

ADVANCE CHEMICAL BONDING

[JEE MAIN]

Q.1	The reason for double helical structure of DNA is operation of:(1) dipole-dipole interaction(2) hydrogen bonding(3) electrostatic attraction(4) vander Wall's forces				[AIEEE 2003]
Q.2	The bond orde two species? (1) Bond lengt (3) Bond leng	e following statement in NO is greater than is unpredictable	ts is true for these [AIEEE 2004] in NO ⁺		
Q.3	The states of h (1) sp ³ and sp (3) sp ² and sp	ybridization of boron an 2 2	d oxygen atoms in boric (2) sp ² and sp ³ (4) sp ³ and sp ³	acid (H ₃ BO ₃) are resp	bectively: [AIEEE 2004]
Q.4	Beryllium and (1) Forming co (2) Forming po (3) Exhibiting r (4) Exhibiting r	ents differ in : [AIEEE 2004]			
Q.5	Which one of t	[AIEEE 2005]			
	(1) He_{2}^{+}	(2) H ₂	(3) H ⁺ ₂	(4) H_2^-	
Q.6	The number an (1) One sigma (3) Two sigma	ium carbide are : two pi bond two pi bond	[AIEEE 2005]		
Q.7	Which of the fe	ollowing molecules\ions	does not contain unpaire	ed electrons?	[AIEEE 2006]
	(1) N_2^+	(2) O ₂	(3) O ₂ ²⁻	(4) B ₂	
Q.8	Among the following mixtures, dipole-dipole as the major interaction, is present in :(1) KCI and water(2) benzene and carbon tetrachlorid(3) benzene and ethanol(4) acetonitrile and acetone				[AIEEE 2006]
Q.9	A metal, M for these chlorides (1) MCl_2 is mo (2) MCl_2 is mo (3) MCl_2 is mo (4) MCl_2 is mo	ms chlorides in its +2 and s is correct? ore ionic than MCl_4 ore easily hydrolysed that ore volatile than MCl_4 ore soluble in anhydrous	d +4 oxidation states. Wi n MCl ₄ ethanol than MCl ₄	hich of the following	statements about [AIEEE 2006]

Q.10	In which of the following ionizion processes, the bond order has increased and the magnetic behaviour has changed [AIEEE 2007]								
	(1) NO \rightarrow NO ⁺	(2) $O_2 \rightarrow O_2^+$	(3) $N_2 \rightarrow N_2^+$	$(4) \operatorname{C}_2 \to \operatorname{C}_2^+$					
Q.11	Which of the following (1) F – H F	g hydrogen bonds is the s (2) O – H O	strongest (3) O – H F	(4) O – H	[AIEEE 2007] N				
Q.12	Which of the following $(1) O_2^+$	g species exhibits the diat (2) O_2	magnetic behaviour: (3) NO	(4) O ₂ ^{2–}	[AIEEE 2007]				
Q.13	The charge/size ratio of represents the increasi (1) $Be^{+2} < K^+ < Ca^{+2}$ (3) $Ca^{+2} < Mg^{+2} < Be^{-2}$	owing sequences Ca ⁺² , Mg ⁺² , Be ⁺² [AIEEE 2007]							
Q.14	Which one of the follo (1) CN^{-} and NO^{+} (3) O_{2}^{-} and CN^{-}	owing pairs of species ha	(2) CN ⁻ and CN ⁺ (4) NO ⁺ and CN ⁺		[AIEEE 2008]				
Q.15	Using molecule orbita (1) O_2^{2+}	1 theory predict which o (2) O_2^+	f the following species h (3) O_2^{-}	has the shortest (4) O_2^{2-}	bond length- [AIEEE 2009]				
Q.16	Ortho-Nitrophenol is 1 (1) o-Nitrophenol show (2) Melting point of o- (3) o-Nitrophenol is m (4) o-Nitrophenol show	less soluble in water tha ws intermolecular H-bor Nitrophenol is lower the lore volatile in steam tha ws intramolecular H-bor	n p- and m-Nitrophenol nding an those of m-and p-ison an those of m-and p-ison nding	s because : mers. ners.	[AIEEE 2012]				
Q.17	Stability of the species (1) $\text{Li}_2^- < \text{Li}_2^+ < \text{Li}_2$	$Li_2, Li_2^- \text{ and } Li_2^+ \text{ incre}$ (2) $Li_2 < Li_2^- < Li_2^+$	ases in the order of: (3) $\text{Li}_2^- < \text{Li}_2 < \text{Li}_2^+$	[JEE (Main (4) Li ₂ < Li ₂	n-Offline) 2013] + < Li ₂ ⁻				
Q.18	Which one of the follow	Which one of the following molecules is expected to exhibit diamagnetic behaviour?							
	(1) N ₂	(2) O ₂	(3) S ₂	(4) C ₂	n-Offline) 2013]				
Q.19	In which of the followi	ing pairs of molecules / i	ons, both the species are	e not likely to ex	xist?				
	(1) H_2^- , He_2^{2-}	(2) H_2^{2+} , He_2	(3) H_2^- , He_2^{2+}	(4) H_2^+ , He_2	2013] 2-				
Q.20	The solubility order for (1) RbF < KF < NaF (3) LiF > NaF > KF >	alkali metal fluoride in < LiF > RbF	water is : (2) LiF < RbF < KF (4) LiF < NaF < KF	< NaF < RbF LIEE (Mai	n-Online) 20131				

