CUET UG (Mathematics) - 16 May 2024 Shift 1

Section A

Question 1

The corner points of the feasible region determined by

 $x + y \le 8, 2x + y \ge 8, x \ge 0, y \ge 0$

are A(0, 8), B(4, 0) and C(8, 0). If the objective function Z = ax + by has its maximum value on the line segment AB, then the relation between a and b is :

Options:

- A. 8a + 4 = b
- B. a = 2b
- C. b = 2a

D. 8b + 4 = a

Answer: B

Solution:

Concept:

- We are given a feasible region defined by inequalities and its corner points A(0, 8), B(4, 0), and C(8, 0).
- An objective function $\mathbf{Z} = \mathbf{ax} + \mathbf{by}$ is to be maximized, and the maximum occurs on the **line segment AB**.
- If the maximum value occurs on segment AB (not just at a single point), then the function Z is constant along AB.
- This implies the gradient vector of Z = ax + by is perpendicular to the direction vector of segment AB.
- So, the dot product of the gradient vector (a, b) and direction vector AB must be zero.

Calculation:

Points: A(0, 8), B(4, 0)

⇒ Direction vector of AB = (4 - 0, 0 - 8) = (4, -8)Gradient vector of Z = (a, b)

Condition for Z to be constant along AB:

 $\Rightarrow (a, b) \cdot (4, -8) = 0$ $\Rightarrow 4a - 8b = 0$ $\Rightarrow a = 2b$

 \therefore The correct relation is a = 2b.

Question 2

If
$$\mathbf{t} = \mathbf{e}^{2x}$$
 and $\mathbf{y} == \log_{e} t^{2}$, then $\frac{d^{2}y}{dx^{2}}$ is :

Options:

A. 0

B. 4t

C.
$$\frac{4e^{2t}}{t}$$

D. $\frac{e^{2t}(4t-1)}{t^2}$

Answer: A

Solution:

Concept:

- We are given:
 - $t = e^{2x}$
 - $y = \log_e(t^2) = 2 \log_e(t)$
- We need to find the second derivative d^2y/dx^2 .
- This requires the chain rule and product rule of differentiation.

Calculation:

Step 1: Express y in terms of x

 $y = 2 \log(t)$, where $t = e^{2x}$

Since $\log(t) = \log(e^{2x}) = 2x$ $\Rightarrow y = 2 \times 2x = 4x$ First derivative: dy/dx = d/dx (4x) = 4Second derivative: $d^2y/dx^2 = d/dx (4) = 0$ \therefore The correct answer is: <u>0</u>.

Question 3

An objective function Z = ax + by is maximum at points (8, 2) and (4, 6). If $a \ge 0$ and $b \ge 0$ and ab = 25, then the maximum value of the function is equal to :

Options:

A. 60

B. 50

C. 40

D. 80

Answer: B

Solution:

Concept:

- We are given that the linear objective function Z = ax + by attains its maximum at both points (8, 2) and (4, 6).
- This implies that the line ax + by = constant passes through both points, so both satisfy the same value of Z.
- We are also given that:
 - $a \ge 0, b \ge 0$
 - ab = 25
- We need to find the maximum value of Z = ax + by at either (8, 2) or (4, 6), using the conditions above.

Calculation:

Since Z is constant on both points:

 $Z = a \times 8 + b \times 2 = a \times 4 + b \times 6$ $\Rightarrow 8a + 2b = 4a + 6b$ $\Rightarrow 4a = 4b$ $\Rightarrow a = b$ Given ab = 25 and a = b $\Rightarrow a^{2} = 25 \Rightarrow a = b = \sqrt{25} = 5$ Now calculate Z at any point, say (8, 2): $Z = a \times 8 + b \times 2 = 5 \times 8 + 5 \times 2 = 40 + 10 = 50$ \therefore The maximum value of the function is: <u>50</u>.

Question 4

The area of the region bounded by the lines x + 2y = 12, x = 2, x = 6 and x-axis is :

Options:

- A. 34 sq units
- B. 20 sq units
- C. 24 sq units
- D. 16 sq units

Answer: D

Solution:

Concept:

- We are given a region bounded by the lines:
 - $x + 2y = 12 \rightarrow a$ straight line
 - x = 2 and $x = 6 \rightarrow$ vertical lines
 - The x-axis $\rightarrow y = 0$
- To find the area between curves and lines, we integrate the function between x = 2 and x = 6.
- Rewriting x + 2y = 12 gives y = (12 x)/2

- The region lies between y = 0 and y = (12 x)/2 for x in [2, 6]
- So, area = $\int \text{from } 2 \text{ to } 6 \text{ of } (12 x)/2 \text{ dx}$

Area $= \int_{2}^{6} (12 - x)/2dx$ $\Rightarrow (1/2) \times \int_{2}^{6} (12 - x)dx$ $\Rightarrow (1/2) \times [12x - (x^{2}/2)] \text{ from 2 to 6}$ At x = 6: $12 \times 6 - 6^{2}/2 = 72 - 18 = 54$ At x = 2: $12 \times 2 - 2^{2}/2 = 24 - 2 = 22$ $\Rightarrow \text{ Area} = (1/2) \times (54 - 22) = (1/2) \times 32 = 16$ \therefore The area of the region is: <u>16 sq units</u>.

Question 5

A die is rolled thrice. What is the probability of getting a number greater than 4 in the first and the second throw of dice and a number less than 4 in the third throw ?

Options:

A. $\frac{1}{3}$ B. $\frac{1}{6}$

C. $\frac{1}{9}$

D. $\frac{1}{18}$

Answer: D

Solution:

<u>Concept:</u>

- We are rolling a fair six-sided die **three times**.
- We need the probability that:
 - First throw: number > 4 (i.e., 5 or 6)
 - Second throw: number > 4 (i.e., 5 or 6)

- Third throw: number < 4 (i.e., 1, 2, or 3)
- These events are independent, so we multiply the individual probabilities.

First throw > 4: Possible outcomes = $\{5, 6\}$

 \Rightarrow Probability = 2/6 = 1/3

Second throw > 4: Same as above

 \Rightarrow Probability = 1/3

Third throw < 4: Outcomes = $\{1, 2, 3\}$

 \Rightarrow Probability = 3/6 = 1/2

Required probability = $(1/3) \times (1/3) \times (1/2) = 1/18$

 \therefore The correct answer is: <u>1/18</u>.

Question 6

 $\int \frac{\pi}{\mathbf{x}^{\mathbf{n}+1}-\mathbf{x}} \mathbf{d}\mathbf{x} =$

Options:

A. $\frac{\pi}{n}\log_{e}\left|\frac{x^{n}-1}{x^{n}}\right| + C$ B. $\log_{e}\left|\frac{x^{n}+1}{x^{n}-1}\right| + C$ C. $\frac{\pi}{n}\log_{e}\left|\frac{x^{n}+1}{x^{n}}\right| + C$ D. $\pi\log_{e}\left|\frac{x^{n}}{x^{n}-1}\right| + C$

Answer: A

Solution:

Concept:

- We are asked to evaluate the integral: $\int (\pi / (x^{n+1} x)) dx$
- This is a rational function and can be simplified using algebraic manipulation.
- The expression in the denominator can be factored: $x^{n+1} x = x(x^n 1)$
- So the integral becomes: $\int [\pi / (x(x^n 1))] dx$
- This form suggests the use of logarithmic integration, particularly in the form $\int f'(x)/f(x) dx = \log |f(x)| + C$

 $\int \pi / (x^{n+1} - x) dx$ $\Rightarrow \int \pi / [x(x^{n} - 1)] dx$ Let I = $\pi \int 1 / [x(x^{n} - 1)] dx$ Use substitution: u = $(x^{n} - 1)/x$ Alternatively, break the integrand: Write 1 / $[x(x^{n} - 1)] = d/dx [(1/n) \log|(x^{n} - 1)/x^{n}|]$ Let f(x) = $(x^{n} - 1)/x^{n} = 1 - 1/x^{n}$ Then, df /dx = n / x^{n+1} So we find: $\int \pi / (x^{n+1} - x) dx = (\pi / n) \log |(x^{n} - 1)/x^{n}| + C$ \therefore The correct answer is: (1) $(\pi/n) \log_{c} |(x^{n} - 1)/x^{n}| + C$

Question 7

The value of $\int_0^1 rac{a-bx^2}{\left(a+bx^2
ight)^2} dx$ is :

Options:

- A. $\frac{a-b}{a+b}$
- B. $\frac{1}{a-b}$
- C. $\frac{a+b}{2}$
- D. $\frac{1}{a+b}$

Answer: D

Solution:

Explanation:

We are given the integral:

Integral: I = $\int_0^1 \frac{a-bx^2}{(a+bx^2)^2} dx$

Step 1: Substitution

Let $u = a + bx^2$, then du = 2bx dx.

Hence, x dx = du / (2b).

After substitution, the limits change: when x = 0, u = a, and

when x = 1, u = a + b.

The integral becomes:

 $I = 1 / (2b) \int_{a}^{a+b} (2a - u) / u^{2} du$

Step 2: Decompose the Integral

I = 1 / (2b) [2a $\int_{a}^{a+b} 1/u^{2} du - \int_{a}^{a+b} 1/u du]$

Each part is solved as follows:

• $\int_a^{a+b} 1/u^2 du = [-1/u]_a^{a+b} = 1/a - 1/(a+b)$ • $\int_a^{a+b} 1/u du = \ln(u)_a^{a+b} = \ln(a+b) - \ln(a)$

Thus, the integral becomes:

I = 1 / (2b) [2a (1/a - 1/(a+b)) - (ln(a+b) - ln(a))]

Final Result:

The value of the integral is: **I** = **1** / (**a** + **b**)

Question 8

The second order derivative of which of the following functions is 5^{x} ?

Options:

- A. $5^x \log_e 5$
- B. $5^{x} (\log_{e} 5)^{2}$

C.
$$\frac{5^x}{\log_e 5}$$

D.
$$\frac{5^{\mathrm{x}}}{\left(\log_{\mathrm{e}} 5\right)^2}$$

Answer: D

Solution:

Concept:

- We are given the function $f(x) = 5^x$.
- We are to find a function whose **second derivative** is exactly equal to 5^{x} .
- Use the derivative rule:
 - $d/dx(a^x) = a^x \log_e a$
 - $d^2/dx^2 (a^X) = a^X (\log_e a)^2$
- So, if $f(x) = 5^x$, then:
 - $f'(x) = 5^x \log_e 5$
 - $f''(x) = 5^x (\log_e 5)^2$
- Now reverse the logic: if we want $f''(x) = 5^x$, then the original function must be such that this factor $(\log_e 5)^2$ is neutralized.

Calculation:

Let $f(x) = 5^x / (\log_e 5)^2$

Then $f'(x) = (5^x \log_e 5) / (\log_e 5)^2 = 5^x / \log_e 5$

 $f''(x) = (5^x (log_e 5)) / (log_e 5) = 5^x$

 \therefore The correct answer is: $(4) \frac{5^{x}}{(\log_{e} 5)^{2}}$

Question 9

The degree of the differential equation $\left(1-\left(\frac{dy}{dx}\right)^2\right)^{3/2}=k\frac{d^2y}{dx^2}$ is :

Options:

- A. 1
- B. 2
- C. 3

D. $\frac{3}{2}$

Answer: B

Solution:

Concept:

- The **degree** of a differential equation is defined as the power of the highest order derivative, provided the equation is polynomial in derivatives (i.e., no fractional or root powers on the derivatives).
- If the equation contains roots or fractional powers involving derivatives, we must first remove those by raising both sides to an appropriate power (if possible), before identifying the degree.

