Session 2

Position of Two Points Relative to a Given Line, Position of a Point Which Lies Inside a Triangle, **Equations of Lines Parallel and Perpendicular to** a Given Line, Distance of a Point From a Line, **Distance Between Two Parallel Lines,** Area of Parallelogram,

Position of Two Points Relative to a Given Line

Theorem : The points $P(x_1, y_1)$ and $Q(x_2, y_2)$ lie on the same or opposite sides of the line ax + by + c = 0 according as

$$\frac{ax_1 + by_1 + c}{ax_2 + by_2 + c} > 0 \text{ or } < 0.$$

Proof : Let the line *PQ* be divided by the line ax + by + c = 0 in the ratio $\lambda : 1$ (internally) at the point *R*.

 \therefore The coordinates of *R* are $\left(\frac{x_1 + \lambda x_2}{1 + \lambda}, \frac{y_1 + \lambda y_2}{1 + \lambda}\right)$

The point of *R* lies on the line ax + by + c = 0

then
$$a\left(\frac{x_1 + \lambda x_2}{1 + \lambda}\right) + b\left(\frac{y_1 + \lambda y_2}{1 + \lambda}\right) + c = 0$$

 $\Rightarrow \lambda (ax_2 + by_2 + c) + (ax_1 + by_1 + c) = 0$

$$\Rightarrow \qquad \lambda = -\left(\frac{ax_1 + by_1 + c}{ax_2 + by_2 + c}\right) \qquad (\because ax_2 + by_2 + c \neq 0)$$

Case I: Let *P* and *Q* are on same side of the line ax + by + c = 0.

 \therefore *R* divides *PQ* externally.

 $\therefore \lambda$ is negative

$$\Rightarrow \qquad -\left(\frac{ax_1 + by_1 + c}{ax_2 + by_2 + c}\right) < 0$$
$$\Rightarrow \qquad \left(\frac{ax_1 + by_1 + c}{ax_2 + by_2 + c}\right) > 0$$
$$f(x_1, y_1) = 0$$

or

 \Rightarrow

where, $f(x, y) \equiv ax + by + c$.

Case II : Let *P* and *Q* are on opposite sides of the line ax + by + c = 0

 $\frac{f(x_1, y_1)}{f(x_2, y_2)} > 0$

 $-\left(\frac{ax_1+by_1+c}{ax_2+by_2+c}\right) > 0 \qquad \stackrel{P}{\longleftarrow}$

 \therefore *R* divides *PQ* internally.

 $\therefore \lambda$ is positive

$$\Rightarrow$$

or

where, f(x, y) = ax + by + c

Remarks

1. The side of the line where origin lies is known as origin side.

 $\left(\frac{ax_1+by_1+c}{ax_2+by_2+c}\right) < 0$

 $\frac{f(x_1, y_1)}{f(x_2, y_2)} < 0$

- **2.** A point (α, β) will lie on origin side of the line ax + by + c = 0, if $a\alpha + b\beta + c$ and c have same sign.
- **3.** A point (α, β) will lie on non-origin side of the line ax + by + c = 0, if $a\alpha + b\beta + c$ and c have opposite sign.

Example 46. Are the points (2, 1) and (-3, 5) on the same or opposite side of the line 3x - 2y + 1 = 0?

Sol. Let $f(x, y) \equiv 3x - 2y + 1$

$$\therefore \qquad \frac{f(2,1)}{f(-3,5)} = \frac{3(2) - 2(1) + 1}{3(-3) - 2(5) + 1} = -\frac{5}{18} < 0$$

Therefore, the two points are on the opposite sides of the given line.

Example 47. Is the point (2, -7) lies on origin side of the line 2x + y + 2 = 0?

Sol. Let $f(x, y) \equiv 2x + y + 2$

... f(2, -7) = 2(2) - 7 + 2 = -1f(2,-7) < 0 and constant 2 > 0Hence, the point (2, -7) lies on non-origin side.

Example 48. A straight canal is at a distance of

 $4\frac{1}{2}$ km from a city and the nearest path from the city

to the canal is in the north-east direction. Find whether a village which is at 3 km north and 4 km east from the city lies on the canal or not. If not, then on which side of the canal is the village situated ?

Sol. Let O(0, 0) be the given city and *AB* be the straight canal.