Q.21	Bond order normally gives idea of stability of a molecular species. All the molecules viz. H_2 , Li_2 and B_2 have the same bond order yet they are not equally stable. Their stability order is :							
	(1) $Li_2 > H_2 > Br_2$	(2) $Li_2 > B_2 > H_2$	(3) $H_2 > B_2 > Li_2$	(4) B ₂ > H ₂ > Li ₂ [JEE (Main-Online) 2013]				
Q.22	The internuclear dista (1) 1.30 Å, 1.49 Å, 1. (3) 1.21Å, 1.12Å, 1.4	nces in O–O bonds for 12 Å, 1.21 Å 9Å, 1.30 Å	O_2^+, O_2^-, O_2^- and O_2^{2-} r (2) 1.12 Å, 1.21 Å, 1. (4) 1.49Å, 1.21Å, 1.1	espectively are : 30Å, 1.49Å 2Å, 1.30Å [JEE (Main-Online) 2013]				
Q.23	Which one of the follo (1) It is a neutral oxide (2) It combines with ox (3) It's bond order is 2 (4) It is diamagnetic in	wing properties is not sl xygen to form nitrogen d 2.5 gaseous state	hown by NO? lioxide	[JEE (Main-Offline) 2014]				
Q.24	The number and type	of bonds in C_2^{2-} ion in C_2^{2-}	CaC ₂ are :					
	(1) Two σ bonds and one π -bond (3) One σ bond and one π -bond		(2) Two σ bonds and (4) One σ bond and tw	two π-bonds wo π-bonds [JEE (Main-Online) 2014]				
Q.25	Which of the following (1) N_2	g has unpaired electron(s (2) O_2^{-}	s)? (3) O_2^{2-}	(4) N ₂ ²⁺ [JEE (Main-Online) 2014]				
Q.26	Which one of the follo $(1) P(CH_3)_3$	wing does not have a py (2) (SiH ₃) ₃ N	vramidal shape ? (3) $P(SiH_3)_3$	(4) (CH ₃) ₃ N [JEE (Main-Online) 2014]				
Q.27	The correct order of be	ond dissociation energy	$v \text{ among } N_2, O_2, O_2^- \text{ is sh}$	nown in which of the following				
	(1) $O_2^- > O_2 > N_2$	(2) $N_2 > O_2 > O_2^-$	(3) $N_2 > O_2^- > O_2$	(4) O ₂ > O ₂ ⁻ > N ₂ [JEE (Main-Online) 2014]				
Q.28	Amongst LiCl, RbCl, respectively are :	BeCl_2 and MgCl_2 the co	ompounds with the great	est and the least ionic character,				
	(1) $MgCl_2$ and $BeCl_2$	(2) LiCl and RbCl	(3) RbCl and MgCl ₂	(4) RbCl and BeCl ₂ [JEE (Main-Online) 2014]				
Q.29	The reason for double (1) Hydrogen bonding (3) Dipole-Dipole inter	helical structure of DNA	A is the operation of : (2) Electrostatic attract (4) van der Waals forc	ions es				

[JEE (Main-Online) 2014]

