Chapter 9 # **Sequence and Series** ### Exercise 9.3 Question 1: Find the 20th and nth terms of the G.P. $\frac{5}{2}$, $\frac{5}{4}$, $\frac{5}{8}$, ... ### Answer 1: The given G.P. is $\frac{5}{2}$, $\frac{5}{4}$, $\frac{5}{8}$, ... Here, $$a = first term = \frac{5}{2}$$ $$r = common ratio = \frac{\frac{5}{4}}{\frac{5}{2}} = \frac{1}{2}$$ $$a_{20} = ar^{20-1} = \frac{5}{2} \left(\frac{1}{2}\right)^{19} = \frac{5}{2(2)^{19}} = \frac{5}{(2)^{20}}$$ $$a_n = ar^{n-1} = \frac{5}{2} \left(\frac{1}{2}\right)^{n-1} = \frac{5}{2(2)^{n-1}} = \frac{5}{(2)^n}$$ Question 2: Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2. ## Answer 2: Common ratio, r = 0 Let a be the first term of the G.P. $$a_8 = ar^{8-1} = ar^7 = 192 \ a \ (2)^7 = (2)^6 \ (3)$$ $$= a = \frac{(2)^6 \times 3}{(2)^7} = \frac{3}{2}$$ $$a_{12} = ar^{12-1} = \left(\frac{3}{2}\right)(2)^{11} = (3)(2)^{10} = 3072$$ Question 3: The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that $q^2 = ps$. Answer 3: Let a be the first term and r be the common ratio of the G.P. according to the given condition, $$a_5 = a r^{5-1} = a r^4 = p \dots (1)$$ $$a_8 = a r^{8-1} = ar^7 = q \dots (2)$$ $$a_{11} = ar^{11-1} = ar^{10} = s \dots (3)$$ dividing eq. (2) by (1), we obtain $$\frac{ar^7}{ar^4} = \frac{q}{p}$$ $$r^3 = \frac{q}{p} \dots (4)$$ dividing eq. (3) by (2), we obtain $$\frac{ar^{10}}{ar^7} = \frac{s}{q} \dots (5)$$ Equation the value of r^3 obtained in (4) and (5), we obtain $$\frac{q}{p} = \frac{s}{q}$$ $$= q^2 = p_S$$ Thus, the given result is proved. Question 4: The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7th term. Answer 4: Let, a be the first term and r be the common ratio of the G.P. $$a = -3$$ It is known that, an = arn-1 $$a_4 = ar^3 = (-3) r^3$$ $$a_2 = a r^1 = (-3) r$$ According to the given condition, $(-3) r^3 = [(-3) r]^2$ $$= -3r^3 = 9 r^2 = r = -3 a^7 = a r^{7-1} = a$$ $$r^6 = (-3)(-3)^6 = (-3)^7 = -2187$$ thus, the 7th term of the G.P. is -2187. Question 5: Which term of the following sequences: (a) $$2, 2\sqrt{2}, 4, \dots$$ is 128 ? (b) $\sqrt{3}, 3, 3\sqrt{3}, \dots$ is 729 ? (c) $$\frac{1}{3}$$, $\frac{1}{9}$, $\frac{1}{27}$, ... is $\frac{1}{19683}$? Answer 5: (a) the given sequence is 2, $2\sqrt{2}$, 4, ... is 128? Here, $$a = 2$$ and $r = (2\sqrt{2})/2 = \sqrt{2}$ Let, the nth term of the given sequence be 128. $$a_n = a r^{n-1}$$ $$=(2)\left(\sqrt{2}\right)^{n-1}=128$$ $$= (2) (2)^{\frac{n-1}{2}} = (2)^7$$ $$= (2)^{\frac{n-1}{2}+1} = (2)^7$$ $$=\frac{n-1}{2}+1=7$$ $$=\frac{n-1}{2}=6$$ $$= n - 1 = 12$$ $$= n = 13$$ Thus, the 13th term of the given sequence is 128. (b) the given sequence is $\sqrt{3}$, 3, $3\sqrt{3}$, ... $$a = \sqrt{3}$$ and $r = \frac{3}{\sqrt{3}} = \sqrt{3}$ Let, the nth term of the given sequence be 729. $$a_n = a r^{n-1}$$ $$= a r^{n-1} = 729$$ $$=(\sqrt{3})(\sqrt{3})^{n-1}=729$$ $$= (3)^{\frac{1}{2}}(3)^{\frac{n-1}{2}} = (3)6$$ $$= (3)^{\frac{1}{2} + \frac{n-1}{2}} = (3)6$$ $$=\frac{1}{2}+\frac{n-1}{2}=6$$ $$=\frac{1+n-1}{2}=6$$ $$= n = 12$$ Thus, the 12th term of the given sequence is 729. (c) the given sequence is $\frac{1}{3}$, $\frac{1}{9}$, $\frac{1}{27}$, ... Here, $$a = \frac{1}{3}$$ and $r = \frac{1}{9} \div \frac{1}{3} = \frac{1}{3}$ Let, the nth term of the given sequence be $\frac{1}{19683}$. $$a_n = ar^{n-1}$$ $$= a r^{n-1} = \frac{1}{19683}$$ $$= \left(\frac{1}{3}\right) \left(\frac{1}{3}\right)^{n-1} = \frac{1}{19683}$$ $$= \left(\frac{1}{3}\right)^n = \left(\frac{1}{3}\right)^9$$ $$= n = 9$$ Thus, the 9th term of the given sequence is $\frac{1}{19683}$. Question 6: For what values of x, the numbers $\frac{-2}{7}$, x, $\frac{-7}{2}$ are in G.P? Answer 6: The given numbers are $\frac{-2}{7}$, x, $\frac{-7}{2}$ Common ratio = $$\frac{x}{\frac{-2}{7}} = \frac{-7x}{2}$$ Also, common ratio = $\frac{\frac{-7}{2}}{x} = \frac{-7}{2x}$ $$=\frac{-7x}{2}=\frac{-7}{2x}$$ $$= x^2 = \frac{-2 \times 7}{-2 \times 7} = 1$$ $$= x = \sqrt{1}$$ $$= x = \pm 1$$ Thus, for $x = \pm 1$, the given numbers will be in G.P. Question 7: Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015 ... Answer 7: The given G.P. is 0.15, 0.015, 0.00015, ... Here a = 0.15 and $$r = \frac{0.015}{0.15} = 0.1$$ $$S_{n} = \frac{a(1-r^{n})}{1-r}$$ $$S_{20} = \frac{0.15[1 - (0.1)^{20}]}{1 - 0.1}$$ $$=\frac{0.15}{0.9}[1-(0.1)20]$$ $$=\frac{15}{90}[1-(0.1)20]$$ $$=\frac{1}{6}\left[1-(0.1)20\right]$$ Question 8: Find the sum to n terms in the geometric progression $\sqrt{7}$, $\sqrt{21}$, $3\sqrt{7}$, ... Answer 8: The given G.P. is $\sqrt{7}$, $\sqrt{21}$, $3\sqrt{7}$, ... Here, $$a = \sqrt{7}$$ and $r = \frac{\sqrt{21}}{7} = \sqrt{3}$ $$S_n = \frac{a(1-r^n)}{1-r}$$ $$S_{n} = \frac{\sqrt{7} \left[1 - \left(\sqrt{3}\right)^{n}\right]}{1 - \sqrt{3}}$$ $$S_n = \frac{\sqrt{7} \left[1 - \left(\sqrt{3}\right)^n\right]}{1 - \sqrt{3}} \times \frac{1 + \sqrt{3}}{1 + \sqrt{3}}$$ $$S_{n} = \frac{\sqrt{7}(\sqrt{3}+1)\left[1-(\sqrt{3})^{n}\right]}{1-3}$$ $$S_n = \frac{-\sqrt{7}(\sqrt{3}+1)[1-(\sqrt{3})^n]}{2}$$ Question 9: Find the sum to n terms in the