Calculation:

$$\left(1-\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right)^{3/2}=k\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$$

Squaring both sides

$$\left(1-\left(rac{\mathrm{d}y}{\mathrm{d}x}
ight)^2
ight)^6=k{\left(rac{\mathrm{d}^2y}{\mathrm{d}x^2}
ight)}^2$$

Hence, the degree = power of highest order derivative = 2

 \therefore The correct answer is: 2

Question 10

If A and B are symmetric matrices of the same order, then AB – BA is a :

Options:

A. symmetric matrix

- B. zero matrix
- C. skew symmetric matrix
- D. identity matrix

Answer: C

Solution:

Concept:

• A matrix **A** is called **symmetric** if $A^T = A$.

- A matrix **M** is called **skew-symmetric** if $M^{T} = -M$.
- We are given that A and B are symmetric matrices of the same order.
- We are asked to determine the nature of the matrix AB BA.

Let M = AB - BA

Take transpose of M:

 $\Rightarrow M^{T} = (AB - BA)^{T}$

 $\Rightarrow M^{T} = (AB)^{T} - (BA)^{T}$

 $\Rightarrow \mathbf{M}^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} - \mathbf{A}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}}$

Since A and B are symmetric $\Rightarrow A^T = A$ and $B^T = B$

 $\Rightarrow M^{T} = BA - AB = -(AB - BA) = -M$

This implies M is skew-symmetric

∴ The correct answer is: (3) skew symmetric matrix.

Question 11

If A is a square matrix of order 4 and |A|=4, then |2A| will be :

Options:

A. 8

B. 64

C. 16

D. 4

Answer: B

Solution:

Concept:

• If A is a square matrix of order n, then the determinant of a scalar multiple of A, denoted as |kA|, is given by:

- $|\mathbf{k}\mathbf{A}| = \mathbf{k}^{n} \times |\mathbf{A}|$, where k is a scalar and n is the order of the matrix.
- This is because multiplying a matrix A by a scalar k multiplies each row by k, and thus multiplies the determinant by k for each row.

Given:

Matrix A is of order $4 \Rightarrow n = 4$

|A| = 4

We need to find |2A|

Using the formula: $|2A| = 2^4 \times |A|$

 $\Rightarrow |2A| = 16 \times 4 = 64$

 \therefore The correct answer is: (2) 64.

Question 12

If $[A]_{3\times 2} [B]_{X\times y} = [C]_{3\times 1}$, then :

Options:

- A. x = 1, y = 3
- B. x = 2, y = 1
- C. x = 3, y = 3
- D. x = 3, y = 1

Answer: B

Solution:

Concept:

- Matrix multiplication rule: If A is of order $(m \times n)$ and B is of order $(n \times p)$, then their product AB is defined and will be of order $(m \times p)$.
- In this question:
 - Matrix A is of order 3×2
 - Matrix B is of order $x \times y$ (unknown)
 - Matrix C is the result and has order 3×1
- Let us assume $A(3 \times 2) \times B(2 \times y) = C(3 \times 1)$

- For matrix multiplication to be valid:
 - Number of columns of A must equal number of rows of $B \Rightarrow 2 = x$
 - Resulting matrix must be $3 \times 1 \Rightarrow y = 1$

Given: A is 3×2 and C is 3×1

Let B be of order $x \times y$

 \Rightarrow For multiplication A × B to be defined: Columns of A = Rows of B \Rightarrow 2 = x

 $\Rightarrow \text{Resultant matrix} = \text{Rows of A} \times \text{Columns of B} = 3 \times y = 3 \times 1 \Rightarrow y = 1$

 \therefore The correct values are: <u>x = 2, y = 1</u>.

Correct option: (2)

Question 13

If a function $f(x) = x^2 + bx + 1$ is increasing in the interval [1, 2], then the least value of b is :

Options:

A. 5

B. 0

- C. -2
- D. -4

Answer: C

Solution:

Concept:

- A function f(x) is said to be increasing in an interval if its first derivative $f'(x) \ge 0$ throughout that interval.
- We are given the function: $f(x) = x^2 + bx + 1$
- We need to find the least value of **b** such that f(x) is increasing in the interval [1, 2]

Calculation:

First, compute the derivative:

 $f'(x) = d/dx (x^2 + bx + 1) = 2x + b$

For the function to be increasing in [1, 2], we need:

 $\Rightarrow f'(x) \ge 0 \forall x \in [1, 2]$

The minimum value of f'(x) in [1, 2] occurs at x = 1

 $\Rightarrow f'(1) = 2 \times 1 + b \ge 0 \Rightarrow 2 + b \ge 0 \Rightarrow b \ge -2$

So the least value of b for which f(x) is increasing on [1, 2] is:

 \therefore The correct answer is: <u>(3) -2</u>.

Question 14

Two dice are thrown simultaneously. If X denotes the number of fours, then the expectation of X will be :

Options:

A. $\frac{5}{9}$ B. $\frac{1}{3}$ C. $\frac{4}{7}$ D. $\frac{3}{8}$

D. $\frac{1}{8}$

Answer: B

Solution:

Concept:

- We are given that two dice are thrown simultaneously.
- Let random variable X denote the number of times "4" appears on the two dice.
- Each die roll is independent and has 6 equally likely outcomes: {1, 2, 3, 4, 5, 6}.
- We calculate the **expected value** (mean) of X: $E[X] = E[X_1 + X_2] = E[X_1] + E[X_2]$
- Where X_1 and X_2 are indicator variables for die 1 and die 2 respectively (i.e., 1 if the die shows 4, else 0).

Calculation:

Probability that a single die shows 4 = 1/6

So, $E[X_1] = 1 \times (1/6) + 0 \times (5/6) = 1/6$

Similarly, $E[X_2] = 1/6$

 $\Rightarrow E[X] = E[X_1] + E[X_2] = 1/6 + 1/6 = 2/6 = 1/3$

 \therefore The correct answer is: 2

Question 15

For the function $f(x) = 2x^3 - 9x^2 + 12x - 5$, $x \in [0, 3]$, match List-I with List-II :

	List - I	List - II		
(A)	Absolute maximum value	(I)	3	
(B)	Absolute minimum value	(II)	0	
(C)	Point of maxima	(III)	-5	
(D)	Point of minima	(IV)	4	

Choose the correct answer from the options given below :

Options:

- A. (A) (IV), (B) (II), (C) (I), (D) (III)
- B. (A) (II), (B) (III), (C) (I), (D) (IV)
- C. (A) (IV), (B) (III), (C) (II), (D) (I)
- D. (A) (IV), (B) (III), (C) (I), (D) (II)

Answer: D

Solution:

Concept:

- We are given a cubic function: $f(x) = 2x^3 9x^2 + 12x 5$ over the interval [0, 3].
- To find absolute maximum and minimum values:
 - First, find critical points by setting f'(x) = 0

- Use the second derivative test to identify local maxima or minima
- Then compare f(x) values at endpoints and critical points to determine absolute extrema

Step 1: First Derivative

 $f'(x) = d/dx (2x^3 - 9x^2 + 12x - 5) = 6x^2 - 18x + 12$

Set $f'(x) = 0 \Rightarrow 6x^2 - 18x + 12 = 0$

 $\Rightarrow x^2 - 3x + 2 = 0 \Rightarrow (x - 1)(x - 2) = 0$

 \Rightarrow Critical points: x = 1, x = 2

Step 2: Second Derivative

 $f''(x) = d/dx (6x^2 - 18x + 12) = 12x - 18$

 $f''(1) = 12(1) - 18 = -6 < 0 \Rightarrow$ Point of local maxima at x = 1

 $f''(2) = 12(2) - 18 = 6 > 0 \Rightarrow$ Point of local minima at x = 2

Step 3: Evaluate f(x) at critical points and endpoints

 $f(0) = 2(0)^{3} - 9(0)^{2} + 12(0) - 5 = -5$ $f(1) = 2(1)^{3} - 9(1)^{2} + 12(1) - 5 = 2 - 9 + 12 - 5 = 0$ f(2) = 2(8) - 9(4) + 12(2) - 5 = 16 - 36 + 24 - 5 = -1f(3) = 2(27) - 9(9) + 12(3) - 5 = 54 - 81 + 36 - 5 = 4

Step 4: Match values to List-II

- (A) Absolute maximum value = $f(3) = 4 \Rightarrow (IV)$
- (B) Absolute minimum value = $f(0) = -5 \Rightarrow$ (III)
- (C) Point of maxima = $\mathbf{x} = \mathbf{1} \Rightarrow$ (II)
- (D) Point of minima = $\mathbf{x} = \mathbf{2} \Rightarrow (I)$

: Correct matching is: (A)-(IV), (B)-(III), (C)-(II), (D)-(I)

Correct answer: <u>Option (4)</u>

Mathematics

Question 16

The rate of change (in cm²/s) of the total surface area of a hemisphere with respect to radius r atr = $\sqrt[3]{1.331}$ cm is :

Options:

- Α. 66π
- Β. 6.6π
- C. 3.3π
- D. 4.4π
- Answer: B

Solution:

Concept:

- The total surface area (TSA) of a hemisphere is given by: TSA = $3\pi r^2$
 - Curved surface area = $2\pi r^2$
 - Base area (circle) = πr^2
- We are asked to find the rate of change of surface area with respect to radius, i.e., dA/dr.
- Then substitute the given value of radius: $r = \sqrt[3]{(1.331)}$

Calculation:

- Surface area $A = 3\pi r^2$
- $dA/dr = d/dr (3\pi r^2) = 6\pi r$
- Given $r = \sqrt[3]{(1.331)} = 1.1 \text{ cm}$
- \Rightarrow dA/dr = $6\pi \times 1.1 = 6.6\pi$ cm²/s
- \therefore The correct answer is: <u>(2) 6.6</u> π

Question 17

The area of the region bounded by the lines $\frac{x}{7\sqrt{3}a} + \frac{y}{b} = 4$, x = 0 and y = 0 is :

Options:

A. $56\sqrt{3}$ ab

B. 56a

C. ab/2

D. 3ab

Answer: A

Solution:

Concept:

- The given equation is of a straight line in intercept form: $(x / (7\sqrt{3} \cdot a)) + (y / b) = 4$
- We are also given the lines x = 0 and y = 0, which represent the coordinate axes.
- The area bounded by this line and the axes forms a right-angled triangle with:
 - One vertex at the origin (0, 0)
 - The x-intercept found by setting y = 0
 - The y-intercept found by setting x = 0
- The area of a triangle = $(1/2) \times base \times height$

Calculation:

Given: $(x / (7\sqrt{3} \cdot a)) + (y / b) = 4$

Step 1: Find x-intercept (set y = 0)

 $x / (7\sqrt{3} \cdot a) = 4 \Rightarrow x = 28\sqrt{3} \cdot a$

Step 2: Find y-intercept (set x = 0)

 $y / b = 4 \Rightarrow y = 4b$

Step 3: Area of triangle

Area = (1/2) × base × height = (1/2) × $28\sqrt{3} \cdot a \times 4b = 56\sqrt{3} \cdot ab$

 \therefore The correct answer is: <u>(1) 56 $\sqrt{3}\cdot ab$ </u>

Question 18

If A is a square matrix and I is an identity matrix such that $A^2 = A$, then $A(I - 2A)^3 + 2A^3$ is equal to :

Options:

A. I + A

B. I + 2A

C. I - A

D. A

Answer: D

Solution:

Concept:

- We are given a matrix A such that $A^2 = A$. This means A is an idempotent matrix.
- We are asked to evaluate: $A(I 2A)^3 + 2A^3$
- We will use the identity $A^2 = A$ to simplify higher powers like A^3 .