Q.30	Which one of	the following molecules is para	amagnetic ?							
	(1) CO	(2) N ₂	(3) O ₃	(4) NO [JEE (Main-Online) 2014]						
Q.31	The intermole	ecular interaction that is depend	lent on the inverse c	ube of distance between the molecules						
	(1) London f	orce	(2) Hydrogen b	ond						
	(3) Ion -ion in	teraction	(4) Ion -dipole i	nteraction						
				[JEE (Main-Offline) 2015]						
Q.32	After underst Assertion :	anding the assertion and reaso In the bonding molecular or nuclei.	n, choose the correc bital (MO) of H ₂ , ele	t option. ectron density is increased between the						
	Reason :	Reason : The bonding MO is $\Psi_A + \Psi_B$, which shows destructive interference of the combining electron waves.								
	(1) Assertion(2) Assertion(3) Assertion(4) Assertion	 (1) Assertion is correct, reason is incorrect. (2) Assertion and reason are correct, but reason is not the correct explanation for the assertion. (3) Assertion and reason are correct and reason is the correct explanation for the assertion. (4) Assertion is incorrect, reason is correct. 								
	~ /	,		[JEE (Main-Online) 2015]						
Q.33	Which of the a (1) CaCl ₂	alkaline earth metal halides giv (2) BeCl ₂	en below is essentia (3) SrCl ₂	lly covalent in nature ? (4) MgCl ₂ [JEE (Main-Online) 2015]						
0.34	Which of the	following compounds has a P-	-P bond ?							
	(1) $H_4 P_2 O_7$	(2) $H_4 P_2 O_7$	(3) $(\text{HPO}_3)_3$	(4) H ₄ P ₂ O ₆ [JEE (Main-Online) 2015]						
Q.35	Which interm	olecular force is most responsi	ble in allowing xeno	n gas to liquefy?						
	(1) Dipole - d (3) Instantane	1pole	(2) Ion - dipole (4) Ionic							
	(5) Instantant		(4) Ionic	[JEE (Main-Online) 2016]						
Q.36	The correct or	The correct order of the solubility of alkaline-earth metal sulphates in water is:								
	(1) Mg $<$ Ca	< Sr < Ba	(2) Mg $<$ Sr $<$ 0	Ca < Ba						
	(3) Mg > Sr	> Ca > Ba	(4) Mg > Ca >	Sr > Ba [JEE (Main-Online) 2016]						
0.37	Which of the	following species is not perem	anotic ?	[IFF (Main Offling) 2017]						
Q.37	(1) CO	(B) O ₂	(C) B_2	(D) NO						
Q.38	Which of the t (1) NO ⁺	following is paramagnetic ? (2) CO	(3) O ₂ ^{2–}	(4) B ₂ [JEE (Main-Online) 2017]						

Q.39	The number of $S = O$ and $S - OH$ bonds present in peroxodisulphuric acid and pyrosulphuric acid respectively are :						
	(1) (2 and 2) and (2 and	nd 2)	(2) (2 and 4) and (2 and 4)				
	(3) (4 and 2) and (2 and	nd 4)	(4) (4 and 2) and (4 and 2)	nd 2)			
		,		[JEE (Main-Online) 2017]			
Q.40	Which of the following (1) FeCl ₃	g salts is the most basic in (2) $Pb(CH_3COO)_2$	n aqueous solution? (3) Al(CN) ₃	[JEE (Main-Offline) 2018] (4) CH ₃ COOK			
Q.41	Which of the following $(1) PH_3$ and $SiCl_4$	g are Lewis acids? (2) BCl ₃ and AlCl ₃	(3) PH_3 and BCl_3	[JEE (Main-Offline) 2018] (4) AlCl ₃ and SiCl ₄			
Q.42	According to molecula	r orbital theory, which o	f the following will not b	e a viable molecule?			
	(1) H_2^-	(2) H_2^{2-}	(3) He_2^{2+}	(4) He ⁺ ₂ [IFE (Main-Offline) 2018]			
Q.43	Which of the following	g best describes the diag	ram below of a molecula	r orbital ?			
		++					
	(1) An antibonding σ orbital (3) A bonding π orbital		(2) A non-bonding orb: (4) An antibonding π o	ital rbital [JEE (Main-Online) 2018]			
0.44	The number of $P - OI$	bonds in P_1O_2 is :					
	(1) 12	(2) 6	(3)9	(4) 18 [JEE (Main-Online) 2018]			
Q.45	In graphite and diamorespectively:	ond, the percentage of p	o-characters of the hybr	id orbitals in hybridisation are			
	(1) 50 and 75	(2) 33 and 25	(3) 67 and 75	(4) 3 and 75 [JEE (Main-Online) 2018]			
Q.46	In the molecular orbitator orbitator orbital is :	l diagram for the molecu	llar ion, N_2^+ , the number	of electrons in the σ_{2p} molecular			
	(1) 2	(2) 3	(3) 1	(4) 0 [JEE (Main-Online) 2018]			
Q.47	Among the oxides of n N ₂ O ₃ , N ₂ O ₄ and N ₂ O ₅ (1) Only N O	itrogen: ; the molecule(s) havin (2) N Ω and N Ω	ig nitrogen-nitrogen bor (3) N Ω and N Ω	d is / are : $(4) N \Omega$ and N Ω			
	(1) Only N_2O_5	(2) $1^{\circ}_{2}^{\circ}_{3}$ and $1^{\circ}_{2}^{\circ}_{5}$	(3) 1 2 0 4 and $1 2 0 5$	[JEE (Main-Online) 2018]			