geometric progression 1, -a, a^2 , $-a^3$... (if $a \ne -1$) Answer 9: The given G.P. is 1, -a, a^2 , $-a^3$, Here, first term = $a_1 = 1$ Common ratio = r = -a $$S_n = \frac{a_1(1-r^n)}{1-r}$$ $$S_n = \frac{1[1-(-a)^n]}{1-(-a)} = \frac{[1-(-a)^n]}{1+a}$$ Question 10: Find the sum to n terms in the geometric progression x^3 , x^5 , x^7 , ... (if $x \ne \pm 1$) Answer 10: The given G.P. is x^3 , x^5 , x^7 , ... Here, $a = x^3$ and $r = x^2$ $$S_{n} = \frac{a(1-r^{n})}{1-r} = \frac{x^{3}[1-(x^{2})^{n}]}{1-x^{2}} = \frac{x^{3}(1-x^{2n})}{1-x^{2}}$$ Question 11: Evaluate $\sum_{k=1}^{11} (2+3^k)$ Answer 11: $$\sum_{k=1}^{11} (2+3^k) = \sum_{k=1}^{11} (2) + \sum_{k=1}^{11} 3^k = 2 (11) + \sum_{k=1}^{11} 3^k = 22 + \sum_{k=1}^{11} 3^k \dots (1)$$ $$\sum_{k=1}^{11} 3^k = 31 + 32 + 33 + \dots + 311$$ The terms of the sequence $3, 3^2, 3^3 \dots$ Forms a G.P. $$S_n = \frac{a(r^n - 1)}{r - 1}$$ $$S_n = \frac{3[(3)^{11}-1]}{3-1}$$ $$S_n = \frac{3}{2}(3^{11} - 1)$$ $$=\sum_{k=1}^{11} 3^k = \frac{3}{2}(3^{11} - 1)$$ Substituting this value in eq. (1), we obtain $$\sum_{k=1}^{11} (2+3^k) = 22 + \frac{3}{2} (3^{11} - 1)$$ Question 12: The sum of first three terms of a G.P. is $\frac{39}{10}$ and their product is 1. Find the common ratio and the terms. Answer 12: Let, $\frac{a}{r}$, a, ar be the first three terms of the G.P. $$\frac{a}{r}$$ + a + ar = $\frac{39}{10}$... (1) $$\left(\frac{a}{r}\right)(a)(ar) = 1 \dots (2)$$ From (2), we obtain a3 = 1 $$= a = 1$$ (considering real roots only) Substituting a = 1 in eq. (1), we obtain $$\frac{1}{r} + 1 + r = \frac{39}{10}$$ $$= 1 + r + r^2 = \frac{39}{10} r$$ $$= 10 + 10r + 10r^2 - 39r = 0$$ $$= 10r^2 - 29r + 10 = 0$$ $$= 10r^2 - 25r - 4r + 10 = 0$$ $$= 5r (2r - 5) - 2 (2r - 5) = 0$$ $$=(2r-5)(5r-2)=0$$ $$= r = \frac{2}{5} \text{ or } \frac{5}{2}$$ Thus, the three terms if G.P. are $\frac{5}{2}$, 1 and $\frac{2}{5}$ Question 13: How many terms of G.P. 3, 3², 3³ ... are needed to give the sum 120? Answer 13: The given G.P. is $3, 3^2, 3^3 ...$ Let *n* terms of this G.P. be required to obtain the sum as 120. $$S_n = \frac{a(1-r^n)}{1-r}$$ Here, a = 3 and r = 3 $$S_n = 120 = \frac{3(3^n - 1)}{3 - 1}$$ $$=120=\frac{3(3^n-1)}{2}$$ $$= \frac{120 \times 2}{3} = 3n - 1$$ $$=3n-1=80$$ $$=3n = 81$$ $$=3n=34$$ $$= n = 4$$ Thus, four terms of the given G.P. are required to obtain the sum as 120. Question 14: The sum of first three terms of a G.P. is 16 and the sum of the next three terms are 128. Determine the first term, the common ratio and the sum