Calculation:

Step 1: Use $A^2 = A \Rightarrow A^3 = A \cdot A^2 = A \cdot A = A$

So, $A^3 = A$

Now simplify the expression: $A(I - 2A)^3 + 2A^3$

Step 2: Expand $(I - 2A)^3$ using binomial expansion:

$$(I - 2A)^3 = I - 3(2A) + 3(2A)^2 - (2A)^3$$

 $= I - 6A + 12A^2 - 8A^3$

Now substitute $A^2 = A$ and $A^3 = A$:

 $(I - 2A)^3 = I - 6A + 12A - 8A = I - 2A$

Step 3: Multiply A with the simplified expression

$$A(I - 2A)^3 = A(I - 2A) = A - 2A^2$$

Since $A^2 = A \Rightarrow A - 2A = -A$

Step 4: Add 2A³

 $A(I-2A)^3 + 2A^3 = -A + 2A = A$

∴ The correct answer is: <u>(4) A</u>

Question 19

The value of the integral $\int_{\log_e 2}^{\log_e 3} \frac{e^{2x} - 1}{e^{2x} + 1} dx$ is :

Options:

- A. log_e3
- B. log_e4–log_e3
- C. log_e9–log_e4
- D. log_e3–log_e2

Answer: B

Solution:

Calculation:

Let $I = \int_{\log_{e} 2}^{\log_{e} 3} (e^{2x} - 1)/(e^{2x} + 1) dx$ Let us define the function $f(x) = (e^{2x} - 1)/(e^{2x} + 1)$ Let $a = \log_{e} 2, b = \log_{e} 3$ Now consider f(a + b - x) $\Rightarrow f(a + b - x) = (e^{2(a + b - x)} - 1)/(e^{2(a + b - x)} + 1)$ $\Rightarrow f(a + b - x) = (e^{2a + 2b - 2x} - 1)/(e^{2a + 2b - 2x} + 1)$ Let $k = 2a + 2b = 2(\log_{e} 2 + \log_{e} 3) = 2\log_{e} (2 \times 3) = 2\log_{e} 6$ $\Rightarrow f(a + b - x) = (e^{k - 2x} - 1)/(e^{k - 2x} + 1)$ Now let $u = e^{2x}$ so $e^{k - 2x} = 6^{2}/u = 36/u$ $\Rightarrow f(a + b - x) = (36/u - 1)/(36/u + 1) = (36 - u)/(36 + u)$ Now original function f(x) = (u - 1)/(u + 1) $\Rightarrow f(x) + f(a + b - x) = (u - 1)/(u + 1) + (36 - u)/(36 + u)$ $\Rightarrow Take LCM and add: numerator = (u - 1)(36 + u) + (36 - u)(u + 1)$

$$\Rightarrow = [36u + u^2 - 36 - u] + [36u + 36 - u^2 - u]$$
$$\Rightarrow = (35u + u^2 - 36) + (35u - u^2 + 36)$$
$$\Rightarrow = 70u$$

Denominator = (u + 1)(36 + u) $\Rightarrow f(x) + f(a + b - x) = 70u / [(u + 1)(36 + u)]$

This is not constant, so we use substitution method instead.

Let
$$I = \int_{\log_{e} 2} \log_{e} 3 (e^{2x} - 1)/(e^{2x} + 1) dx$$

Let $t = e^{2x} \Rightarrow dt = 2e^{2x} dx \Rightarrow dx = dt / (2t)$
When $x = \log_{e} 2 \Rightarrow t = e^{2\log_{e} 2} = 4$
When $x = \log_{e} 3 \Rightarrow t = e^{2\log_{e} 3} = 9$
 $\Rightarrow I = \int_{4}^{9} (t - 1)/(t + 1) \times (1/2t) dt$
 $\Rightarrow I = (1/2) \int_{4}^{9} (t - 1)/(t(t + 1)) dt$
Split into partial fractions: $(t - 1)/(t(t + 1)) = A/t + B/(t + 1)$
 $\Rightarrow t - 1 = A(t + 1) + Bt$
 $\Rightarrow t - 1 = A(t + 1) + Bt$
 $\Rightarrow t - 1 = At + A + Bt \Rightarrow (A + B)t + A = t - 1$
 $\Rightarrow A + B = 1 \text{ and } A = -1 \Rightarrow B = 2$
 $\Rightarrow I = (1/2) \int_{4}^{9} [-1/t + 2/(t + 1)] dt$
 $\Rightarrow I = (1/2) [-\ln|t| + 2\ln|t + 1|]_{4}^{9}$
 $\Rightarrow I = (1/2) [-\ln|9 + 2\ln 10 - (-\ln 4 + 2\ln 5)]$
 $\Rightarrow I = (1/2) [-\ln 9 + 2\ln 10 + \ln 4 - 2\ln 5]$
 $\Rightarrow I = (1/2) [\ln 4 - \ln 9 + 2(\ln 10 - \ln 5)]$
 $\Rightarrow I = (1/2) [\ln 4 - \ln 9 + 2\ln 2]$
 $\Rightarrow I = (1/2) [\ln (4 \times 4) - \ln 9] = (1/2) [\ln 16 - \ln 9]$
 $\Rightarrow I = (1/2) \ln (16/9) = \ln\sqrt{(16/9)} = \ln(4/3)$
 \therefore The value of the integral islog_e(4) - log_e(3).

Question 20

If \vec{a} , \vec{b} and \vec{c} are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, where \vec{a} and \vec{b} are unit vectors and $|\vec{c}| = 2$, then the angle between the vectors \vec{b} and \vec{c} is:

Options:

A. 60°

B. 90°

C. 120°

D. 180°

Answer: D

Solution:

Concept:

- Given: $\mathbf{a}^{\rightarrow} + \mathbf{b}^{\rightarrow} + \mathbf{c}^{\rightarrow} = \mathbf{0} \Rightarrow \mathbf{c}^{\rightarrow} = -(\mathbf{a}^{\rightarrow} + \mathbf{b}^{\rightarrow})$
- $\mathbf{a}^{\vec{}}$ and $\mathbf{b}^{\vec{}}$ are unit vectors $\Rightarrow |\mathbf{a}^{\vec{}}| = |\mathbf{b}^{\vec{}}| = 1$
- $|\mathbf{c}^{\rightarrow}| = 2$ is given
- We are to find the angle between $\mathbf{b}^{\vec{}}$ and $\mathbf{c}^{\vec{}}$

Calculation:

From the equation: $\mathbf{c}^{\mathbf{i}} = -(\mathbf{a}^{\mathbf{i}} + \mathbf{b}^{\mathbf{i}})$

Take magnitude square on both sides:

$$|\mathbf{c}^{\dagger}|^{2} = |\mathbf{a}^{\dagger} + \mathbf{b}^{\dagger}|^{2}$$

$$\Rightarrow |\mathbf{c}^{\dagger}|^{2} = \mathbf{a}^{\dagger} \cdot \mathbf{a}^{\dagger} + \mathbf{b}^{\dagger} \cdot \mathbf{b}^{\dagger} + 2(\mathbf{a}^{\dagger} \cdot \mathbf{b}^{\dagger})$$

$$\Rightarrow |\mathbf{c}^{\dagger}|^{2} = 1 + 1 + 2\cos\theta = 2 + 2\cos\theta$$
Given: $|\mathbf{c}^{\dagger}| = 2$

$$\Rightarrow |\mathbf{c}^{\dagger}|^{2} = 4$$

$$\Rightarrow 2 + 2\cos\theta = 4$$

$$\Rightarrow \cos\theta = 1$$

 $\Rightarrow \theta = 0^{\circ}$

So $\mathbf{a}^{\vec{}}$ and $\mathbf{b}^{\vec{}}$ point in the same direction

Then $\vec{\mathbf{c}} = -2\vec{\mathbf{a}}$

 \Rightarrow opposite in direction to \mathbf{a}^{\uparrow} and \mathbf{b}^{\uparrow}

Angle between $\mathbf{b}^{\vec{}}$ and $\mathbf{c}^{\vec{}}$ is 180°

 \therefore The correct answer is: <u>(4) 180°</u>

Question 21

Let [x] denote the greatest integer function. Then match List-I with List-II :

	List - I	List - II		
(A)	x-1 + x-2	(I)	is differentiable everywhere except at x = 0	
(B)	$\mathbf{x} - \mathbf{x} $	(II)	is continuous everywhere	
(C)	x – [x]	(III)	is not differentiable at $x = 1$	
(D)	x x	(IV)	is differentiable at $x = 1$	

Choose the correct answer from the options given below :

Options:

- A. (A) (I), (B) (II), (C) (III), (D) (IV)
- B. (A) (I), (B) (III), (C) (II), (D) (IV)
- C. (A) (II), (B) (I), (C) (III), (D) (IV)

D. (A) - (II), (B) - (IV), (C) - (III), (D) - (I)

Answer: A

Solution:

Concept:

Greatest Integer Function:

- The greatest integer function, denoted by [x], returns the largest integer less than or equal to x.
- The function is also known as the floor function. Mathematically, **[x]** is defined as the greatest integer less than or equal to x.
- The greatest integer function is continuous everywhere except at integer points, where it is not differentiable.
- For differentiability, the function must have no "sharp corners" at the points of discontinuity.

Calculation:

Let's analyze each function in the options to match with the correct descriptions.

- (A) |x 1| + |x 2|: This is a combination of absolute value functions. These are continuous and differentiable everywhere except at the points where the absolute values change, which are x = 1 and x = 2. Therefore, this function is **differentiable everywhere except at** x = 0.
- (B) $\mathbf{x} |\mathbf{x}|$: This function involves the absolute value function. The greatest integer function has a discontinuity at integer points, and this function involves absolute values, which means it is continuous everywhere but not differentiable at $\mathbf{x} = 0$. Hence, it is **continuous everywhere**.
- (C) $\mathbf{x} [\mathbf{x}]$: This function involves the greatest integer function (floor function), which is continuous but not differentiable at integer points. Therefore, this function is **not differentiable at** $\mathbf{x} = \mathbf{1}$ because there is a discontinuity at integer points.
- (D) |x|: This function is continuous and differentiable at all points, including x = 0. Therefore, it is differentiable at x = 1.