Q.48	According to molecula (1) Both are stable (3) Both are unstable	ar orbital theory, which o	of the following is true w (2) Li_2^+ is unstable and (4) Li_2^+ is stable and L	ith respect to Li_2^+ and Li_2^- ? $l \text{Li}_2^-$ is stable i_2^- is unstable [JEE (Main-Online) 2019]
Q.49	Which amongst the fol (1) CHI ₃	lowing is the strongest a (2) CH(CN) ₃	cid ? (3) CHCl ₃	(4) CHBr ₃ [JEE (Main-Online) 2019]
Q.50	Good reducing nature (1) Two P–OH bonds	of H ₃ PO ₂ is attributed t (2) Two P–H bonds	to the presence of : (3) One P–OH bond	(4) One P–H bond [JEE (Main-Online) 2019]
Q.51	In which of the follow	ving processes, the bon	d order has increased an	nd paramagnetic character has
	changed to diamagnetic (1) $O_2 \rightarrow O_2^{2-}$	$(2) \operatorname{O}_2 \to \operatorname{O}_2^+$	$(3) \operatorname{N}_2 \to \operatorname{N}_2^+$	(4) NO \rightarrow NO ⁺ [JEE (Main-Online) 2019]
Q.52	Two pi and half sigma (1) N_2^+	bonds are present in : (2) O_2^+	(3) O ₂	(4) N ₂ [JEE (Main-Online) 2019]
Q.53	The number of 2-centr (1) 2 and 2	re-2-electron and 3-cen (2) 4 and 2	tre-2-electron bonds in H (3) 2 and 4	 ³₂H₆, respectively, are : (4) 2 and 1 [JEE (Main-Online) 2019]
Q.54	The hydride that is NO (1) SiH ₄	T electron deficient is: (2) B_2H_6	(3) GaH ₃	(4) AlH ₃ [JEE (Main-Online) 2019]
Q.55	Each of the following molecules possess per (1) BF_3 , O_3 , SF_6 , Xel (3) NO_2 , NH_3 , $POCl_3$	options contains a set of manent dipole moment a F_6^{-6} , CH ₃ Cl	of four molecules. Identiat room temperature. (2) $BeCl_2$, CO_2 , BCl_3 , (4) SO_2 , C_6H_5Cl , H_2S	ify the option(s) where all four [JEE (Main-Offline) 2019] , CHCl ₃ Se, BrF_5
Q.56	Among B_2H_6 , B_3N_3H covalent bond betwee	$_{6}$, N ₂ O, N ₂ O ₄ , H ₂ S ₂ O ₃ and two atoms of the same	and $H_2S_2O_8$, the total nue kind is	mber of molecules containing [JEE (Main-Offline) 2019]
Q.57	According to molecula (1) Both are stable (3) Both are unstable	ar orbital theory, which o	of the following is true with (2) Li_2^+ is unstable and (4) Li_2^+ is stable and L	ith respect to Li_2^+ and Li_2^- ? 1Li_2^- is stable i_2^- is unstable [JEE (Main-Online) 2019]
Q.58	Which amongst the fol	lowing is the strongest a	cid?	