 \therefore Equation of *AB*

or

i.e. Equation of canal is

 $x \cos 45^\circ + y \sin 45^\circ = \frac{9}{2}$ $x + y = \frac{9}{\sqrt{2}}$...(i) Let *V* be the given village, then $V \equiv (4, 3)$

Putting x = 4 and y = 3 in Eq. (i), then $4 + 3 = \frac{9}{\sqrt{2}}$, i.e. $7 = \frac{9}{\sqrt{2}}$ which is impossible. Hence, the given village *V* does not lie on the canal. 0

Also if
$$f(x, y) \equiv x + y - \frac{1}{\sqrt{2}}$$

$$\therefore \qquad \frac{f(4, 3)}{f(0, 0)} = \left(\frac{4 + 3 - \frac{9}{\sqrt{2}}}{0 + 0 - \frac{9}{\sqrt{2}}}\right) = -\left(\frac{7\sqrt{2} - 9}{9}\right) < 0$$

Hence, the village is on that side of the canal on which origin or the city lies.

Position of a Point Which Lies Inside a Triangle

Let $P(x_1, y_1)$ be the point and equations of the sides of a triangle are

$$BC: a_{1}x + b_{1}y + c_{1} = 0$$

$$CA: a_{2}x + b_{2}y + c_{2} = 0$$

$$AB: a_{3}x + b_{3}y + c_{3} = 0$$

First find the coordinates of *A*, *B* and *C* say,

$$A \equiv (x', y'); B \equiv (x'', y'') \text{ and } C \equiv (x''', y''')$$

and if coordinates of A, B, C are given, then find equations of BC, CA and AB.

If $P(x_1, y_1)$ lies inside the triangle, then P and A must be on the same side of *BC*, *P* and *B* must be on the same side of AC, P and C must be on the same side of AB, then

$$\frac{a_1 x_1 + b_1 y_1 + c_1}{a_1 x' + b_1 y' + c_1} > 0 \qquad \dots(i)$$

$$\frac{a_2 x_1 + b_2 y_1 + c_2}{a_2 x'' + b_2 y'' + c_2} > 0 \qquad \dots (ii)$$

$$\frac{a_3x_1 + b_3y_1 + c_3}{a_3x''' + b_3y''' + c_3} > 0 \qquad \dots (iii)$$

The required values of $P(x_1, y_1)$ must be intersection of these inequalities Eqs. (i), (ii) and (iii).

and

and

Aliter (Best Method): First draw the exact diagram of the problem. If the point $P(x_1, y_1)$

move on the line y = ax + b for all x_1 , then

$$P \equiv (x_1, ax_1 + b)$$

and the portion *DE* of the line y = ax + b (Excluding *D* and *E*) lies within the triangle. Now line y = ax + b cuts any two sides out of three sides, then find coordinates of D and Е.

	$D \equiv (\alpha, \beta)$	
and	$E \equiv (\gamma, \delta) \text{ (say)}$	
then	$\alpha < x_1 < \gamma$	
and	$\beta < ax_1 + b < \delta$	

Example 49. For what values of the parameter *t* does the point P(t, t+1) lies inside the triangle ABC where $A \equiv (0, 3), B \equiv (-2, 0)$ and $C \equiv (6, 1)$.

Sol. Equations of sides

BC: x - 8y + 2 = 0CA: x + 3y - 9 = 0AB: 3x - 2y + 6 = 0and Since, P(t, t + 1) lies inside the triangle ABC, then P and A must be on the same side of *BC* - **f** (...

 $\frac{-7t-6}{-22} > 0$

7t + 6 > 0

$$\therefore \frac{\text{value of } (x - 8y + 2) \text{ at } P(t, t + 1)}{\text{value of } (x - 8y + 2) \text{ at } A(0, 3)} > 0$$

i.e.
$$\frac{t - 8(t + 1) + 2}{0} > 0$$

i.e.

or
$$0 - 24 + 2$$
$$\frac{-7t}{200}$$

 $t > -\frac{6}{7}$ A(0,3) $\geq C(6,1)$ Х ►X B(-2,0) O Lγ

0

and *P*, *B* must be on the same side of *CA* value of (x + 3y - 9) at P(t + 1)

$$\therefore \quad \frac{\text{value of } (x + 3y - 9) \text{ at } I(t, t + 1)}{\text{value of } (x + 3y - 9) \text{ at } B(-2, 0)} > 0$$

$$\cdot \quad t + 3(t + 1) - 9$$

-2 + 0 - 9

i.e.