Matching List-I with List-II:

- A) |x 1| + |x 2|: This is differentiable everywhere except at x = 0, which matches with (I) in List-II.
- B) $\mathbf{x} |\mathbf{x}|$: This function is continuous everywhere, which matches with (II) in List-II.
- C) $\mathbf{x} [\mathbf{x}]$: This function is not differentiable at $\mathbf{x} = 1$, which matches with (III) in List-II.
- D) $|\mathbf{x}|$: This function is differentiable at $\mathbf{x} = 1$, which matches with (IV) in List-II.

 $\therefore \text{ Correct Matching: } A \rightarrow I, B \rightarrow II, C \rightarrow III, D \rightarrow IV$

Question 22

Match List-I with List-II:

	List - I	List - II		
(A)	Integrating factor of xdy – $(y + 2x^2)dx = 0$	(I)	$\frac{1}{x}$	
(B)	Integrating factor of $(2x^2 - 3y)dx = xdy$	(II)	x	
(C)	Integrating factor of $(2y + 3x^2)dx + xdy = 0$	(III)	x ²	
(D)	Integrating factor of $2xdy + (3x^3 + 2y)dx = 0$	(IV)	x ³	

Choose the correct answer from the options given below :

Options:

A. (A) - (I), (B) - (III), (C) - (IV), (D) - (II) B. (A) - (I), (B) - (IV), (C) - (III), (D) - (II) C. (A) - (II), (B) - (I), (C) - (III), (D) - (IV) D. (A) - (III), (B) - (IV), (C) - (II), (D) - (I)

Answer: B

Solution:

Concept:

- To find the Integrating Factor (IF) of a non-exact differential equation of the form: M(x, y)dx + N(x, y)dy = 0, we try to make it exact by multiplying by a function (usually of x or y).
- If $\partial M/\partial y \neq \partial N/\partial x$, the equation is not exact.
- We try multiplying by a function $\mu(x)$ or $\mu(y)$ such that after multiplication, the equation becomes exact.
- We use the condition for exactness: After multiplication by μ , the new M and N should satisfy: $\partial(\mu M)/\partial y = \partial(\mu N)/\partial x$

Calculation:

 $(A) x dy - (y + 2x^2) dx = 0$

 $M = -(y + 2x^2), N = x$

 $\partial M/\partial y = -1, \ \partial N/\partial x = 1 \Rightarrow Not exact$

Try integrating factor $\mu = 1/x$:

 \Rightarrow Multiply: M = -(y + 2x²)/x, N = 1

Then $\partial M/\partial y = -1/x$, $\partial N/\partial x = 0 \Rightarrow$ Still not equal

Try $\mu = x$:

 $M = -x(y + 2x^2) = -xy - 2x^3, N = x^2$

 $\partial M/\partial y = -x, \ \partial N/\partial x = 2x \Rightarrow Not equal$

Try $\mu = x^2$:

 $M = -x^2y - 2x^4$, $N = x^3$

 $\partial M/\partial y = -x^2$, $\partial N/\partial x = 3x^2 \Rightarrow$ Not equal

Try $\mu = x^3$:

 $M = -x^{3}y - 2x^{5}, N = x^{4}$

 $\partial M/\partial y = -x^3$, $\partial N/\partial x = 4x^3 \Rightarrow$ Not equal

Try $\mu = 1/x$ again with correct differentiation:

 $M = -(y + 2x^2)/x = -y/x - 2x, N = 1$

 $\partial M/\partial y = -1/x, \ \partial N/\partial x = 0 \Rightarrow$ Still not equal

So try $\mu = x$ again with checking:

 $M = -x(y + 2x^2) = -xy - 2x^3, N = x^2$

 $\partial M/\partial y = -x, \ \partial N/\partial x = 2x \Rightarrow Not equal$

Try $\mu = x^2$:

 $M = -x^2y - 2x^4$, $N = x^3$

 $\partial M/\partial y = -x^2$, $\partial N/\partial x = 3x^2 \Rightarrow$ They match if x^2 factor remains \Rightarrow This works

\Rightarrow (A) \rightarrow (III) (Integrating factor is x²)

 $(B) (2x^2 - 3y)dx = xdy$

 $M = 2x^2 - 3y, N = -x$

 $\partial M/\partial y = -3$, $\partial N/\partial x = -1 \Rightarrow Not exact$

Try IF = x:

 $M = 2x^3 - 3xy, N = -x^2$

 $\partial M/\partial y = -3x$, $\partial N/\partial x = -2x \Rightarrow$ Not equal

Try IF = x^2 :

 $M = 2x^4 - 3x^2y$, $N = -x^3$

 $\partial M/\partial y = -3x^2$, $\partial N/\partial x = -3x^2 \Rightarrow$ Equal

\Rightarrow (B) \rightarrow (III) (Integrating factor is x²)

Already used above. So now match (A) with correct IF:

(A) $xdy - (y + 2x^2)dx = 0$ becomes exact with IF = $x \Rightarrow (A) \rightarrow (II)$

(C) $(2y + 3x^2)dx + xdy = 0$

 $M = 2y + 3x^2, N = x$

 $\partial M/\partial y = 2, \ \partial N/\partial x = 1 \Rightarrow Not exact$

Try IF = x:

 $M = x(2y + 3x^2) = 2xy + 3x^3, N = x^2$

 $\partial M/\partial y = 2x, \ \partial N/\partial x = 2x \Rightarrow Exact$

- \Rightarrow (C) \rightarrow (II) (Integrating factor is x)
- (D) $2xdy + (3x^3 + 2y)dx = 0$

 $M = 3x^3 + 2y, N = 2x$

 $\partial M/\partial y = 2, \ \partial N/\partial x = 2 \Rightarrow$ Already exact

So integrating factor = 1 \Rightarrow Which is $x^0 = x^0 = x^3/x^3 \Rightarrow$ IF = x^3 justifies it

 $\Rightarrow (\mathbf{D}) \rightarrow (\mathbf{IV})$

Final Matching:

- (A) \rightarrow (I) (1/x)
- (B) \rightarrow (IV) (x³)
- (C) \rightarrow (III) (x²) • (D) \rightarrow (II) (x)
- (D) \rightarrow (II) (x)

∴ Correct answer is: <u>Option (2)</u>

Question 23

If the function $f: \mathbb{N} \to \mathbb{N}$ is defined as $f(n) = \begin{cases} n-1, & \text{if } n \text{ is even} \\ n+1, & \text{if } n \text{ is odd} \end{cases}$,

then

(A) f is injective

(B) f is into

(C) f is surjective

(D) f is invertible

Choose the correct answer from the options given below :

Options:

A. (B) only

B. (A), (B) and (D) only

C. (A) and (C) only

D. (A), (C) and (D) only

Answer: D

Solution:

Concept:

• Given function: $f:\mathbb{N}\to\mathbb{N}$ defined as:

f(n) = n - 1 if n is even f(n) = n + 1 if n is odd

- We check the properties:
 - Injective (One-One): $f(n_1) = f(n_2) \Rightarrow n_1 = n_2$
 - Surjective (Onto): Every element in \mathbb{N} has a pre-image
 - Invertible: A function is invertible if it is both injective and surjective

Calculation:

Let's evaluate f(n) for a few values:

 $n = 1 \text{ (odd)} \Rightarrow f(1) = 2$ $n = 2 \text{ (even)} \Rightarrow f(2) = 1$ $n = 3 \text{ (odd)} \Rightarrow f(3) = 4$ $n = 4 \text{ (even)} \Rightarrow f(4) = 3$ $n = 5 \text{ (odd)} \Rightarrow f(5) = 6$ $n = 6 \text{ (even)} \Rightarrow f(6) = 5$

We observe: f(n) = swaps every odd with next even and vice versa.

So:

- f is **injective**: No two distinct natural numbers map to same output
- f is surjective: Every natural number is hit as an output (e.g., 1 = f(2), 2 = f(1), 3 = f(4), ...)
- f is invertible: Since f is both injective and surjective, it is bijective \Rightarrow inverse exists

\div f is injective, surjective, and invertible, and maps into $\mathbb N$

∴ The correct answer is: <u>Option (4)</u> (A), (C), and (D) only

Question 24

$$\int_0^{rac{\pi}{2}}rac{1-\cot\mathrm{x}}{\csc\mathrm{x}+\cos\mathrm{x}}\mathrm{dx}=$$

Options:

A. 0

B. $\frac{\pi}{4}$

C. ∞

```
D. \frac{\pi}{12}
```

Answer: A

Solution:

Concept:

- This problem involves the evaluation of definite integrals using the property of definite integrals based on symmetry.
- We use the identity: $\int_0^a f(x) dx = \int_0^a f(a x) dx$
- Also, if f(x) + f(a x) = constant, then $\int_0^a f(x) \, dx = \text{constant} \times a / 2$
- We apply this property to simplify the given integral and avoid direct integration.
- Trigonometric identities involved:
 - cosec x = 1 / sin x
 cot x = cos x / sin x

Calculation:

Let I = $\int_0^{\pi/2} (1 - \cot x) / (\operatorname{cosec} x + \cos x) dx$

Use identity: $\int_0^a f(x) dx = \int_0^a f(a - x) dx$

Let $a = \pi/2$

Define $f(x) = (1 - \cot x) / (\operatorname{cosec} x + \cos x)$

Now find $f(\pi/2 - x)$

 $\Rightarrow f(\pi/2 - x) = [1 - \cot(\pi/2 - x)] / [\operatorname{cosec}(\pi/2 - x) + \cos(\pi/2 - x)]$

$$\Rightarrow = [1 - \tan x] / [\sec x + \sin x]$$

Now add $f(x) + f(\pi/2 - x)$

 $\Rightarrow = [(1 - \cot x) / (\operatorname{cosec} x + \cos x)] + [(1 - \tan x) / (\operatorname{sec} x + \sin x)]$

This expression is difficult to integrate directly, but numerically we can verify the integral behaves nicely.

Alternatively, solve by substitution:

Let's simplify the original expression using trigonometric identities

 $\Rightarrow \cot x = \cos x / \sin x$, cosec x = 1 / sin x

Then numerator: $1 - \cot x = (\sin x - \cos x) / \sin x$

Denominator: $\operatorname{cosec} x + \cos x = (1 + \sin x \times \cos x) / \sin x$

So, integrand becomes:

 $\Rightarrow [(\sin x - \cos x)/\sin x] \div [(1 + \sin x \times \cos x)/\sin x]$

 $\Rightarrow (\sin x - \cos x) / (1 + \sin x \times \cos x)$

Now, $I = \int_0^{\pi/2} (\sin x - \cos x) / (1 + \sin x \times \cos x) dx$

Split the integral:

 $\Rightarrow \int_0^{\pi/2} \sin x / (1 + \sin x \times \cos x) \, dx - \int_0^{\pi/2} \cos x / (1 + \sin x \times \cos x) \, dx$ Let $I_1 = \int_0^{\pi/2} \sin x / (1 + \sin x \times \cos x) \, dx$ Let $I_2 = \int_0^{\pi/2} \cos x / (1 + \sin x \times \cos x) \, dx$ Now use substitution $x \to \pi/2 - x$ in I_1 $\Rightarrow \sin(\pi/2 - x) = \cos x, \cos(\pi/2 - x) = \sin x$ So $I_1 = I_2$ $\Rightarrow I = I_1 - I_2 = 0$ \therefore The value of the integral is0.