$(1) \operatorname{CHI}_{2}$	(2) $CH(CN)_{2}$	(3) CHCl ₂	$(4) \operatorname{CHBr}_{2}$
			[JEE (Main-Online) 2019]

Q.59	Good	reducing nature	of H_3PO_2 is attributed	to the	presenc	e of :	
	(1) Tw	o P–OH bonds	(2) Two P–H bonds	(3)	One P-	OH bond	(4) One P–H bond [JEE (Main-Online) 2019]
Q.60	In whi change	ich of the follow ed to diamagnetic	ving processes, the bor c?	nd ord	ler has ii	ncreased an	d paramagnetic character has
	(1) O_2	$_{2} \rightarrow O_{2}^{2-}$	(2) $O_2 \to O_2^+$	(3)	$N_2 \rightarrow N_2$	N ₂ ⁺	(4) NO \rightarrow NO ⁺ [JEE (Main-Online) 2019]
0.61	Twon	i and half sigma	bonds are present in :				
	(1) N ₂	+ 2	(2) O_2^+	(3)	O ₂		(4) N ₂ [JEE (Main-Online) 2019]
0.62	The ni	umber of 2-cent	re-2-electron and 3-cen	tre-2	-electror	n bonds in E	B ₂ H ₂ , respectively, are :
	(1) 2 a	and 2	(2) 4 and 2	(3)	2 and 4		(4) 2 and 1 [JEE (Main-Online) 2019]
0.63	The hy	dride that is NO	T electron deficient is:				
	(1) Sil	H_4	(2) $B_2 H_6$	(3)	GaH ₃		(4) AlH ₃ [JEE (Main-Online) 2019]
Q.64	Each of the following options contains a set of molecules possess permanent dipole moment (1) BF_3 , O_3 , SF_6 , XeF_6 (3) NO_2 , NH_3 , $POCl_3$, CH_3Cl		of fou at roc (2) (4)	$\begin{array}{c} \text{ar molec} \\ \text{om tempe} \\ \text{BeCl}_2, \\ \text{SO}_2, \\ \text{C}_0 \end{array}$	ules. Identi erature. CO ₂ , BCl ₃ , ₅ H ₅ Cl, H ₂ S	fy the option(s) where all four [JEE (Main-Offline) 2019] CHCl ₃ e, BrF ₅	
Q.65	Amon covale	$B_2H_6, B_3N_3H_6$	$_{6}$, N ₂ O, N ₂ O ₄ , H ₂ S ₂ O ₃ n two atoms of the sam	and H e kind	$H_2S_2O_8$, the second secon	the total nu	mber of molecules containing [JEE (Main-Offline) 2019]
Q.66	Match Colum	the type of inter nn B :	caction in Column A wi	th the	distance	e dependenc	ce of their interaction energy in
		Α			B		
	(I)	iron - ion		(a)	$\frac{1}{r}$		
	(II)	dipole - dipole		(b)	$\frac{1}{r^2}$		
	(III)	London disper	sion	(c)	$\frac{1}{r^3}$		
				(d)	$\frac{1}{r^6}$		
	(1) (I) (3) (I))-(a), (II)-(b), (l)-(a), (II)-(b), (l	III)-(c) III)-(d)	(2) (4)	(I)-(a), (I)-(b),	(II)-(c), (I (II)-(d), (I	II)-(d) II)-(c) [JEE (Main-Online) 2020]

Q.67	If the boiling point of			
	(1) greater than 300	K but less than 373 K	(2) less than 300 K	
	(3) equal to 373 K		(4) more than 373 K	
				[JEE (Main-Online) 2020]
Q.68	In a molecule of py respectively are :	rophosphoric acid, the n	umber of P –OH, P = O	and P–O–P bonds/moiety(ies)
	(1) 3, 3 and 3	(2) 2, 4 and 1	(3) 4, 2 and 0	(4) 4, 2 and 1
				[JEE (Main-Online) 2020]
Q.69	Of the species, NO,	NO ⁺ , NO ²⁺ and NO ⁻ , the	one with minimum bon	d strength is :
	(1) NO2 ⁺	(2) NO ⁺	(3) NO	(4) NO ⁻ [JEE (Main-Online) 2020]
Q.70	An alkaline earth m oxide MO is very st (1) Ca	etal 'M' readily forms wa able to heat and does not (2) Be	ater soluble sulphate and have rock-salt structure. (3) Mg	water insoluble hydroxide. Its M is :- (4) Sr [JEE (Main-Online) 2020]
Q.71	Among the sulphates are:	s of alkaline earth metals, th	ne solubilities of $BeSO_4$ ar	nd MgSO ₄ in water, respectively,
	(1) high and high	(2) poor and poor	(3) high and poor	(4) poor and high [JEE (Main-Online) 2020]
Q.72	The number of CI =	O bonds in perchloric ac	id is, ""	[JEE (Main-Online) 2020]
Q.73	The relative strength (1) ion-dipole > ion- (3) ion-ion > ion-dip	of interionic/intermolecu -ion > dipole-dipole pole > dipole-dipole	lar forces in decreasing or (2) ion-dipole > dipole (4) dipole-dipole > ion	rder is e-dipole > ion-ion n-dipole >ion-ion [JEE (Main-Online) 2020]
Q.74	The bond order and	the magnetic characterist	tics and CN ⁻ are	
	(1) 3, paramagnetic		(2) $2\frac{1}{2}$, diamagnetic	
	(3) 3, diamagnetic		(4) $2\frac{1}{2}$, paramagnetic	
				[JEE (Main-Online) 2020]

