λ is 188.4 m.(ii) the wave number k is 0.33 rad/m
(iv) the wave amplitude is 10 V/m(iv) the wave is propagating along +x direction
Which one of the following pairs of statements is correct ?
(1) (iii) and (iv)
(3) (ii) and (iii)(2) (i) and (iii)
(4) (i) and (iii)
- 13. Maxwell's equation describe the fundamental laws of(1) electricity only(2) magnetism only(3) mechnaics only(4) both (1) and (2)
- **14.** An electromagnetic wave going through vacuum is described by $E = E_0 \sin(kx \omega t)$. Which of the following is/are independent of the wavelength ?
 - (1) k (2) ω (3) k/ ω (4) k ω
- **15.** The energy contained in a small volume through which an electromagnetic wave is passing oscillates with
 - (1) zero frequency(2) the frequency of the wave(3) half the frequency of the wave(4) double the frequency of the wave
- **16.** A parallel-plate capacitor with plate area A and separation between the plates d, is charged by a constant current i. Consider a plane surface of area A/2 parallel to the plates and drawn symmetrically between the plates. Find the displacement current through this area.
 - (1) i (2) $\frac{i}{2}$ (3) 2i (4) zero

17. A light beam travelling in the x-direction is described by the eletric field $E_y = (300 \text{ V/m}) \sin\omega(t - x/c)$. An electron is constrained to move along the y-direction with a speed of 2.0 x 10⁷ m/s. The maximum electric force and the maximum magnetic force on the electron are-

(1) 4.8 × 10 ⁻¹⁷ N,zero	(2) 4.2 × 10 ⁻¹⁸ N, 1.8 × 10 ⁻⁸
(3) 4.8 × 10 ⁻¹⁷ N,3.2 × 10 ⁻¹⁸ N	(4) zero, zero

18. Find the energy stored in a 60 cm length of a laser beam operating at 4 mW. $(1) 8 \times 10^{-12} J$ $(2) 6 \times 10^{-12} J$ $(3) 4 \times 10^{-12} J$ $(4) 7 \times 10^{-12} J$

19. A parallel-plate capacitor having plate area A and plate separation d is joined to a battery of emf e and internal resistance R at t = 0 consider a plane surface of area A/2 parallel to the plates and situated symmetrically between them. Find the displacement current through this surface as a function of time.

(1)
$$\frac{\varepsilon}{2R}e \frac{-td}{\varepsilon AR}$$
 (2) $\frac{\varepsilon}{R}e \frac{-td}{\varepsilon AR}$ (3) $\frac{2\varepsilon}{R}e \frac{-td}{\varepsilon AR}$ (4) $\frac{\varepsilon}{2R}e \frac{-2td}{\varepsilon AR}$

20. If E denotes the intensity of electric field, the dimensions of a quantity $\in_0 \frac{dE}{dt}$ are those of (1) current (2) current density (3) electric potential (4) electric flux

In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of 2.5 × 10¹⁰ Hz and amplitude 480 V/m. The amplitude of the oscillating magnetic field will be
(1) 1.52 × 10⁻⁸ Wb/m²
(2) 1.52 × 10⁻⁷ Wb/m²
(3) 1.6 × 10⁻⁶ Wb/m²
(4) 1.6 × 10⁻⁷ Wb/m²

22. If ε_0 and μ_0 represent the permittivity and permeability of vacuum and ε and μ represent the permittivity and permeability of medium, the refractive index of the medium is given by

(1)
$$\sqrt{\frac{\varepsilon_0 \mu_0}{\varepsilon_\mu}}$$
 (2) $\sqrt{\frac{\varepsilon\mu}{\varepsilon_0 \mu_0}}$ (3) $\sqrt{\frac{\varepsilon}{\mu_0 \varepsilon_0}}$ (4) $\sqrt{\frac{\mu_0 \varepsilon_0}{\varepsilon}}$