to n terms of the G.P. Answer 14: Let, the G.P. be a, a r, ar², ar³, ... According to the given condition, $$a + a r + ar^2 = 16$$ and $ar^3 + ar^4 + ar^5 = 128$ $$= a (1 + r + r^2) = 16 \dots (1)$$ $$= ar^3 (1 + r + r^2) = 128 \dots (2)$$ Dividing eq. (2) by (1), we obtain $$\frac{ar^3(1+r+r^2)}{a(1+r+r^2)} = \frac{128}{16}$$ $$= r^3 = 8$$ $$= r = 2$$ Substituting r = 2 in (1), we obtain a (1 + 2 + 4) = 16 $$= a(7) = 16$$ $$= a = \frac{16}{7}$$ $$S_n = \frac{a(r^n - 1)}{r - 1}$$ $$S_n = \frac{16}{7} \frac{(2^n - 1)}{2 - 1} = \frac{16}{7} (2^n - 1)$$ Question 15: Given a G.P. with a = 729 and 7_{th} term 64, determine S7. Answer 15: $$A = 729 a^7 = 64$$ Let, r be the common ratio of the G.P. it is known that, $$= a_n = a rn^{-1}$$ $$= a_7 = ar^{7-1} = (729) r^6$$ $$= 64 = 729 \text{ r}^6$$ $$= r^6 = \frac{64}{729}$$ $$= r^6 = \left(\frac{2}{3}\right)^6$$ $$= r = \frac{2}{3}$$ Also, it is known that, $$S_n = \frac{a(1-r^n)}{1-r}$$ $$S_7 = \frac{729 \left[1 - \left(\frac{2}{3} \right)^7 \right]}{1 - \frac{2}{3}}$$ $$=3\times729\left[1-\left(\frac{2}{3}\right)^7\right]$$ $$= (3)^7 \left[\frac{(3)^7 - (2)^7}{(3)^7} \right]$$ $$=(3)^7-(2)^7$$ $$=2187-128$$ $$=2059$$ Question 16: Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term. Answer 16: Let, a be the first term and r be the common ratio of the G.P. According to the given condition, $$S_2 = -4 = \frac{a(1-r^2)}{1-r} \dots (1)$$ $$= a_5 = 4 \times a^3$$ $$= a r^4 = 4 ar^2 = r^2 = 4$$ $$= r = \pm 2$$ From (1), we obtain $$-4 = \frac{a[1-(2)^2]}{1-2}$$ for $r = 2$ $$= -4 = \frac{a(1-4)}{-1}$$ $$= -4 = a(3)$$ $$= a = \frac{-4}{3}$$ Also, $-4 = \frac{a[1-(-2)^2]}{1-(-2)}$ for $r = -2$ $$= -4 = \frac{a(1-4)}{1+2}$$ $$= -4 = \frac{a(-3)}{3}$$ Thus, the required G.P. is $\frac{-4}{3}$, $\frac{-8}{3}$, $\frac{-16}{3}$,... or 4, -8, 16, -32, ... Question 17: If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z is in G.P. Answer 17: = a = 4 Let, a be the first term and r be the common ratio of the G.P. According to the given condition, $$= a_4 = a r^3 = x \dots (1)$$ $$= a_{10} = a r^9 = y \dots (2)$$ $$= a_{16} = a r^{15} = z ... (3)$$ Dividing (2) by (1), we obtain $$\frac{y}{x} = \frac{ar^9}{ar^3} = \frac{y}{x} = r^6$$ Dividing (3) by (2), we obtain $$\frac{z}{v} = \frac{ar^{15}}{ar^9} = \frac{z}{v} = r^6$$ $$=\frac{y}{x}=\frac{z}{y}$$ Thus, x, y, z is in G.P. Question 18: Find the sum to n terms of the sequence, 8, 88, 888, 8888... Answer 18: The given sequence is 8, 88, 888, 8888... This sequence is not a