Q.75 The predominant intermolecular forces present in ethyl acetate, a liquid, are

- (1) London dispersion, dipole-dipole and hydrogen bonding
- (2) hydrogen bonding and London dispersion
- (3) dipole-dipole and hydrogen bonding
- (4) London dispersion and dipole-dipole

[JEE (Main-Online) 2020]

- Q.76 If the magnetic moment of a dioxygen species is 1.73 B.M, it may be (1) O_2 or O_2^+ (2) O_2^- or O_2^+ (3) O_2 or O_2^-
- (4) O₂, O₂⁻, O₂⁺ [**JEE (Main-Online) 2020**]

PREVIO	DUS YEARS QUESTIC	NS		ADVANCE C	HEMICAL BONDING			
		(JEE	ADVANCED]					
Q.1	In the dichromate anion(B) 6 Cr - O bonds are equivalent(A) 4 Cr - O bonds are equivalent(B) 6 Cr - O bonds are equivalent(C) all Cr - O bonds are equivalent(D) all Cr - O bonds are non equivalent							
Q.2	Amongst H_2O , (A) H_2O becaus (C) H_2S becaus	Amongst H_2O, H_2S, H_2Se and H_2Te , the one with the highest boiling point is(A) H_2O because of hydrogen bonding(B) H_2Te because of higher molecular weight(C) H_2S because of hydrogen bonding(D) H_2Se because of lower molecular weight						
Q.3	The common fe (A) Bond order (C) Bond order	The common features among the species CN^- , CO and NO^+ are(A) Bond order three and isoelectronic(B) Bond other three and weak field ligation(C) Bond order two and π – acceptors(D) Isoelectronic and weak field ligation						
Q.4	Which of the following molecular species has unpaired electron(s)?							
	(A) N ₂	(B) F ₂	(C) O_2^-	(D) O_2^{2-}				
Q.5	According to mo	blecular orbital theory whic prrect regarding O_2^+	h of the following state	ement about the magne	etic character and [JEE 2004]			
	(A) Paramagne (C) Diamagnet	tic and Bond order $< O_2$ ic and Bond order $< O_2$	(B) Paramagnet (D) Diamagnet	(B) Paramagnetic and Bond order $> O_2$ (D) Diamagnetic and Bond order $> O_2$				
Q.6	Decreasing ord	er of the O–O bond length O_2 , KO_2 and O_2 [AsF ₄]	present in them		[JEE 2004]			
07	Among the follo	wing the paramagnetic co	moundis		[IFF 2007]			
Q.7	(A) Na_2O_2	(B) O_3	(C) N_2O	(D) KO ₂	[31212 2007]			
Q.8	The species hav (A) NO ⁻	ring bond order different fr (B) NO ⁺	rom that in CO is (C) CN ⁻	(D) N ₂	[JEE 2007]			
Q.9	Statement-1:	p-Hydroxybenzoic acid ha	as a lower boiling poin	t than o-hydroxybenz	coic acid.			
	Statement-2 :o-Hydroxybenzoic acid has intramolecular hydrogen bonding.[JEE(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement(C) Statement-1 is True, Statement-2 is False.(D) Statement-1 is False, Statement-2 is True.							