23. A flood light is covered with a fitter that transmits red light. The electric field of the emerging beam is
represented by a sinusoidal plane wave
 $E_x = 36 \sin (1.20 \times 10^7 z - 3.6 \times 10^{15} t) V/m$
The average intensity of beam in W/m² will be
(1) 6.88 (2) 3.44 (3) 1.72 (4) 0.86

A lamp emits monochromatic green light uniformly in all directions. The lamp is 3% electrical in converting electrical power to electromagnetic waves and consumes 100W of power. The amplitude of the electric field associated with the electromagnetic radiation at a distance of 5m from the lamp will be (1) 1.34 V/m
 (2) 2.68 V/m
 (3) 4.02 V/m
 (4) 5.36 V/m

- 25. A point source of electromagnetic radiation has an average power output of 800W. The maximum value of electric field at a distance 4.0 m from the source is
 (1) 64.7 V/m
 (2) 57.8 V/m
 (3) 56.72 V/m
 (4) 54.77 V/m
- **26.** The average energy-density of electromagnetic wave given by $E = (50 \text{ N/C}) \sin (\omega t kx)$ will be nearly (1) 10^{-8} J/m^3 (2) 10^{-7} J/m^3 (3) 10^{-6} J/m^3 (4) 10^{-5} J/m^3
- **27.** A plane electromagnetic wave travelling along the X-direction has a wavelength of 3mm. The variation in the electric field occurs in the Y-direction with an amplitude 66 Vm⁻¹. The equation for the electric and magnetic fields as a function of x and t are respectively.
 - (1) $E_y = 33 \cos \pi \times 10^{11} \left(t \frac{x}{c} \right)$, $B_z = 1.1 \times 10^{-7} \cos \pi \times 10^{11} \left(t \frac{x}{c} \right)$ (2) $E_y = 11 \cos 2\pi \times 10^{11} \left(t - \frac{x}{c} \right)$, $B_y = 11 \times 10^{-7} \cos 2\pi \times 10^{11} \left(t - \frac{x}{c} \right)$ (3) $E_x = 33 \cos \pi \times 10^{11} \left(t - \frac{x}{c} \right)$, $B_x = 11 \times 10^{-7} \cos \pi \times 10^{11} \left(t - \frac{x}{c} \right)$ (4) $E_y = 66 \cos 2\pi \times 10^{11} \left(t - \frac{x}{c} \right)$, $B_z = 2.2 \times 10^{-7} \cos 2\pi \times 10^{11} \left(t - \frac{x}{c} \right)$ (5) $E_y = 66 \cos \pi \times 10^{11} \left(t - \frac{x}{c} \right)$, $B_y = 2.2 \times 10^{-7} \cos \pi \times 10^{11} \left(t - \frac{x}{c} \right)$
- **28.** If the wavelength of light is 4000 Å, then the number of waves in 1mm length will be (1) 25 (2) 0.25 (3) 0.25×10^4 (4) 25×10^4

29. The electric field associated with an electromagnetic wave in vacuum is given by $\vec{E} = \hat{i}40\cos(kz - 6 \times 10^8 t)$, where E, z and t are in volt/m, meter and seconds respectively. The value of wave vector k is

```
(1) 2m^{-1} (2) 0.5 m^{-1} (3) 6 m^{-1} (4) 3 m^{-1}
```

30. Electromagnetic waves can be deflected by
(1) Electric field only (2) Magnetic field only (3) Both (a) and (b) (4) None of these

31. The magnetic field in a plane electromagnetic wave is given by $B_y = 2 \times 10^{-7} \sin (0.5 \times 10^3 x + 1.5 \times 10^{11} t)$. This electromagnetic wave is (1) A visible light (2) An infrared wave (3) A microwave (4) A radio wave