G.P. however, it can be changed to G.P.by writing the terms as $$S_{n} = 8 + 88 + 888 + 8888 + \dots + n \text{ terms}$$ $$= \frac{8}{9} [9 + 99 + 999 + 9999 + \dots \text{ to n terms}]$$ $$= \frac{8}{9} [(10 - 1) + (10^{2} - 1) + (10^{3} - 1) + (10^{4} - 1) + \dots \text{ to n terms}]$$ $$= \frac{8}{9} [(10 + 10^{2} + \dots \text{ n terms}) - (1 + 1 + 1 + \text{n terms})]$$ $$= \frac{8}{9} \left(\frac{10(10^{n} - 1)}{10 - 1} - n\right)$$ $$= \frac{8}{9} \left[\frac{10(10^{n} - 1)}{9} - n\right]$$ $$= \frac{80}{91} (10^{n} - 1) - \frac{8}{9} n$$ Question 19: Find the sum of the products of the corresponding terms of the sequences2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2. Answer 19: Required sum = $$2 \times 128 + 4 \times 32 + 8 \times 8 + 16 \times 2 + 32 \times \frac{1}{2}$$ $$= 64 \left[4 + 2 + 1 + \frac{1}{2} + \frac{1}{2^2} \right]$$ Here, 4, 2, 1, $\frac{1}{2}$, $\frac{1}{2^2}$ is a G.P. First term, a = 4 Common ratio $r = \frac{1}{2}$ It is known that, $$S_n = \frac{a(1-r^n)}{1-r}$$ $$S_5 = \frac{4\left[1 - \left(\frac{1}{2}\right)^5\right]}{1 - \frac{1}{2}} = \frac{4\left[1 - \frac{1}{32}\right]}{\frac{1}{2}} = 8\left(\frac{32 - 1}{32}\right) = \frac{31}{4}$$ Required sum = $64 \times \frac{31}{4} = (16)(31) = 496$ Question 20: Show that the products of the corresponding terms of the sequences form a, a r, ar^2 , ... ar^{n-1} and A, AR, AR², ... ARⁿ⁻¹ a G.P, and find the common ratio. Answer 20: It has to be proved that the sequence: aA, a r AR, ar²AR², ...arⁿ⁻¹ARⁿ⁻¹, forms a G.P. $$\frac{second\ term}{first\ term} = \frac{arAR}{aA} = Rr$$ $$\frac{third\ term}{secind\ term} = \frac{ar^2AR^2}{arAR} = Rr$$ Thus, the above sequence forms a G.P. and the common ratio is rR. Question 21:Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18. Answer 21: Let, a be the first term and r be the common ratio of the G.P. $$= a_1 = a, a_2 = a r, a_3 = ar^2, a_4 = ar^3$$ By the given condition $$= a_3 = a_1 + 9 = ar^2 = a + 9 \dots (1)$$ $$= a_2 = a_4 + 18 = a r = ar^3 + 18 \dots (2)$$ From eq. (1) and (2), we obtain $$= a (r^2 - 1) = 9 \dots (3)$$ = $$a r (1 - r^2) = 18 ... (4)$$ Dividing (4) by (3), we obtain $$\frac{ar(1-r^2)}{a(r^2-1)} = \frac{18}{9}$$ $$= -r = 2$$ $$= r = -2$$ Substituting the value of r in (1), we obtain $$4a = a + 9$$ $$= 3a = 9$$ $$= a = 3$$ Thus, the first four numbers of the G.P. are 3, 3 (-2), $3(-2)^2$ and $3(-2)^3$ i.e., 3, -6, 12, and -24. Question 22: If p^{th} , q^{th} and r^{th} terms of a G.P. are a, b and c, respectively. Prove that A $$q-r.b^{r-p}.c^{p-q}=1.