Q.10 The number of water molecule(s) directly bonded to the metal centre in $CuSO_4$. $5H_2O$ is

[JEE 2009]

Q.11	Match	each of the diat	omic molecules in Co	lumn I with	n its property / prope	erties in Colum	nn II. [JEE 2009]
	(A)	B ₂		(P)	Paramagnetic		[3EE 200 7]
	(B)	N_2		(Q)	undergoes oxidatio	on	
	(C)	O ₂ ⁻		(R)	Undergoes reducti	on	
	(D)	O ₂		(S)	Bond order ≥ 2		
				(T)	Mixing of 's' and '	p' orbitals	
Q.12	The ni (A) N	trogen oxide(s) ₂ O	that contain(s) N–N b (B) N ₂ O ₃	oond(s) is (a (C) N ₂	ure) O ₄ (D) N ₂ O ₅	[JEE 2009]
Q.13	Assum is	ning that Hund's	rule is violated, the bo	ond order a	nd magnetic nature	of the diatomic	molecule B_2
	(A) 1 and diamagnetic (C) 1 and paramagnetic			(B) 0 au (D) 0 a	nd diamagnetic nd paramagnetic		[311 2010]
Q.14	The tot H ₃ PO H ₃ BO	tal number of di $_{4}$ H ₂ SO $_{3}$ H ₃ PO	protic acids among the $_{4}$ H ₃ PO ₃ $_{2}$ H ₂ CrO ₄	following H_2CO H_2SO_3	$H_2S_2O_7$		[JEE 2010]
Q.15	The di	fference in the o	xidation numbers of t	he two type	es of sulphur atoms	in Na ₂ S ₄ O ₆ is	[JEE 2011]
Q.16	With re (A) Gr (B) Gr (C) Gr (D) Gr	espect to graphi raphite is harder aphite has highe aphite has highe raphite has highe	te and diamond, which than diamond r electrical conductivity r thermal conductivity er C–C bond order that	h of the stat ty than diam / than diamond	ement(s) given belo nond. ond. l.	ow is (are) corr [JEE (Adva	rect? unced) 2012]
Q.17	Hydrog (A) Ice (B) Hig (C) Fo (D) Di	gen bonding pla e floats in water. gher Lewis basic rmic acid is mo merisation of ac	ys a central role in the city of primary amines re acidic than acetic a etic acid in benzene.	following p than tertiar cid.	ohenomena : y amines in aqueous	[JEE (Adva	unced) 2014]
Q.18	Assum	ning 2s-2p mixir	ng in NOT operative, th	he paramag	netic species among	g the following	;is (inced) 20141
	$(\Lambda) \mathbf{D}_{c}$		(D) D	(\mathbf{C}) \mathbf{C}		$L^{2} \rightarrow (L^{2} \rightarrow (L$	· · · · · · · · · · · · · · · · · · ·

(A) Be_2 (B) B_2 (C) C_2 (D) N_2

Q.19 Match the orbital overlap figures shown in List-I with the description given in List-II and select the correct answer using the code given below the lists. [JEE (Advanced) 2014]

List-I

List-II

P. $p-d\pi$ antibonding 1. 2. Q. $d - d\sigma$ bonding $p - d\pi$ bonding R. 3. S. 4. $d - d\sigma$ antibonding Code: Q Р S R (A) 2 3 4 1 **(B)** 4 3 2 1 (C) 2 3 1 4 (D) 4 1 3 2 The correct statement(s) regarding, (i) HClO, (ii) HClO₂, (iii) HClO₃ and (iv) HClO₄, is(are) Q.20 (A) The number of Cl = O bonds in (ii) and (iii) together is two (B) The number of lone pairs of electrons on Cl in (ii) and (iii) together is three (C) The hybridization of Cl in (iv) is sp^3 (D) Amongst (i) to (iv), the strongest acid is (i) [JEE (Advanced) 2015] Q.21 The total number of lone pairs of electrons in N_2O_3 is : [JEE (Advanced) 2015] [JEE (Advanced) 2016] Q.22 According to Molecular Orbital Theory, (A) C_2^{2-} is expected to be diamagnetic (B) O_2^{2+} is expected to have a longer bond length than O_2 (C) N_2^+ and N_2^- have the same bond order (D) He_2^+ has the same energy as two isolated He atoms The colour of the X_2 molecules of group 17 elements changes gradually from yellow to violet down the Q.23 group. This is due to [JEE (Advanced) 2017] (A) the physical state of X_2 at room temperature changes from gas to solid down the group (B) decrease in HOMO-LUMO gap down the group (C) decrease in $\pi^* - \sigma^*$ gap down the group (D) decrease in ionization energy down the group