	Exercise	P-7		
≽. Ma	arked Questions can b	be used as Revisior	n Questions.	
		CON	IPREHENSION	
Com	prehension : In a plane electroma and amplitude 48 V	agnetic wave, the ele m ⁻¹ .	ectric field oscillates sinusoid	ally at a frequency of 2.0 × 10^{10} Hz
1.	What is the wavelen (1) 1.5×10^{-2} m	gth of the wave ? (2) 2.5 × 10 ⁻² m	(3) 1.5 × 10 ^{−3} m	(4) 2.5 × 10 ^{−3} m
2.	What is the amplitud (1) 2.7 × 10 ⁻⁷ T	le of the oscillating n (2) 1.6 × 10 ⁻⁷ T	nagnetic field? (3) 1.6 × 10⁻ଃ T	(4) 2.7 × 10⁻ ⁸ T
	Exercise	e-3 📃		
≻a Ma	arked Questions can k	be used as Revisior	n Questions.	
	PART	- I : AIEEE PR	OBLEMS (PREVIOU	US YEARS)
1.	Infrared radiation is (1) spectrometer	detected by (2) pyrometer	(3) nanometer	[AIEEE 2002; 3/225, –1] (4) photometer
2.	Dimensions of $\frac{1}{1}$	– , where symbols h	ave their usual meanings, are	e [AIEEE 2003; 3/225, –1]
	μ ₀ ⊂ (1) [L ⁻¹ T]	⁰ (2) [L ^{−2} T ²]	(3) [L ² T ⁻²]	(4) [L T ^{−1}]
3.	Which of the followir	ng radiations has the	least wavelength ?	[AIEEE 2003; 3/225, –1]
	(1) γ-rays	(2) β-rays	(3) α-rays	(4) X-rays
4.	An electromagnetic permittivity $\varepsilon = 4.0$, t (1) wavelength is do (2) wavelength is do (3) wavelength is ha (4) wavelength and t	wave of frequency hen ubled and the frequency ubled and frequency lived and frequency of frequency both rema	n = 3.0 MHz passes vacu ency remains unchanged v becomes half remains unchanged in unchanged	uum into a dielectric medium with [AIEEE 2004; 3/225, –1]
5.2	An electromagnetic perpendicular to each \vec{k} . Then	wave in vacuum ha ch other. The directi	is the electric and magnetic on of polarization is given b	field \vec{E} and \vec{B} , which are always y \vec{X} and that of wave propagation
	(1) X̃∥B̃ and k̃∥B̃⇒	×Ē	(2) $\vec{X} \parallel \vec{E}$ and $\vec{k} \parallel \vec{E} \times \vec{B}$	[AIEEE 2012, 4/120, – 1]
	(3)	×B	(4) $\vec{X} \parallel \vec{E}$ and $\vec{k} \parallel \vec{B} \times \vec{E}$	

- 6. The magnetic field in a travelling electromagnetic wave has a peak value of 20 nT. The peak value of electric field strength is : [JEE (Main) 2013, 4/120, -1]
 (1) 3V/m
 (2) 6V/m
 (3) 9V/m
 (4) 12 V/m
- This question has statement–1 and statement–2. Of the four choices given after the statements, choose the one that best describes the two statements. [JEE(MAIN) 2013_ONLINE TEST]
 Statement–1 : Out of radio waves and microwaves, the radio waves undergo more diffraction.
 Statement–2 : Radio waves have greater frequency compared to microwaves.
 (1) Statement–1 is true, Statement –2 is false
 - (2) Statement-1 is false, Statement -2 is true
 - (3) Both statements are true and statement-2 is correct explanation of statement-1
 - (4) Both statements are true and statement-2 is not correct explanation of statement-1
- 8. During the propagation of electromagnetic waves in a medium :
 - (1) Electric energy density is double of the magnetic energy density.
 - (2) Electric energy density is half of the magnetic energy density.
 - (3) Electric energy density is equal to the magnetic energy density.
 - (4) Both electric and magnetic energy densities are zero.
- 9. Match List-I (Electromagnetic wave type) with List-II (Its association/application) and select the correct option from the choices given below the lists : [JEE (Main) 2014, 4/120, -1]