$$ Answer 22: Let, A be the first term and R be the common ratio of the G.P. According to the given information, $$AR^{p-1} = a$$ $$\begin{split} &AR^{q\text{-}1} = b \\ &AR^{r\text{-}1} = c \\ &= a^{q\text{-}r}. \ b^{r\text{-}p}. \ c^{p\text{-}q} \\ &= A^{q\text{-}r} \times R^{(p\text{-}1) \ (q\text{-}r)} \times A^{r\text{-}p} \times R^{(q\text{-}1) \ (r\text{-}p)} \times A^{p\text{-}q} \times R^{(r\text{-}1) \ (p\text{-}q)} \\ &= A^{q\text{-}r+r-p+p-q} \times R^{(pr-p\,r-q+r)+(r\,q-r+p-p\,q)+(p\,r-p-q\,r+q)} \\ &= A^0 \times R^0 \\ &= 1 \end{split}$$ Thus, the given result is proved. Question 23: If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that $P^2 = (ab)^n$. ### Answer 23: The first terms of the A.P. is a and the last term is b. Therefore, the G.P. is a, a r, ar², ar³ ... arⁿ⁻¹, where r is common ratio $$= b = ar^{n-1} \dots (1)$$ $$= p = product of n terms$$ $$=$$ (a) (ar) (ar²) ... (arⁿ⁻¹) $$= (a \times a \times a) (r \times r^2 \times ... r^{n-1})$$ $$=$$ an r 1 + 2 + ... (n - 1) ... (2) Here, 1, 2, ... (n-1) is an A.P. $$= 1 + 2 + \dots + (n-1)$$ $$= \frac{n-1}{2} [2 + (n-1-1) \times 1] = \frac{n-1}{2} [2 + n-2] = \frac{n(n-1)}{2}$$ $$P = a^n r^{\frac{n(n-1)}{2}}$$ $$\mathbf{P}^2 = \mathbf{a}^{2\mathbf{n}} \, r^{n(n-1)}$$ $$= \left[a^2 r^{(n-1)}\right]^n$$ $$= [a \times ar^{n-1}]^n$$ $$= (ab)^n [using eq. (1)]$$ Thus, the given result id proved. Question 24: Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from $(n + 1)^{th}$ to $(2n)^{th}$ term is $\frac{1}{r^n}$. Answer 24: Let, a be the first term and r be the common ratio of the G.P. Sum of first n terms = $$\frac{a(1-r^n)}{1-r}$$ Since there are n terms from $(n + 1)^{th}$ to $(2n)^{th}$ term, Sum of terms from $(n + 1)^{th}$ to $(2n)^{th}$ term $$S_n = \frac{a_{n+1}(1-r^n)}{1-r}$$ Thus, required ratio = $$\frac{a(1-r^n)}{1-r} \times \frac{1-r}{ar^n(1-r^n)} = \frac{1}{r^n}$$ Thus, the ratio of the sum of first n terms of a G.P. to the sum of terms from $(n + 1)^{th}$ to $(2n)^{th}$ terms is $\frac{1}{r^n}$ Question 25: If a, b, c and d are in G.P. show that: $$(a^2 + b^2 + c^2) (b^2 + c^2 + d^2) = (ab + bc - cd)^2$$ Answer 25: a, b, c and d are in G.P. therefore, $$= bc = ad ... (1)$$ $$= b2 = ac ... (2)$$ $$= c2 = bd \dots (3)$$ It has to be proved that, $$(a^2 + b^2 + c^2) (b^2 + c^2 + d^2) = (ab + bc - cd)^2$$ R.H.S. $$= (ab + bc + cd)^2$$ $$= (ab + ad + cd)^2 [using (1)]$$ $$= [ab + d (a + c)]^2$$ $$= a^2b^2 + 2abd (a + c) + d^2 (a + c)^2$$ $$= a^2b^2 + 2a^2bd + 2acbd + d^2(a^2 + 2ac + c^2)$$ = $$a^2b^2 + 2a^2c^2 + 2b^2c^2 + d^2a^2 + 2d^2b^2 + d^2c^2$$ [using (1) and (2)] $$= a^2b^2 + a^2c^2 + a^2c^2 + b^2c^2 + b^2c^2 + d^2a^2 + d^2b^2 + d^2b^2 + d^2c^2$$ $$= a^2b^2 + a^2c^2 + a^2d^2 + b^2 \times b^2 + b^2c^2 + b^2d^2 + c^2d^2 + c^2 \times c^2 + c^2d^2$$ [using (2) and (3) and rearranging terms] $$= a^2 (b^2 + c^2 + d^2) + b^2 (b^2 + c^2 + d^2) + c^2 (b^2 + c^2 + d^2)$$ $$= (a^2 + b^2 + c^2) (b^2 + c^2 + d^2) = L.H.S.$$ $$L.H.S. = R.H.S.$$ $$= (a^2 + b^2 + c^2) (b^2 + c^2 + d^2) = (ab + bc - cd)^2$$ Question 26: Insert two numbers between 3 and 81 so that the resulting sequence is G.P. Answer 26: Let, G_1 and G_2 be two numbers between 3 and 81 such that the series, 3, G_1 , G_2 , 81, forms a G.P. Let, a be the first term and r be the common ratio of the G.P. $$81 = (3) (r)^3$$ $$= r^3 = 27$$ = r = 3 (taken real roots only) For r = 3 $$G_1 = a r = (3) (3) = 9$$ $$G_2 = a r^2 = (3) (3)^2 = 27$$ Thus, the required two numbers are 9 and 27. Question 27: Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b. Answer 27: A.M. is a and b is \sqrt{ab} By the given condition: $$\frac{a^{n+1}+b^{n+1}}{a^n+b^n} = \sqrt{ab}$$ Squaring both sides, we obtain $$= \frac{(a^{n+1}+b^{n+1})^2}{(a^n+b^n)^2} = ab$$ $$= a^{2n+2} + 2a^{n+1}b^{n+1} + b^{2n+2} = (ab) (a^{2n} + 2a^nb^n + b^{2n})$$ $$= a^{2n+2} + 2a^{n+1}b^{n+1} + b^{2n+2} = a^{2n+1}b + 2a^{n+1}b^{n+1} + ab^{2n+1}$$ $$= a^{2n+2} + b^{2n+2} = a^{2n+1}b + ab^{2n+1}$$ $$= a^{2n+2} - a^{2n+1}b = ab^{2n+1} - b^{2n+2}$$ $$= a^{2n+2} - a^{2n+1}b = ab^{2n+1} - b^{2n+2}$$ $$= a^{2n+1}(a-b) = b^{2n+1}(a-b)$$ $$= \left(\frac{a}{b}\right)^{2n+1} = 1 = \left(\frac{a}{b}\right)^{0}$$ $$= 2n+1=0$$ $$= n = \frac{-1}{2}$$ Question 28: The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio $(3 + 2\sqrt{2})$: $(3 - 2\sqrt{2})$ Answer 28: Let, the two numbers be a and b. $$G.M. = \sqrt{ab}$$ According to the given condition, $$= a + b = 6\sqrt{ab} \dots (1)$$ $$= (a + b)^2 = 36 (ab)$$ Also, $$(a - b)^2 = (a + b)^2 - 4ab = 36ab - 4ab = 32ab$$ $$= a - b = \sqrt{32}\sqrt{ab}$$ $$=4\sqrt{2}\sqrt{ab}\,\ldots\,(2)$$ Adding (1) and (2), we obtain $$2a = (6 + 4\sqrt{2}) \sqrt{ab}$$ $$= a = (3 + 2\sqrt{2})\sqrt{ab}$$ Substituting the value of a in (1), we obtain $$= b = 6 \sqrt{ab} - (3 + 2\sqrt{2}) \sqrt{ab}$$ $$= b = (3 - 2\sqrt{2}) \sqrt{ab}$$ $$= \frac{a}{b} = \frac{(3+2\sqrt{2})\sqrt{ab}}{(3-2\sqrt{2})\sqrt{ab}} = \frac{3+2\sqrt{2}}{3-2\sqrt{2}}$$ Thus, the required ratio is $(3 + 2\sqrt{2})$: $(3 - 2\sqrt{2})$ Question 29: If A and G be A.M. and G.M., respectively between two positive numbers, prove that the numbers are A $\pm \sqrt{(A+G)(A-G)}$ Answer 29: It is given that A and G are A.M. and G.M. between two positive numbers. Let, these two positive numbers be a and b. $$= A.M. = A = \frac{a+b}{2} \dots (1)$$ $$G.M. = G = \sqrt{ab} \dots (2)$$ From (1) and (2), we obtain $$= a + b = 2A \dots (3)$$ $$= ab = G^2 \dots (4)$$ Substituting the value of a and b from (3) and (4) in the identity $$(a - b)^2 = (a + b)^2 - 4ab$$. We obtain $$(a-b)^2 = 4A^2 - 4G^2 = 4(A^2 - G^2)$$ $$(a-b)^2 = 4 (A + G) (A - G)$$ $$(a-b) = 2\sqrt{(A+G)(A-G)} \dots (5)$$ From (3) and (5), we obtain $$2a = 2A + 2\sqrt{(A+G)(A-G)}$$ $$= a = A + \sqrt{(A+G)(A-G)}$$ Substituting the value of a in (3), we obtain $$= b = 2A - A - \sqrt{(A+G)(A-G)} = A - \sqrt{(A+G)(A-G)}$$ Thus, the two numbers are A $\pm \sqrt{(A+G)(A-G)}$ Question 30: The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2nd hour, 4th hour and an hour? ### Answer 30: It is given that the number of bacteria doubles every hour. Therefore, the numbers of bacteria after every hour will form a G.P. Here, a = 30 and r = 2 $$= a_3 = ar^2 = (30)(2)^2 = 120$$ Therefore, the numbers of bacteria at the end of 2nd hour will be 120. $$= a_5 = ar^4 = (30)(2)^4 = 480$$ The number of bacteria at the end of 4th hour will be 480. $$= a_{n+1} = a r^n = (30) 2^n$$ Thus, numbers of bacteria at the end of nth hour will be 30 (2)ⁿ Question 31: What will ₹500 amounts to in 10 years after its deposit in a bank which pays annual interest rate of 10% compounded annually? ### Answer 31: The amount deposited in the bank is ₹500. At the end of first year, amount = $₹500(1 + \frac{1}{10}) = rs500(1.1)$ At the end of 2^{nd} year, amount = ₹500 (1.1) (1.1) At the end of 3^{rd} year, amount = ₹500 (1.1) (1.1) (1.1) and so on. Amount at the end of 10 years = ₹500 (1.1) (1.1) ... (10 times) = Rs500 $(1.1)^{10}$ Question 32: If A.M. and G.M. of roots of a quadratic equation are 8 and 5, respectively, then obtain the quadratic equation. ### Answer 32: Let, the root of the quadratic equation be a and b. According to the given condition, A.M. = $$\frac{a+b}{2}$$ = 8 = a + b = 16 ... (1) G.M. = $$\sqrt{ab}$$ = 5 = ab = 25 ... (2) The quadratic equation is given by, $$x^2 - x$$ (sum of roots) + (product of roots) = 0 $$x^2 - x (a + b) + (ab) = 0$$ $$x^2 - 16x + 25 = 0$$ [using (1) and (2)] thus, the required quadratic equation is $x^2 - 16x + 25 = 0$