or

$$\frac{4t-6}{-11} >$$

or
$$4t-6 < 0$$

 $\therefore t < \frac{3}{2}$...(ii)

and P, C must be on the same side of AB

$$\therefore \qquad \frac{\text{value of } (3x - 2y + 6) \text{ at } P(t, t + 1)}{\text{value of } (3x - 2y + 6) \text{ at } C(6, 1)} > 0$$

i.e.
$$\frac{3t - 2(t + 1) + 6}{18 - 2 + 6} > 0$$

or
$$\frac{t + 4}{22} > 0$$

or
$$t + 4 > 0$$

$$\therefore \qquad t > -4 \qquad \dots(\text{iii})$$

From Eqs. (i), (ii) and (iii), we get

$$-\frac{6}{7} < t < \frac{3}{2}$$

i.e.
$$t \in \left(-\frac{6}{7}, \frac{3}{2}\right)$$

Aliter : First draw the exact diagram of ΔABC , the point P(t, t + 1) move on the line

$$y = x + 1$$

for all t.
$$x' \longleftarrow B(-2,0) \bigcirc y'$$

Now, *D* and *E* are the intersection of

y = x + 1, x - 8y + 2 = 0and y = x + 1, x + 3y - 9 = 0respectively.

$$\therefore \qquad D \equiv \left(-\frac{6}{7}, \frac{1}{7}\right)$$

and
$$E \equiv \left(\frac{3}{2}, \frac{5}{2}\right)$$

...(i)

Thus, the points on the line y = x + 1 whose *x*-coordinates lies between $-\frac{6}{7}$ and $\frac{3}{2}$ lie within the triangle *ABC*. $-\frac{6}{7} < t < \frac{3}{2}$ Hence,

i.e.
$$t \in \left(-\frac{6}{7}, \frac{3}{2}\right)$$

Example 50. Find λ if (λ , 2) is an interior point of Δ *ABC* formed by x + y = 4, 3x - 7y = 8 and 4x - y = 31.

Sol. Let $P \equiv (\lambda, 2)$

First draw the exact diagram of $\triangle ABC$, the point *P* (λ , 2) move on the line y = 2 for all λ .

Now, *D* and *E* are the intersection of 3x - 7y = 8, y = 2and 4x - y = 31, y = 2 respectively. $\therefore \qquad D \equiv \left(\frac{22}{3}, 2\right) \text{ and } E \equiv \left(\frac{33}{4}, 2\right)$ Thus, the points on the line y = 2 whose *x*-coordinates lies

between $\frac{22}{3}$ and $\frac{33}{4}$ lie within the $\triangle ABC$. Hence, $\frac{22}{3} < \lambda < \frac{33}{4}$ i.e. $\lambda \in \left(\frac{22}{3}, \frac{33}{4}\right)$

Example 51. Determine all values of α for which the point (α , α^2) lies inside the triangle formed by the lines 2x + 3y - 1 = 0, x + 2y - 3 = 0 and 5x - 6y - 1 = 0.

Sol. The coordinates of the vertices are

$$A\left(\frac{5}{4}, \frac{7}{8}\right), B(-7, 5) \text{ and } C\left(\frac{1}{3}, \frac{1}{9}\right)$$

 $\therefore P(\alpha, \alpha^2)$ lies inside the ΔABC , then

(i) *A* and *P* must lie on the same side of *BC*(ii) *B* and *P* must lie on the same side of *CA*