PREVIOUS YEARS QUESTIONS

Among H_2 , He_2^+ , Li_2 , Be_2 , B_2 , C_2 , N_2 , O_2^- , and F_2 , the number of diamagnetic species is (Atomic Q.24 numbers: H = 1, He = 2, Li = 3, Be = 4, B = 5, C = 6, N = 7, O = 8, F = 9) [JEE (Advanced) 2017]

Q.25 The order of the oxidation state of the phosphorus atom in H_3PO_2 , H_3PO_4 , H_3PO_3 and $H_4P_2O_6$ is [JEE (Advanced) 2017]

 $\begin{array}{ll} (A) \ H_{3}PO_{4} > H_{3}PO_{2} > H_{3}PO_{3} > H_{4}P_{2}O_{6} \\ (C) \ H_{3}PO_{2} > H_{3}PO_{3} > H_{4}P_{2}O_{6} > H_{3}PO_{4} \\ \end{array} \\ \begin{array}{ll} (B) \ H_{3}PO_{3} > H_{3}PO_{2} > H_{3}PO_{4} > H_{4}P_{2}O_{6} \\ (D) \ H_{3}PO_{4} > H_{4}P_{2}O_{6} > H_{3}PO_{3} > H_{3}PO_{2} \\ \end{array}$

Based on the compounds of group 15 elements, the correct statement(s) is (are) Q.26

(A) Bi_2O_5 is more basic than N_2O_5 (B) NF₃ is more covalent than BiF_3

(C) PH_3 boils at lower temperature than NH_3

(D) The N-N single bond is stronger than the P-P single bond

The total number of compounds having at least one bridging oxo group among the molecules given Q.27 below is

N₂O₃, N₂O₅, P₄O₆, P₄O₇, H₄P₂O₅, H₅P₃O₁₀, H₂S₂O₃, H₂S₂O₅ [JEE (Advanced) 2018]

 $Among B_2 H_6, B_3 N_3 H_6, N_2 O, N_2 O_4, H_2 S_2 O_3 and H_2 S_2 O_8, the total number of molecules containing the second statement of the second$ Q.28 covalent bond between two atoms of the same kind is____

[JEE (Advanced) 2019]

ADVANCE CHEMICAL BONDING

				(JEE	MAIN]				
Q.1	2	Q.2	2	Q.3	3	Q.4	3	Q.5	2
Q.6	2	Q.7	3	Q.8	4	Q.9	1	Q.10	1
Q.11	1	Q.12	4	Q.13	2	Q.14	1	Q.15	1
Q.16	4	Q.17	1	Q.18	1,4	Q.19	2	Q.20	4
Q.21	3	Q.22	2	Q.23	4	Q.24	4	Q.25	2
Q.26	2	Q.27	2	Q.28	4	Q.29	1	Q.30	4
Q.31	2	Q.32	1	Q.33	2	Q.34	4	Q.35	3
Q.36	4	Q.37	1	Q.38	4	Q.39	4	Q.40	4
Q.41	2,4	Q.42	2	Q.43	4	Q.44	1	Q.45	3
Q.46	3	Q.47	4	Q.48	1	Q.49	2	Q.50	2
Q.51	4	Q.52	1	Q.53	2	Q.54	4	Q.55	3,4
Q.56	4.00	Q.57	1	Q.58	2	Q.59	2	Q.60	4
Q.61	1	Q.62	2	Q.63	4	Q.64	3,4	Q.65	4.00
Q.66	3	Q.67	2	Q.68	4	Q.69	4	Q.70	2
Q.71	1	Q.72	3.00	Q.73	3	Q.74	3	Q.75	4
Q.76	2								
				[JEE AD	VANCE	D]			
Q.1	В	Q.2	А	Q.3	А	- Q.4	С	Q.5	В
Q.7	D	Q.8	А	Q.9	D	Q.10	4		
Q.11	(A) P,Q,R, T ((B) Q, R	R, S, T (C	c) P, Q, R (D)	P,Q,R, S	Q.12	ABC	Q.13	А
Q.14	6	Q.15	5	Q.16	BD	Q.17	ABD	Q.18	С
Q.19	С	Q.20	BC	Q.21	8	Q.22	AC	Q.23	BC
0.24	Ronus	0.25	D	0.26	ABC	0.27	6	0.28	4 00

[JEE (Advanced) 2018]

ADVANCE CHEMICAL BONDING