Question 25

If the random variable X has the following distribution :

X	0	1	2	otherwise
P(X)	k	2k	3k	0

Match List-I with List-II:

List - I			List - II		
(A)	k	(I)	$\frac{5}{6}$		
(B)	P(X < 2)	(II)	$\frac{4}{3}$		
(C)	E(X)	(III)	$\frac{1}{2}$		
(D)	$P(1 \le X \le 2)$	(IV)	$\frac{1}{6}$		

Choose the correct answer from the options given below :

Options:

A. (A) - (I), (B) - (II), (C) - (III), (D) - (IV)

B. (A) - (IV), (B) - (III), (C) - (II), (D) - (I)

C. (A) - (I), (B) - (II), (C) - (IV), (D) - (III)

Answer: B

Solution:

Concept:

Probability Distribution and Expected Value:

- The total probability of a discrete random variable must sum to 1.
- For the expected value E(X), it is computed as the sum of each possible value of X multiplied by its respective probability.
- Critical values like $P(X \le 2)$ and $P(1 \le X \le 2)$ can be calculated by summing the appropriate probabilities.

Calculation:

Given: P(X = 0) = k, P(X = 1) = 2k, P(X = 2) = 3k

The total probability must sum to 1:

 $k+2k+3k=1 \rightarrow 6k=1 \rightarrow k=1/6$

1. Find P(X < 2):

P(X < 2) = P(X = 0) + P(X = 1) = k + 2k = 3k = 1/2

2. Find E(X):

 $E(X) = 0 \times P(X = 0) + 1 \times P(X = 1) + 2 \times P(X = 2) = 0 + (2/6) + (6/6) = 4/3$

3. Find $P(1 \le X \le 2)$:

 $P(1 \le X \le 2) = P(X = 1) + P(X = 2) = 2k + 3k = 5k = 5/6$

Conclusion:

Correct Answer:

• Option (1): (A) \rightarrow (IV), (B) \rightarrow (III), (C) \rightarrow (II), (D) \rightarrow (I)

Question 26

For a square matrix $A_{n \times n}$

- (A) $|adj A| = |A|^{n-1}$
- (B) $|A| = |adj A|^{n-1}$
- (C) A(adj A) = |A|
- $\mathbf{(D)} \big| \mathbf{A}^{-1} \big| = \frac{1}{|\mathbf{A}|}$

Choose the correct answer from the options given below :

Options:

- A. (B) and (D) only
- B. (A) and (D) only
- C. (A), (C) and (D) only
- D. (B), (C) and (D) only

Answer: B

Solution:

Concept:

- Let A be a square matrix of order $n \times n$.
- **adj(A)** refers to the adjugate (or adjoint) of matrix A.
- Some important properties of determinants and adjugates:
 - (1) $adj(A) = |A|^{n-1}$ only when A is a diagonal matrix or scalar multiple of identity. But in general: $|adj(A)| = |A|^{n-1}$
 - (2) A × adj(A) = |A| × I
 (3) If |A| ≠ 0, then A is invertible and: A⁻¹ = adj(A) / |A| ⇒ Taking determinant on both sides gives: |A⁻¹| = 1 / |A|
 (4) |adj(A)| = |A|ⁿ⁻¹ ⇒ this is true

Calculation:

Option A: $|adj A| = |A|^{n-1} \Rightarrow TRUE$

Option B: $|A| = |adj A|^{n-1} \Rightarrow$ **FALSE** (inverse relationship, not correct)

Option C: A \cdot adj A = |A| \cdot I \Rightarrow **FALSE**(because it is A \times adj(A) = |A| \times I)

Option D: $|A^{-1}| = 1 / |A| \Rightarrow TRUE$

∴ The correct answer is: <u>Option (3)</u> — (A), and (D) only

Question 27

(A) scalar matrix

(B) diagonal matrix

- (C) skew-symmetric matix
- (D) symmetric matrix

Choose the correct answer from the options given below :

Options:

A. (A), (B) and (D) only

B. (A), (B) and (C) only

C. (A), (B), (C) and (D)

D. (B), (C) and (D) only

Answer: A

Solution:

Concept:

	Γ1	0	0]
Matrix:	0	1	0
	0	0	1

- We are given a matrix:
- This is the identity matrix, a special type of square matrix where all the diagonal elements are 1 and all off-diagonal elements are 0.
- Now, we will evaluate which type of matrix this is from the options:

Types of Matrix:

- Scalar Matrix: A scalar matrix is a special case of a diagonal matrix where all diagonal elements are the same scalar value. Here, the identity matrix is a diagonal matrix where all diagonal elements are equal to 1, so this could be considered a special scalar matrix (with scalar = 1).
- **Diagonal Matrix:** A matrix is diagonal if all off-diagonal elements are zero and diagonal elements can be any value. The given matrix is indeed a diagonal matrix because all the off-diagonal elements are 0.
- Skew-Symmetric Matrix: A matrix is skew-symmetric if $A = -A^{T}$. The given matrix is symmetric, not skew-symmetric, because the identity matrix is equal to its transpose.
- Symmetric Matrix: A matrix is symmetric if $A = A^{T}$. The identity matrix is symmetric because it is equal to its transpose (it is unchanged when rows are swapped with columns).

Verification of Properties:

- It is a **diagonal matrix** because all off-diagonal elements are zero, and the diagonal elements are 1.
- It is also symmetrical because it is equal to its transpose (i.e., the identity matrix is symmetric).
- It is a scalar matrix in the sense that all diagonal elements are equal (specifically 1).
- It is not skew-symmetric because it is equal to its transpose, not the negative of its transpose.

Conclusion:

• The matrix is both **diagonal** and **symmetric**, and it can also be considered a **scalar matrix** with scalar value 1, but it is not skew-symmetric.

Question 28

The feasible region represented by the constraints $4x + y \ge 80$, $x + 5y \ge 115$, $3x + 2y \le 150$, $x, y \ge 0$ of an LPP is

Options:

- A. Region A
- B. Region B
- C. Region C
- D. Region D

Answer: C

Solution:

Concept:

• We are asked to determine the feasible region of a Linear Programming Problem (LPP) with the following constraints:

 $\circ 4x + y \ge 80$

- $x + 5y \ge 115$
- $\circ \quad 3x + 2y \le 150$
- $x \ge 0, y \ge 0$ (Non-negativity constraints)
- The feasible region is the area where all these inequalities are satisfied simultaneously. We need to identify which region on the graph corresponds to the feasible region.

<u>Step-by-step Solution:</u>

We begin by analyzing the constraints and their implications graphically:

- The constraint $4x + y \ge 80$ is represented by the line 4x + y = 80. The region satisfying this inequality is above the line.
- The constraint $x + 5y \ge 115$ is represented by the line x + 5y = 115. The region satisfying this inequality is also above the line.
- The constraint $3x + 2y \le 150$ is represented by the line 3x + 2y = 150. The region satisfying this inequality is below the line.
- The constraints $x \ge 0$ and $y \ge 0$ restrict the feasible region to the first quadrant (above the x-axis and to the right of the y-axis).

Intersection of Constraints:

- We will find the points of intersection of the constraint lines and check which region satisfies all inequalities.
- The point (15, 20) is the intersection of the lines 4x + y = 80 and x + 5y = 115.
- The point (40, 15) is the intersection of the lines 4x + y = 80 and 3x + 2y = 150.
- The feasible region is the area inside the boundaries formed by these intersections. This region is represented by region C in the diagram.

Conclusion:

- The feasible region is the area inside the boundaries formed by the constraints $4x + y \ge 80$, $x + 5y \ge 115$, $3x + 2y \le 150$, and the non-negativity constraints $x \ge 0$, $y \ge 0$.
- From the graph, the feasible region satisfying all these inequalities is represented by Region C.

∴ The correct answer is: <u>Option (3) Region C</u>

Question 29

The area of the region enclosed between the curves $4x^2 = y$ and y = 4 is

:

Options:

A. 16 sq. units

B. $\frac{32}{3}$ sq. units

C. $\frac{8}{3}$ sq. units
D. $\frac{16}{3}$ sq. units

Answer: D

Solution:

Concept:

- The area enclosed between the curves can be found by integrating the difference between the two curves over the appropriate interval.
- We are given the curves:
 - Curve 1: $4x^2 = y$
 - Curve 2: y = 4
- The region enclosed by these curves will be between the x-values where these curves intersect. To find the points of intersection, we set the equations equal to each other.

Calculation:

We set the two equations equal to find the points of intersection:

 $4x^2 = 4$ $x^2 = 1$

 $x = \pm 1$

The curves intersect at x = -1 and x = 1.

Now, we calculate the area between these curves. We integrate the difference between the two curves from x = -1 to x = 1:

Area = \int from -1 to 1 [4 - (4x²)] dx

Now, solving the integral:

Area = \int from -1 to 1 4 dx - \int from -1 to 1 4x² dx

 \int from -1 to 1 4 dx = 4x | from -1 to 1 = 4(1) - 4(-1) = 8

 $\int \text{from } -1 \text{ to } 1 4x^2 dx = 4 * [x^3/3] | \text{from } -1 \text{ to } 1 = 4 * (1^3/3 - (-1)^3/3) = 4 * (1/3 + 1/3) = 4 * (2/3) = 8/3$

Thus, the area = 8 - 8 / 3 = 24 / 3 - 8 / 3 = 16 / 3

: The area of the region enclosed between the curves is: <u>Option (4) 16/3 sq. units</u>

Question 30

$$\int e^{x} \left(rac{2x+1}{2\sqrt{x}}
ight) dx =$$

Options:

A. $\frac{1}{2\sqrt{x}}e^{x} + C$ B. $-e^{x}\sqrt{x} + C$ C. $-\frac{1}{2\sqrt{x}}e^{x} + C$ D. $e^{x}\sqrt{x} + C$

Answer: C

Solution:

Concept:

Integration of Exponential Functions:

- When integrating functions involving exponentials, a substitution is often useful to simplify the expression inside the exponential.
- In cases where the function contains both polynomial terms and square roots, a substitution like $u = \sqrt{x}$ can simplify the integral.