(iii) C and P must lie on the same side of AB, then

$$\frac{5}{2} + \frac{21}{8} - 1$$

$$2\alpha + 3\alpha^{2} - 1 > 0$$

$$\Rightarrow \qquad \frac{33}{2\alpha + 3\alpha^{2} - 1} > 0$$
or
$$3\alpha^{2} + 2\alpha - 1 > 0$$

$$\Rightarrow \qquad (\alpha + 1)\left(\alpha - \frac{1}{3}\right) > 0$$

$$\Rightarrow \qquad \alpha \in (-\infty, -1) \cup \left(\frac{1}{3}, \infty\right) \qquad \dots(i)$$
and
$$\frac{-35 - 30 - 1}{5\alpha - 6\alpha^{2} - 1} > 0$$

$$\Rightarrow \qquad 5\alpha - 6\alpha^{2} - 1 < 0$$

$$\Rightarrow \qquad (\alpha - \frac{1}{3})\left(\alpha - \frac{1}{2}\right) > 0$$

$$\therefore \qquad \alpha \in (-\infty, 1/3) \cup (1/2, \infty) \qquad \dots(ii)$$
and
$$\frac{\frac{1}{3} + \frac{2}{9} - 3}{\alpha + 2\alpha^{2} - 3} > 0$$

$$\Rightarrow \qquad (2\alpha + 3)(\alpha - 1) < 0$$

$$\therefore \qquad \alpha \in (-3/2, 1) \qquad \dots(iii)$$
From Eq. (i), Eq. (iii) and Eq. (iii), we get

 $\alpha \in (-3/2, -1) \cup (1/2, 1).$

Aliter : Let $P(\alpha, \alpha^2)$ first draw the exact diagram of ΔABC .

The point $P(\alpha, \alpha^2)$ move on the curve $y = x^2$ for all α .

Now, intersection of
$$y = x^2$$

and $2x + 3y - 1 = 0$
or $2x + 3x^2 - 1 = 0$
 \therefore $x = -1, x = \frac{1}{3}$

Let intersection points

$$D \equiv (-1, 1) \text{ and } E \equiv \left(\frac{1}{3}, \frac{1}{9}\right)$$

intersection of $y = x^2$
 $x + 2y - 3 = 0$

and x + 2y - 3 = 0or $x + 2x^2 - 3 = 0$ \therefore x = 1, x = -3/2

Let intersection points

$$F \equiv (1, 1) \text{ and } G \equiv \left(-\frac{3}{2}, \frac{9}{4}\right)$$

and intersection of $y = x^2$ and 5x - 6y - 1 = 0

 $5x - 6x^2 - 1 = 0$ or

:..

 $x = \frac{1}{3}, x = \frac{1}{2}$ Let intersection points

$$H \equiv \left(\frac{1}{3}, \frac{1}{9}\right)$$
 and $I \equiv \left(\frac{1}{2}, \frac{1}{4}\right)$.

Thus the points on the curve $y = x^2$ whose *x*-coordinate lies between -3/2 & -1 and $\frac{1}{2}$ & 1 lies within the triangle ABC.

Hence,

i.e.

 $-\frac{3}{2} < \alpha < -1$ or $\frac{1}{2} < \alpha < 1$ $\alpha \in \left(-\frac{3}{2}, -1\right) \cup \left(\frac{1}{2}, 1\right)$

Equations of Lines Parallel and Perpendicular to a Given Line

Theorem 1: The equation of line parallel to

ax + by + c = 0 is $ax + by + \lambda = 0$, where λ is some constant.

Proof : Let the equation of any line parallel to

$$ax + by + c = 0$$
 ...(i)
 $a_1x + b_1y + c_1 = 0$...(ii)

 $\frac{a_1}{a} = \frac{b_1}{b} = k$

then

...

be

$$a_1 = ak, b_1 = bk$$

Then from Eq. (ii),

$$akx + bky + c = 0$$

Dividing it by *k*, then

or
$$ax + by + \frac{c}{k} = 0$$

 $ax + by + \lambda = 0$ (writing λ for $\frac{c}{k}$)

Hence, any line parallel to ax + by + c = 0 is

 $ax + by + \lambda = 0$ where λ is some constant.

Aliter : The given line is

$$ax + by + c = 0 \qquad \dots (i)$$

Its slope = $-\frac{a}{b}$

Thus, any line parallel to Eq. (i) is given by

$$y = \left(-\frac{a}{b}\right)x + \lambda_1$$

 $ax + by - b\lambda_1 = 0$

 \Rightarrow \Rightarrow

$$ax + by + \lambda = 0$$
 (writing λ for $-b\lambda_1$)

where, λ is some constant.

Corollary: The equation of the line parallel to ax + by + c = 0 and passing through (x_1, y_1) is

$$a(x - x_1) + b(y - y_1) = 0$$

Working Rule :

- (i) Keep the terms containing *x* and *y* unaltered.
- (ii) Change the constant.
- (iii) The constant λ is determined from an additional condition given in the problem.