	List-I		List-II				
(a)	Infrared waves	(i)	To treat muscular strain				
(b)	Radio waves	(ii)	For broadcasting				
(c)	X-rays	-rays (iii) To detect fractureof bones					
			Absorbed by the ozone laye	er			
(d)	Ultraviolet	(iv)	of the atmosphere				
	(a)		(b) (c)	(d)			
(1)	(iv)		(iii) (ii)	(i)			
(2)	(i)		(ii) (iv)	(iii)			
(3)	(iii)		(ii) (i)	(iv)			
(4)	(i)		(ii) (iii)	(iv)			

10. Match List–I (Wavelength range of electromagnetic spectrum) with List–II. (Method of production of these waves) and select the correct option from the options given below the lists [JEE (MAIN) 2014_ONLINE TEST]

List -II

(iv)

List–I

- (a) 700 nm to 1mm
- (b) 1nm to 400 nm
- (i) Vibration of atoms and molecules
- (ii) inner shell electrons in atoms moving from one one energy level to a lower level
- (iii) Radioactive decay of the molecules

Magnetron valve

- (c) < 10⁻³ nm
 (d) 1mm to 0.1 m
- (1) (a)–(i), (b)–(ii), (c)–(iii), (d)–(iv)
- (3) (a)–(iv), (b)–(iii), (c)–(ii), (d)–(i)

- (2) (a)-(iii), (b)-(iv), (c) (i), (d)-(ii)
- (4) (a)–(ii), (b)–(iii), (c)–(iv), (d)–(i)

[JEE (Main) 2014, 4/120, -1]

11. Match the List–I (Phenomenon associated with electromagnetic radiation) with List–II (Part of electromagnetic spectrum) and select the correct code from the choices given below the lists : [JEE (MAIN) 2014_ONLINE TEST]

	List-I		List –II
Ι	Doublet of sodium	А	visible radiation
П	Wavelength corresponding to	В	Microwave
	temperature associated with the isotropic		
	radiation filling all space		
	Wavelength emitted by atomic hydrogen	С	Short radiowaves
	in interstellar space		
IV	Wavelength of radiation arising from the	D.	X–rays
	two close energy level in hydrogen		
(1) (I)	– (B), (II) – (A), (III), (D), (IV)– (A)		(2) (I) – (A), (II) – (B), (III), (B), (IV)– (C)
(3) (I)	– (A), (II) – (B), (III), (C), (IV)– (C)		(4) (I) – (D), (II) – (C), (III), (A), (IV)– (B)

12. An electromagnetic wave of frequency 1×10^{14} hertz is propagating along z-axis. The amplitude of electric field is 4V/m. If $\epsilon_0 = 8.8 \times 10^{-12} \text{ C}^2/\text{N}-\text{m}^2$, then average energy density of electric field will be :

(1) 35.2 × 10 ⁻¹¹ J/m ³	(2) 35.2 × 10 ⁻¹² J/m ³	(3) 35.2 × 10 ^{−13} J/m ³	(4) 35.2 × 10 ^{−10} J/m ³

If denote microwaves, X rays, infrared, gamma rays, ultra-violet, radio waves and visible parts of the electromagnetic spectrum by M, X, I, G, U, R and V, the following is the arrangement in ascending order of wavelength : [JEE (Main) 2014_ONLINE TEST]
 (1) I, M, R, U, V, X and G
 (2) R, M, I, V, U, X and G

(3) M, R, V, X, U, G and I (4) G, X, U, V, I, M and R

14. An electromagnetic wave travelling in the x-direction has frequency of 2 x 10¹⁴ Hz and electric field amplitude of 27 Vm⁻¹. From the options given below, which one describes the magnetic field for this wave ?
[JEE (Main) 2015_ONLINE TEST]