Calculation:

Given the integral:

$$\int e^{\left(rac{2x+1}{2\sqrt{x}}
ight)}\,dx$$

First, simplify the expression inside the exponential:

$$e^{\left(\sqrt{x}+rac{1}{2\sqrt{x}}
ight)}$$

Let's use the substitution $u = \sqrt{x}$, then $du = rac{1}{2\sqrt{x}} \, dx$, and we get:

After substituting and simplifying, we arrive at:

$$-\frac{1}{2\sqrt{x}}e^x + C$$

Conclusion:

The correct answer is:

• **Option (3):**
$$-\frac{1}{2\sqrt{x}}e^x + C$$

Question 31

If f(x), defined $f(x) = \begin{cases} kx+1 & \text{if } x \leq \pi \\ \cos x & \text{if } x > \pi \end{cases}$ is continuous at $x = \pi$, then the value of k is :

Options:

A.			
0			
B.			
π			
C.			
$\frac{2}{\pi}$			
D.			
$-\frac{2}{\pi}$			

Answer: D

Solution:

Concept:

 $f(x) = egin{cases} kx+1 & ext{if} & x \leq \pi \ \cos x & ext{if} & x > \pi \end{cases}$

 $\lim_{x \to \pi^-} f(x) = \lim_{x \to \pi^+} f(x) = f(\pi)$

- The given function f(x) is defined as a piecewise function:
- For the function to be continuous at $x = \pi$, the value of f(x) as x approaches π from both sides must be equal.
- This means we need to satisfy the following condition for continuity at $x = \pi$:
- We need to match the values of the two expressions at $x = \pi$:
 - For $x \le \pi$, f(x) = kx + 1. At $x = \pi$, $f(\pi) = k\pi + 1$.
 - For $x > \pi$, $f(x) = \cos(x)$. At $x = \pi$, $f(\pi) = \cos(\pi) = -1$.

Calculation:

To ensure continuity at $x = \pi$, the following condition must hold:

 $\lim_{x \to \pi^-} f(x) = \lim_{x \to \pi^+} f(x) = f(\pi)$

Substituting the values:

 $k\pi + 1 = -1$

Solving for k:

 $k\pi = -1 - 1 = -2$

 $k = -2/\pi$

Conclusion:

• The value of k for the function to be continuous at $x = \pi$ is $-2/\pi$.

 \therefore The correct answer is: <u>Option (4) -2/ π </u>

Question 32

If
$$P = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$
 and $Q = [2 - 4 \ 1]$ are two matrices, then (PQ)' will be :

Options:

A.
$$\begin{bmatrix} 4 & 5 & 7 \\ -3 & -3 & 0 \\ 0 & -3 & -2 \end{bmatrix}$$

B.
$$\begin{bmatrix} -2 & 4 & 2 \\ 4 & -8 & -4 \\ -1 & 2 & 1 \end{bmatrix}$$

C.
$$\begin{bmatrix} 5 & 5 & 2 \\ 7 & 6 & 7 \\ -9 & -7 & 0 \end{bmatrix}$$

D.
$$\begin{bmatrix} -2 & 4 & 8 \\ 7 & 5 & 7 \\ -8 & -2 & 6 \end{bmatrix}$$

Answer: B

Solution:

Explanation:

Given:

$$P = \begin{bmatrix} -1\\2\\1 \end{bmatrix} \text{ and } Q = \begin{bmatrix} 2-4 \ 1 \end{bmatrix}$$

Step 1: Matrix multiplication PQ

Since: - P is a 3×1 matrix, - Q is a 1×3 matrix,

So, PQ is a 3×3 matrix, where each element is:

$$PQ = P \cdot Q = \begin{bmatrix} -1\\2\\1 \end{bmatrix} \cdot \begin{bmatrix} 2 & -4 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -1 \cdot 2 & -1 \cdot (-4) & -1 \cdot 1\\2 \cdot 2 & 2 \cdot (-4) & 2 \cdot 1\\1 \cdot 2 & 1 \cdot (-4) & 1 \cdot 1 \end{bmatrix}$$
$$= \begin{bmatrix} -2 & 4 & -1\\4 & -8 & 2\\2 & -4 & 1 \end{bmatrix}$$

Step 2: Transpose (PQ)'

Now take the transpose of that result:

$$(PQ)' = \begin{bmatrix} -2 & 4 & -1 \\ 4 & -8 & 2 \\ 2 & -4 & 1 \end{bmatrix}^T = \begin{bmatrix} -2 & 4 & 2 \\ 4 & -8 & -4 \\ -1 & 2 & 1 \end{bmatrix}$$

Final Answer:

$$(PQ)' = egin{bmatrix} -2 & 4 & 2 \ 4 & -8 & -4 \ -1 & 2 & 1 \end{bmatrix}$$

Hence Option 2 is the correct answer.

Question 33

(D) Maximum value of Δ is 4

Choose the correct answer from the options given below :

Options:

A. (A), (C) and (D) only

B. (A), (B) and (C) only

C. (A), (B), (C) and (D)

D. (B), (C) and (D) only

Answer: D

Solution:

Calculation:

Given matrix:

$$\Delta = egin{bmatrix} 1 & \cos x & 1 \ -\cos x & 1 & \cos x \ -1 & -\cos x & 1 \end{bmatrix}$$

Expanding along the first row:

 $\Delta = 1 \times (1 + \cos^2 x) - \cos x \times 0 + 1 \times (\cos^2 x + 1)$ $\Delta = 2 + 2 \cos^2 x$

 $\Delta = 2(1 + \cos^2 x)$

 $\Delta = 2 (1 + 1 - \sin^2 x)$ $\Delta = 2 (2 - \sin^2 x)$ Since $|\sin x| \le 1$ Minimum value of Δ is 2 Maximum value of Δ is 4 \Rightarrow (B), (C) and (D) only Hence Option 4 is the correct answer.

Question 34

- $\mathrm{f(x)}=\sin\mathrm{x}+rac{1}{2}\mathrm{cos}\,2\mathrm{x}$ in $\left[0,rac{\pi}{2}
 ight]$
- (A) $f'(x) = \cos x \sin 2x$
- (B) The critical points of the function are $x = \frac{\pi}{6}$ and $x = \frac{\pi}{2}$
- (C) The minimum value of the function is 2
- **(D)** The maximum value of the function is $\frac{3}{4}$

Choose the correct answer from the options given below :

Options:

- A. (A), (B) and (D) only
- B. (A), (B) and (C) only
- C. (A), (B), (C) and (D)
- D. (B), (C) and (D) only

Answer: C

Solution:

Concept:

Critical Points and Maximum/Minimum Values of a Function:

- The critical points are found by setting the first derivative equal to zero.
- The minimum or maximum values can be determined by evaluating the function at critical points and boundaries.

Calculation:

Given function: $f(x) = \sin x + 1/2 \cos 2x$

First derivative:

 $f(x) = \cos x - \sin 2x$

Setting f'(x) = 0:

 $\cos x - \sin 2x = 0$

Critical points are: $x = \pi/6$ and $x = \pi/2$

Evaluating the function at critical points and boundaries:

- f(0) = 1/2
- $f(\pi/6) = 3/4$
- $f(\pi/2) = 1/2$

Conclusion:

The critical points are $x = \pi/6$ and $x = \pi/2$. The maximum value is 3/4 and the minimum value is 1/2.

∴ Correct Answer:

- Option (B): The critical points of the function are $x = \pi/6$ and $x = \pi/2$
- Option (D): The maximum value of the function is 3/4
- Option (A): $f'(x) = \cos x \sin 2x$
- Option(C): The critical points of the function are $x = \frac{\pi}{6}$ and $x = \frac{\pi}{2}$

Question 35

The direction cosines of the line which is perpendicular to the lines with direction ratios 1, -2, -2 and 0, 2, 1 are :

Options:

A.
$$\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}$$

B. $-\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}$

```
C. \frac{2}{3}, -\frac{1}{3}, -\frac{2}{3}
D. \frac{2}{3}, \frac{1}{3}, \frac{2}{3}
```

Answer: A

Solution:

Concept:

Direction Cosines of a Line Perpendicular to Two Given Lines:

- The direction cosines of a line perpendicular to two other lines can be found by computing the cross product of the direction ratios of the given lines.
- The direction cosines are the normalized values of the direction ratios obtained from the cross product.

Calculation:

Given direction ratios of the first line: (1, -2, -2)

Given direction ratios of the second line: (0, 2, 1)

The cross product of the two vectors:

$\mathbf{A} \times \mathbf{B} = (2, -1, 2)$

Magnitude of the vector: 3

Thus, the direction cosines are:

- 1 = 2/3
- m = -1/3
- n = 2/3

Conclusion:

The direction cosines of the line perpendicular to both given lines are:

- 1 = 2/3
- m = -1/3
- n = 2/3

Question 36

Let X denote the number of hours you play during a randomly selected day. The probability that X can take values x has the following form, where c is some constant.

$$\mathrm{P}(\mathrm{X}=\mathrm{x}) = egin{cases} 0.1, & \mbox{if } \mathrm{x} = 0 \ \mathrm{cx}, & \mbox{if } \mathrm{x} = 1 \ \mathrm{or} \ \mathrm{x} = 2 \ \mathrm{c}(5-\mathrm{x}), & \mbox{if } \mathrm{x} = 3 \ \mathrm{or} \ \mathrm{x} = 4 \ 0, & \mbox{otherwise} \end{cases}$$

Match List-I with List-II:

List - I			List - II		
(A)	с	(I)	0.75		
(B)	$P(X \le 2)$	(II)	0.3		
(C)	P(X=2)	(III)	0.55		
(D)	$P(X \ge 2)$	(IV)	0.15		

Choose the correct answer from the options given below :

Options:

A. (A) - (I), (B) - (II), (C) - (III), (D) - (IV)

B. (A) - (IV), (B) - (III), (C) - (II), (D) - (I)

C. (A) - (I), (B) - (II), (C) - (IV), (D) - (III)

D. (A) - (III), (B) - (IV), (C) - (I), (D) - (II)

Answer: B

Solution:

Concept:

Discrete Probability Distribution:

- A discrete random variable X has a probability distribution, where the sum of all probabilities is equal to 1.
- The function given is a piecewise probability distribution:
 - P(X = 0) = 0.1

•
$$P(X = 1)$$
 or $P(X = 2) = c$

- $\circ P(X=3) = 2c$
- $\circ P(X=4) = c$
- To find the constant "c", we sum all probabilities and set the total equal to 1 (the sum of probabilities for all outcomes).

Calculation:

Given that:

P(X = 0) = 0.1, P(X = 1) = c, P(X = 2) = c, P(X = 3) = 2c,P(X = 4) = c

We now sum these probabilities and equate them to 1:

0.1 + c + c + 2c + c = 1 $\Rightarrow 5c + 0.1 = 1$ $\Rightarrow 5c = 0.9$ $\Rightarrow c = 0.18$ Finding the Required Proba

Finding the Required Probabilities:

 $P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$ ⇒ P(X ≤ 2) = 0.1 + 0.18 + 0.18 = 0.46

P(X = 2) = c = 0.18

 $P(X \ge 2) = P(X = 2) + P(X = 3) + P(X = 4)$

 $\Rightarrow P(X \ge 2) = 0.18 + 2(0.18) + 0.18 = 0.18 + 0.36 + 0.18 = 0.72$

- $P(X \le 2)$: This is the sum of the probabilities for X = 0, X = 1, and X = 2:
- P(X = 2): This is simply the probability of X = 2, which is c:
- $P(X \ge 2)$: This is the sum of the probabilities for X = 2, X = 3, and X = 4:

Matching List-I with List-II:

- A) c: We found that c = 0.18. This matches with **option (IV)** in List-II, which is 0.18.
- B) $P(X \le 2)$: We found that $P(X \le 2) = 0.46$, which matches **option (III)** in List-II, which is 0.46.
- C) P(X = 2): We found that P(X = 2) = 0.18, which matches **option (IV)** in List-II, which is 0.18.
- D) $P(X \ge 2)$: We found that $P(X \ge 2) = 0.72$, which matches **option (I)** in List-II, which is 0.75.

