RACE # 39			SOT	MATHEMATICS								
	[STRAIGHT OBJECTIVE TYPE]											
1.	• In an equilateral triangle, $R : r : r_2$ is equal to											
	(A) 1 : 1 : 1	(B) 1 : 2 : 3	(C) 2 : 1 : 3	(D) 3 : 2 : 4								
2.	If in a $\triangle ABC$, $a^2 + b^2$	$b^{2} + c^{2} = 8R^{2}$, where R	= circumradius, then the tria	ngle is								
	(A) equilateral	(B) isosceles	(C) right angled	(D) none of these								
3.	If in equilateral triar	ngle, in-radius is a ratio	onal number, then which of t	he following is not true ?								
	(A) circum radius is	always rational	(B) area is always i	irrational								
	(C) ex-radii are alwa	ays rational	(D) perimeter is alw	vays rational								
4.	In a triangle ABC, a	: b : c = 4 : 5 : 6. The	ratio of the radius of the circ	umcircle to that of the incircle is -								
	(A) 15/4	(B) 11/5	(C) 16/7	(D) 16/3								
5.	If the lengths of the	sides of a triangle are	circum radius is -									
	(A) 2.0	(B) 2.5	(C) 3.0	(D) 3.5								
6.	If the sides of a triangle are $3:7:8$ then $R:r =$											
	(A) 2 : 7	(B) 7 : 2	(C) 3 : 7	(D) 7:3								
7.	In a triangle ABC, $\frac{a\cos A + b\cos B + c\cos C}{a+b+c}$ is equal to -											
	(A) $\frac{r}{R}$	(B) $\frac{R}{r}$	(C) $\frac{2r}{R}$	(D) $\frac{R}{2r}$								
8.	3. If r_1, r_2, r_3 in a triangle be in H.P. then the sides are in -											
	(A) A.P.	(B) G.P.	(C) H.P.	(D) None of these								
9.	$\left(\frac{1}{r_1} + \frac{1}{r_2}\right) \left(\frac{1}{r_2} + \frac{1}{r_3}\right) \left(\frac{1}{r_3} + \frac{1}{r_1}\right) =$											
	(A) $\frac{64R^3}{abc}$	(B) $\frac{R^3}{4abc}$	(C) $\frac{64R^3}{a^2b^2c^2}$	(D) $\frac{R^3}{abc}$								
10.	If the sides be a, b, c	then $\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{c-a}{r_2}$	$\frac{a-b}{r_3} =$									
	(A) 5	(B) 4	(C) 0	(D) 1								
11.	$r_2 r_3 + r_3 r_1 + r_1 r_2 =$											
	(A) s ²	(B) Δ ²	(C) Δ/r^3	(D) R ²								

(A) 0 (B) 1 (C) 2 (D) 3

Paragraph for question nos. 15 to 17

In \triangle ABC as shown, $XX_1 = d_1$; $XX_2 = d_2$; $XX_3 = d_3$ and X is the centre of the circumscribed circle around the \triangle ABC. a, b and c as usual are the sides BC, CA and AB respectively.

15. If $\lambda \left(\frac{a}{d_1} + \frac{b}{d_2} + \frac{c}{d_3}\right) = \frac{abc}{d_1 d_2 d_3}$, then the value of ' λ ' is equal to (A) 1 (B) 2 (C) 4 (D) 8

16. If R is the radius of the circumcircle of the $\triangle ABC$ and $a(d_2 + d_3) + b(d_3 + d_1) + c(d_1 + d_2) = kR(a + b + c)$ then the value of 'k' is

17. Let h_a , h_b and h_c are the altitudes of the $\triangle ABC$ from the angular points A, B and C respectively. If $(a^2 + b^2 + c^2) = t (h_a d_1 + h_b d_2 + h_c d_3)$ then 't' equals (A) 1 (B) 2 (C) 3 (D) 4

[SUBJECTIVE TYPE]

- **18.** In an equilateral $\triangle ABC$ with each side of $\sqrt{3}$, with usual conventions, the value of (r_1-r) (r_2-r) (r_3-r) is equal to
- **19.** In an acute angled $\triangle ABC$, with usual conventions, the arithmetic mean of $\frac{1}{r_1}, \frac{1}{r_2}, \frac{1}{r_3}$ is k, then minimum value

of
$$\sqrt{\frac{6abc k}{\Delta}}$$
 is

20. If r_1, r_2, r_3 are roots of $x^3 - 6x^2 + 11x - 6 = 0$ then the area of the triangle is $\frac{p}{\sqrt{q}}$, where p & q are coprimes then (q - p) is equal to

Answers

RACE # 39

1.	(C)	2.	(C)	3.	(D)	4.	(C)	5.	(B)	6.	(B)	7.	(A)	8.	(A)	9.	(C)	10.	(C)
11.	(A)	12.	(B)	13.	(A)	14.	(C)	15.	(C)	16.	(A)	17.	(D)	18.	1	19.	4	20.	5