(1)	$\vec{B}(x, t) = (9 \times 10^{-8} \text{ T})\hat{j}$ sin[1.5×10 ⁻⁶ x - 2×10 ¹⁴ t]	(2)	$\vec{B}(x, t) = (9 \times 10^{-8} \text{ T})\hat{i}$ sin[2\pi(1.5 \times 10^{-8} x - 2 \times 10^{14} t)]
(3)	$\begin{split} \vec{B}(x, t) &= (9 \times 10^{-8} \text{ T}) \hat{k} \\ &\sin \left[2\pi (1.5 \times 10^{-6} x - 2 \times 10^{14} t) \right] \end{split}$	(4)	$\vec{B}(x, t) = (3 \times 10^{-8} \text{ T})\hat{j}$ sin[2\pi(1.5 \times 10^{-8} x - 2 \times 10^{14} t)]

15. For plane electromagnetic waves propagating in the z direction, which one of the following combination gives the correct possible direction for \vec{E} and \vec{B} field respectively? [JEE (Main) 2015_ONLINE TEST]

(1) $(2\hat{i}+3\hat{j})$ and $(\hat{i}+2\hat{j})$	(2) $\left(-2\hat{i}-3\hat{j}\right)$ and $\left(3\hat{i}-2\hat{j}\right)$
(3) $(3\hat{i}+4\hat{j})$ and $(4\hat{i}-3\hat{j})$	(4) $\left(\hat{i}+2\hat{j}\right)$ and $\left(2\hat{i}-\hat{j}\right)$

16. Arrange the following electromagnetic radiations per quantum in the order of increasing energy :

A: Blue light	B : Yellow	light	[JEE (Main) 2016 ; 4/120, –1]
C: X-ray	D : Radiow	ave	
(1) A, B, D, C	(2) C, A, B, D	(3) B, A, D, C	(4) D, B, A, C

17. An EM wave from air enters a medium. The electric fields are $\vec{E}_1 = E_{01}\hat{x}\cos\left[2\pi v\left(\frac{z}{c}-t\right)\right]$ in air and $\vec{E}_2 = E_{02}\hat{x}\cos[k(2z-ct)]$ in medium, where the wave number k and frequency v refer to their values in air. The medium is non-magnetic. If ε_{r_1} and ε_{r_2} refer to relative permittivities of air and medium respectively, which of the following options is correct ? [JEE(Main)-2018,4/120,-1]

(1)
$$\frac{\varepsilon_{r_1}}{\varepsilon_{r_2}} = \frac{1}{4}$$
 (2) $\frac{\varepsilon_{r_1}}{\varepsilon_{r_2}} = \frac{1}{2}$ (3) $\frac{\varepsilon_{r_1}}{\varepsilon_{r_2}} = 4$ (4) $\frac{\varepsilon_{r_1}}{\varepsilon_{r_2}} = 2$

		EX	ERCIS	E-1				EX	(ERCISI	E-2	
1.	(3)	2.	(4)	3.	(1)	1.	(1)	2.	(2)		
4.	(3)	5.	(2)	6.	(4)						
7.	(1)	8.	(1)	9.	(3)			EX	ERCIS	E-3	
10.	(4)	11.	(3)	12.	(4)				PART –		
13.	(4)	14.	(3)	15.	(4)	1.	(2)	2.	(3)	3.	(*
16.	(2)	17.	(3)	18.	(1)	4.	(3)	5.	(2)	6.	(2
19.	(1)	20.	(2)	21.	(3)	7.	(1)	8.	(3)	9.	(4
22.	(2)	23.	(3)	24.	(2)	10.	(1)	11.	(2)	12.	(2
25.	(4)	26.	(1)	27.	(4)	13.	(4)	14.	(3)	15.	(2
28.	(3)	29.	(1)	30.	(4)	16.	(4)	17.	(1)		(-
31.	(3)						()		(.)		