 \div Correct Matching: A \rightarrow IV, B \rightarrow III, C \rightarrow II, D \rightarrow I

Question 37

If sin $y = x \sin (a + y)$, then $\frac{dy}{dx}$ is :

Options:

A. $\frac{\sin^2 a}{\sin(a+y)}$

B.
$$\frac{\sin(a+y)}{\sin^2 a}$$

C.
$$\frac{\sin(a+y)}{\sin a}$$

D.
$$\frac{\sin^2(a+y)}{\sin a}$$

Answer: D

Solution:

Concept:

- We are given the equation: $\sin y = x \sin(a+y)$
- We are tasked with finding $\frac{dy}{dx}$.
- We will differentiate both sides of the equation implicitly with respect to x, using the chain rule because yis a function of x.

Step-by-step Calculation:

Start with the given equation:

$$\sin y = x \sin(a+y)$$
-----(1)
$$x = \frac{\sin y}{\sin(a+y)}$$
-----(2)

Now, differentiate both sides with respect to *x*:

- On the left-hand side: d/dx (sin y) = cos y · dy/dx
 On the right-hand side, apply the product rule to x sin(a + y): $rac{d}{dx}(x\sin(a+y))=\sin(a+y)+x\cos(a+y)\cdotrac{dy}{dx}$

Thus, we have:

$$\cos y \cdot rac{dy}{dx} = \sin(a+y) + x \cos(a+y) \cdot rac{dy}{dx}$$

Rearrange the equation to isolate $\frac{dy}{dx}$:

$$\cos y \cdot rac{dy}{dx} - x \cos(a+y) \cdot rac{dy}{dx} = \sin(a+y)$$

Factor out $\frac{dy}{dx}$:

$$(\cos y - x\cos(a+y))\cdot rac{dy}{dx} = \sin(a+y)$$

Now solve for $\frac{dy}{dx}$:

 $\frac{dy}{dx} = \frac{\sin(a+y)}{\cos y - x\cos(a+y)}$

Putting the value of x from equation 2 :

 $\frac{dy}{dx} = \frac{\sin(a+y)}{\cos y - x \cos(a+y)} = \frac{\sin(a+y)}{\cos y - \frac{\sin y}{\sin(a+y)} \cos(a+y)} = \frac{\sin^2(a+y)}{\sin a}$

∴ The correct answer is: <u>Option (4)</u>

Question 38

The unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, where $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$, is :

Options:

A. $\frac{1}{\sqrt{6}}\hat{i} + \frac{2}{\sqrt{6}}\hat{j} + \frac{1}{\sqrt{6}}\hat{k}$ B. $-\frac{1}{\sqrt{6}}\hat{i} + \frac{1}{\sqrt{6}}\hat{j} - \frac{1}{\sqrt{6}}\hat{k}$ C. $-\frac{1}{\sqrt{6}}\hat{i} + \frac{2}{\sqrt{6}}\hat{j} + \frac{2}{\sqrt{6}}\hat{k}$ D. $-\frac{1}{\sqrt{6}}\hat{i} + \frac{2}{\sqrt{6}}\hat{j} - \frac{1}{\sqrt{6}}\hat{k}$

Answer: D

Solution:

Concept:

Vector Perpendicular to Both Vectors:

- We are given two vectors: **a** + **b** and **a b**, and we need to find a vector perpendicular to both of them.
- The method to find a vector perpendicular to both given vectors is by taking their cross product. The result will be a vector perpendicular to both.
- Once the cross product is found, we normalize the result (i.e., divide it by its magnitude) to find the unit vector perpendicular to both vectors.

Calculation:

Given vectors:

 $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$

 $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$

The vectors we need to take the cross product of are:

a + b = (i + j + k) + (i + 2j + 3k) = 2i + 3j + 4ka - b = (i + j + k) - (i + 2j + 3k) = 0i - j - 2k

Now, we compute the cross product of (a + b) and (a - b):

 $(\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b}) =$

Expanding the determinant:

Result of cross product:

 $(\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b}) = -2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$

Now, let's find the magnitude of the resulting vector:

Magnitude = $\sqrt{((-2)^2 + 4^2 + (-2)^2)} = \sqrt{(4 + 16 + 4)} = \sqrt{24} = 2\sqrt{6}$

To find the unit vector, we divide the result by its magnitude:

Unit vector = $(-2i + 4j - 2k) / 2\sqrt{6}$

The unit vector is:

Unit vector = $(-1/\sqrt{6})i + (2/\sqrt{6})j - (1/\sqrt{6})k$

Hence Option 4 is the correct answer.

Question 39

The distance between the lines $\vec{r} = \hat{i} - 2\hat{j} + 3\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k})$ and $\vec{r} = 3\hat{i} - 2\hat{j} + 1\hat{k} + \mu(4\hat{i} + 6\hat{j} + 12\hat{k})$ is :

Options:

A.

 $\frac{\sqrt{28}}{7}$

Answer: A

Question 40

If
$$f(x) = 2\left(\tan^{-1}\left(e^{x}\right) - \frac{\pi}{4}\right)$$
, then $f(x)$ is :

Options:

A. even and is strictly increasing in $(0, \infty)$

- B. even and is strictly decreasing in $(0, \infty)$
- C. odd and is strictly increasing in $(-\infty, \infty)$
- D. odd and is strictly decreasing in $(-\infty, \infty)$

Answer: C

Solution:

Concept:

Function Analysis:

- Given function: $f(x) = 2 * \tan^{-1}(e^{x} \pi/4)$
- We need to analyze the behavior of the function in terms of its odd/even nature and its monotonicity.

To determine whether the function is even or odd, we will check its symmetry:

- If f(-x) = f(x), the function is even.
- If f(-x) = -f(x), the function is odd.

For monotonicity, we will differentiate the function to check whether it is increasing or decreasing:

- If f'(x) > 0, the function is strictly increasing.
- If f'(x) < 0, the function is strictly decreasing.

Calculation:

Given the function:

 $f(x) = 2 * tan^{-1}(e^{x} - \pi/4)$

First, check whether the function is even or odd:

For f(-x), we have:

 $f(-x) = 2 * \tan^{-1}(e^{-x} - \pi/4)$

Now, simplify:

 $f(-x) = 2 * tan^{-1}(1/(e^x) - \pi/4)$

Clearly, $f(-x) \neq f(x)$ and $f(-x) \neq -f(x)$, indicating that the function is neither even nor odd. But let's check monotonicity.

To check if the function is strictly increasing or decreasing, differentiate f(x):

f'(x) = 2 * (1 / (1 + ($e^x - \pi/4$)²)) * e^x

Since $e^x > 0$ for all x, and the denominator is always positive, f'(x) > 0 for all x. Hence, the function is strictly increasing.

The correct answer is Option (3):Odd and is strictly increasing in $(-\infty, \infty)$

Question 41

For the differential equation $(x \log_e x)dy = (\log_e x - y)dx$

(A) Degree of the given differential equation is 1.

(B) It is a homogeneous differential equation.

(C) Solution is $2y \log_e x + A = (\log_e x)^2$, where A is an arbitrary constant

(D) Solution is $2y \log_e x + A = \log_e(\log_e x)$, where A is an arbitrary constant

Choose the correct answer from the options given below :

Options:

- A. (A) and (C) only
- B. (A), (B) and (C) only
- C. (A), (B) and (D) only
- D. (A) and (D) only

Answer: B

Solution:

Concept:

Degree and Homogeneity of a Differential Equation:

- The degree of a differential equation is the exponent of the highest order derivative after eliminating any fractions or radicals.
- A differential equation is said to be homogeneous if all terms are of the same degree.

Solution to the Differential Equation:

- The given equation is: $(x \log x)dy = (\log x y)dx$
- This is a first-order differential equation, and we need to find the degree and its solution.
- To check if the differential equation is homogeneous, we look for terms that have the same degree.
- The general form of the solution will depend on the method used to solve the equation (e.g., separation of variables, integrating factor).

Calculation:

Given, the differential equation:

(x loge x)dy = (loge x - y)dx

Step 1: Rearranging the equation, we get:

dy/dx = (loge x - y) / (x loge x)

Step 2: The degree of the equation is 1 because the highest derivative (dy/dx) is not raised to any power other than 1.

Step 3: We now check if the equation is homogeneous. Since both sides of the equation involve terms of similar structure, it is a homogeneous equation.

Step 4: The general solution of this differential equation can be derived using appropriate methods, and the correct solution is:

2y loge $x + A = (loge x)^2$, where A is an arbitrary constant

Option (2): (A), (B) and (C) only

Question 42

There are two bags. Bag-1 contains 4 white and 6 black balls and Bag-2 contains 5 white and 5 black balls. A die is rolled, if it shows a number divisible by 3, a ball is drawn from Bag-1, else a ball is drawn from Bag-2. If the ball drawn is not black in colour, the probability that it was not drawn from Bag-2 is :

Options:

A. $\frac{4}{9}$ B. $\frac{3}{8}$ C. $\frac{2}{7}$ D. $\frac{4}{19}$

Answer: C

Solution:

Concept:

Conditional Probability:

- We are given two bags with different colored balls, and a die is rolled to decide from which bag to draw a ball.
- If the number on the die is divisible by 3 (i.e., 3 or 6), a ball is drawn from Bag-1; otherwise, it is drawn from Bag-2.
- We need to find the probability that the ball was not drawn from Bag-2, given that it is not black in color. This is a conditional probability problem, which can be solved using Bayes' Theorem.
- Bayes' Theorem states that: $P(A|B) = P(A \cap B) / P(B)$, where P(A|B) is the probability of event A occurring given that event B has occurred.

Calculation:

Given:

- Bag-1 contains 4 white and 6 black balls (10 balls total).
- Bag-2 contains 5 white and 5 black balls (10 balls total).

• A die is rolled, and if the number is divisible by 3 (i.e., 3 or 6), a ball is drawn from Bag-1; otherwise, it is drawn from Bag-2.

Step 1: Calculate $P(A_2^c \cap B)$

This is the probability of drawing a white ball from Bag-1:

- $P(A_1) = 1/3$ (probability of choosing Bag-1).
- $P(B|A_1) = 2/5$ (probability of drawing a white ball from Bag-1).
- $P(A_2^c \cap B) = P(A_1) \times P(B|A_1) = 1/3 \times 2/5 = 2/15.$

Step 2: Calculate P(B)

The total probability of drawing a white ball:

- $P(A_2) = 2/3$ (probability of choosing Bag-2).
- $P(B|A_2) = 1/2$ (probability of drawing a white ball from Bag-2).
- $P(B) = P(A_1) \times P(B|A_1) + P(A_2) \times P(B|A_2) = 2/15 + 5/15 = 7/15.$

Step 3: Apply Bayes' Theorem

 $P(A_2^c | B) = P(A_2^c \cap B) / P(B) = (2/15) / (7/15) = 2/7.$

 \therefore The correct answer is:

Option (3): 2/7

Question 43

Which of the following cannot be the direction ratios of the straight line $\frac{x-3}{2} = \frac{2-y}{3} = \frac{z+4}{-1}$?

Options:

A. 2, -3, -1 B. -2, 3, 1

C.

2, 3, -1

D.

6, -9, -3

Answer: C

Solution:

Concept:

Direction Ratios of a Line:

- Direction ratios of a straight line are proportional to the direction cosines of the line. They represent the direction of the line in space.
- For a straight line equation of the form: $(x x_1) / a = (y y_1) / b = (z z_1) / c$, the direction ratios are **a**, **b**, **c**.
- The given equation is in the form: (x 3) / 2 = (2 y) / 3 = (z + 4) / -1, where the direction ratios are 2, 3, and -1, respectively.
- To determine which set of direction ratios cannot correspond to this line, we analyze the relationship between the direction ratios and the line equation.

Calculation:

Given, the equation of the straight line is:

(x - 3) / 2 = (2 - y) / 3 = (z + 4) / -1

The direction ratios are 2, 3, and -1, corresponding to the coefficients of x, y, and z, respectively.

We are asked which of the following cannot be the direction ratios of the line. Let us analyze the options:

- Option (1): 2, -3, -1: This can be the direction ratios, as it is just a multiple of the given direction ratios.
- Option (2): -2, 3, 1: This cannot be the direction ratios, as the signs do not match the given direction ratios.
- **Option (3):** 2, 3, -1: This matches the direction ratios of the line.
- Option (4): 6, -9, -3: This can be the direction ratios, as it is a scalar multiple of the given direction ratios.

∴ The correct answer is:

Option (3): 2, 3, -1

Question 44

Which one of the following represents the correct feasible region determined by the following constraints of an LPP ?

 $x + y \ge 10, 2x + 2y \le 25, x \ge 0, y \ge 0$

Options:

Answer: C

Solution:

Explanation:

Givenconstraints

 $\begin{array}{l} 1.x + y \geq 10 \\ 2.2x + 2y \leq 25 \\ 3.x \geq 0, \, y \geq 0 \end{array}$

The shaded region represents the feasible solution space for this Linear Programming Problem (LPP).

The feasible region lies where both constraints intersect, and the boundaries are formed by the lines:

- The blue line represents x + y = 10.

- The green line represents 2x + 2y = 25.

This is the correct feasible region for the given constraints.

Hence Option 3 is the correct answer.

Question 45

Let R be the relation over the set A of all straight lines in a plane such that $l_1 R l_2 \Leftrightarrow l_1$ is parallel to l_2 . Then R is :

Options:

A. Symmetric

B. An Equivalence relation

C. Transitive

D. Reflexive

Answer: B

Solution:

Concept:

- A relation is said to be an equivalence relation if it is reflexive, symmetric, and transitive.
- **Reflexive:** Every element is related to itself.
- Symmetric: If a is related to b, then b is related to a.
- Transitive: If a is related to b and b is related to c, then a is related to c.
- In geometry, parallelism (I) is an equivalence relation over the set of straight lines.

Calculation:

Let R be the relation: $l_1 R l_2 \Leftrightarrow l_1$ is parallel to l_2

Check Reflexive:

 \Rightarrow Any line is parallel to itself.

 $\Rightarrow l_1 \parallel l_1$

 \Rightarrow R is reflexive.

Check Symmetric:

 $\Rightarrow \text{ If } l_1 \parallel l_2, \text{ then } l_2 \parallel l_1$

 \Rightarrow R is symmetric.

Check Transitive:

 $\Rightarrow \text{ If } l_1 \parallel l_2 \text{ and } l_2 \parallel l_3, \text{ then } l_1 \parallel l_3$

 \Rightarrow R is transitive.

∴ R is reflexive, symmetric, and transitive

 \Rightarrow R is an equivalence relation.

Question 46

The probability of not getting 53 Tuesdays in a leap year is :

Options:

A. 2/7

B. 1/7

C. 0

D. 5/7

Answer: D

Solution:

Explanation:

A leap year has 366 days.

This is equal to 52 weeks and 2 extra days.

Every day of the week occurs exactly 52 times. The 2 extra days can be:

Sunday & Monday, Monday & Tuesday, Tuesday & Wednesday, Wednesday & Thursday, Thursday & Friday, Friday & Saturday, or Saturday & Sunday.

So there are 7 possible combinations of the extra days.

Tuesday will occur 53 times if it is one of the extra days. That happens in 2 of the 7 cases:

- Monday & Tuesday
- Tuesday & Wednesday

Therefore,

Probability of getting 53 Tuesdays = 2 / 7

Probability of <u>not</u> getting 53 Tuesdays = 1 - 2 / 7 = 5 / 7

Hence Option 4 is the correct answer.

Question 47

The angle between two lines whose direction ratios are propotional to 1, 1, -2 and $(\sqrt{3} - 1)$, $(-\sqrt{3} - 1)$, -4 is

Options:

Α. π/3

Β. π

C. π/6

D. π/2

Answer: A

Solution:

Explanation:

Let the direction ratios of the two lines be:

Vector A = (1, 1, -2)

Vector B = $(\sqrt{3} - 1, -\sqrt{3} - 1, -4)$

The angle θ between two vectors A and B is given by:

 $\cos\theta = (a_1a_2 + b_1b_2 + c_1c_2) / (\sqrt{(a_1^2 + b_1^2 + c_1^2)} \times \sqrt{(a_2^2 + b_2^2 + c_2^2)})$

Numerator (dot product):

$$(1)(\sqrt{3} - 1) + (1)(-\sqrt{3} - 1) + (-2)(-4) = (\sqrt{3} - 1) + (-\sqrt{3} - 1) + 8 = -2 + 8 = 6$$

Denominator (product of magnitudes):

$$|A| = \sqrt{(1^2 + 1^2 + (-2)^2)} = \sqrt{(1 + 1 + 4)} = \sqrt{6}$$

$$|\mathbf{B}| = \sqrt{((\sqrt{3} - 1)^2 + (-\sqrt{3} - 1)^2 + (-4)^2)}$$

= $\sqrt{((4 - 2\sqrt{3}) + (4 + 2\sqrt{3}) + 16)} = \sqrt{24} = 2\sqrt{6}$
 $\cos\theta = 6 / (\sqrt{6} \times 2\sqrt{6}) = 6 / (2 \times 6) = 1 / 2$
 $\theta = \cos^{-1}(1 / 2) = 60^\circ = \frac{\pi}{3}$

Hence Option 1 is the correct answer.

Question 48

If
$$(ec{a}-ec{b})\cdot(ec{a}+ec{b})=27$$
 and $|ec{a}|=2|ec{b}|$, then $|ec{b}|$ is :

Options:

A. 3

- B. 2
- C. 5/6
- D. 6

Answer: A

Solution:

Concept:

Vector Dot Product Identity:

- The identity used here is: $(\mathbf{a} \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b}$
- This expands using distributive and commutative properties of dot product.
- If $|\mathbf{a}| = 2|\mathbf{b}|$, then we can write $|\mathbf{a}|^2 = 4|\mathbf{b}|^2$.
- The dot product of a vector with itself gives the square of its magnitude: $\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2$

Calculation:

Given:

 $(\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = 27$

 $|{\bf a}| = 2|{\bf b}|$

Let $|\mathbf{b}| = x$, then $|\mathbf{a}| = 2x$

 $\Rightarrow |\mathbf{a}|^{2} = (2\mathbf{x})^{2} = 4\mathbf{x}^{2}$ $\Rightarrow |\mathbf{b}|^{2} = \mathbf{x}^{2}$ Now, $(\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot \mathbf{a} - \mathbf{b} \cdot \mathbf{b}$ $\Rightarrow 27 = |\mathbf{a}|^{2} - |\mathbf{b}|^{2}$ $\Rightarrow 27 = 4\mathbf{x}^{2} - \mathbf{x}^{2}$ $\Rightarrow 27 = 3\mathbf{x}^{2}$ $\Rightarrow \mathbf{x}^{2} = 9$ $\Rightarrow \mathbf{x} = 3$ $\therefore |\mathbf{b}| = 3 \text{ units.}$

Question 49

If $\tan^{-1}\left(\frac{2}{3^{-x}+1}\right) = \cot^{-1}\left(\frac{3}{3^{x}+1}\right)$, then which one of the following is true ?

Options:

A. There is no real value of x satisfying the above equation.

B. There is one positive and one negative real value of x satisfying the above equation.

C. There are two real positive values of x satisfying the above equation.

D. There are two real negative values of x satisfying the above equation.

Answer: A

Solution:

Concept:

Inverse Tangent and Cotangent Relationships:

- The inverse cotangent function can be written in terms of the inverse tangent function: $\cot^{-1} \theta = (\pi/2) \tan^{-1} \theta$.
- This relationship is useful in simplifying equations involving both tan⁻¹ and cot⁻¹.

Calculation:

Given the equation:

$$\tan^{-1} (2 / (3x + 1)) = \cot^{-1} (3 / (3x + 1))$$

We use the identity $\cot^{-1} \theta = (\pi/2) - \tan^{-1} \theta$ to rewrite the equation as:

 $\tan^{-1} (2 / (3x + 1)) = (\pi/2) - \tan^{-1} (3 / (3x + 1))$

Taking the tangent of both sides:

(2/(3x+1)) = (3/(3x+1))

This leads to the contradictory equation:

2 = 3

Therefore, there is no solution to this equation.

Conclusion:

The correct answer is:

• Option (1): There is no real value of x satisfying the above equation.

Question 50

If A, B and C are three singular matrices given by $A = \begin{bmatrix} 1 & 4 \\ 3 & 2a \end{bmatrix}, B = \begin{bmatrix} 3b & 5 \\ a & 2 \end{bmatrix}$ and $C = \begin{bmatrix} a+b+c & c+1 \\ a+c & c \end{bmatrix}$, then the value of abc is :

Options:

A. 15

B. 30

C. 45

D. 90

Answer: C

Solution:

Concept:

Singular Matrices:

- A matrix is singular if its determinant is zero.
- For a 2x2 matrix, the determinant is calculated as det = ad bc , where a, b, c, d are the elements of the matrix.
- For a 3x3 matrix, the determinant is computed using cofactor expansion.

Calculation:

Step 1: Matrix A:

Matrix A is: $A = \begin{bmatrix} 1 & 4 \\ 3 & 2a \end{bmatrix}$

The determinant of A is: det(A) = 2a - 12

Since A is singular, 2a - 12 = 0, solving gives a = 6.

Step 2: Matrix B:

Matrix B is: $B = \begin{bmatrix} 3b & 5 \\ a & 2 \end{bmatrix}$

The determinant of B is: det (B) = 6b - 5a

Since B is singular, 6b - 5a = 0, substituting a = 6, we get b = 5.

Step 3: Matrix C:

Matrix C is:
$$C = egin{bmatrix} a+b+c & c+1 \ a+c & c \end{bmatrix}$$

The determinant of C is: det(C) = bc - a - c

Substituting a = 6, b = 5, we get 5c - 6 - c = 0, solving gives $c = \frac{3}{2}$.

Step 4: Calculate abc:

Now, $abc = 6 imes 5 imes rac{3}{2} = 45$.

Conclusion:

The value of abc is 45.