Theorem 2 : The equation of the line perpendicular to the line ax + by + c = 0 is

 $bx - ay + \lambda = 0$, where λ is some constant.

Proof : Let the equation of any line perpendicular to

 $aa_1 + bb_1 = 0$

$$ax + by + c = 0$$
 ... (i)

...(ii)

(say)

$$a_1 x + b_1 y + c_1 = 0$$

$$aa_1 = -bb_1$$

$$\therefore \qquad a_1 = bk, b_1 = -ak$$

Then, from Eq. (ii), $bkx - aky + c_1 = 0$ dividing it by *k*, then

 $\frac{a_1}{b} = \frac{b_1}{-a} = k$

$$bx - ay + \frac{c_1}{k} = 0$$

or

⇒

(say)

or $bx - ay + \lambda = 0$ (writing λ for $\frac{c_1}{k}$)

Hence, any line perpendicular to ax + by + c = 0 is

$$bx - ay + \lambda = 0$$

where, λ is some constant.

Aliter : The given line is

$$ax + by + c = 0$$
 ...(i)
Its slope $= -\frac{a}{b}$

Slope of perpendicular line of Eq. (i) is $\frac{b}{a}$.

Thus any line perpendicular to Eq. (i) is given by

 $bx - ay + a\lambda_1 = 0$

 $bx - ay + \lambda = 0$

$$y = \left(\frac{b}{a}\right)x +$$

 \Rightarrow

or

(writing λ for $a\lambda_1$)

where, λ is some constant.

Corollary 1 : The equation of the line through (x_1, y_1) and perpendicular to ax + by + c = 0 is

 λ_1

 $b(x - x_1) - a(y - y_1) = 0$

Corollary 2 : Also equation of the line perpendicular to ax + by + c = 0 is written as

 $\frac{x}{a} - \frac{y}{b} + k = 0$, where *k* is some constant.

Working Rule :

:..

- (i) Interchange the coefficients of *x* and *y* and changing sign of one of these coefficients.
- (ii) Changing the constant term.
- (iii) The value of λ can be determined from an additional condition given in the problem.
- **Example 52.** Find the general equation of the line which is parallel to 3x 4y + 5 = 0. Also find such line through the point (-1, 2).
- **Sol.** Equation of any parallel to 3x 4y + 5 = 0 is

$$3x - 4y + \lambda = 0 \qquad \dots (i)$$

which is general equation of the line. Also Eq. (i) passes through (-1, 2), then

 $3(-1) - 4(2) + \lambda = 0$

 $\lambda = 11$

Then from Eq. (i) required line is

3x - 4y + 11 = 0

Example 53. Find the general equation of the line which is perpendicular to x + y + 4 = 0. Also find such line through the point (1,2).

Sol. Equation of any line perpendicular to x + y + 4 = 0 is

x -

$$-y + \lambda = 0 \qquad \dots (i)$$

which is general equation of the line. Also Eq. (i) passes through (1, 2), then $1 - 2 + \lambda = 0$ $\therefore \qquad \lambda = 1$ Then from Eq. (i), required line is

$$x - y + 1 = 0$$

Example 54. Show that the equation of the line passing through the point $(a \cos^3 \theta, a \sin^3 \theta)$ and perpendicular to the line

$$x \sec \theta + y \csc \theta = a$$
 is
 $x \cos \theta - y \sin \theta = a \cos 2\theta$

Sol. The given equation $x \sec \theta + y \csc \theta = a$ can be written as

- $x \sin \theta + y \cos \theta = a \sin \theta \cos \theta \qquad ...(i)$...(i) \therefore equation of perpendicular line of Eq. (i) is
 - $x \cos \theta y \sin \theta = \lambda \qquad \dots (ii)$

Also it is pass through $(a \cos^3 \theta, a \sin^3 \theta)$

 $\therefore \qquad a\cos^3\theta\cdot\cos\theta - a\sin^3\theta\cdot\sin\theta = \lambda$

$$\Rightarrow \qquad \lambda = a \left(\cos^4 \theta - \sin^4 \theta \right)$$

$$= a (\cos^2 \theta + \sin^2 \theta) (\cos^2 \theta - \sin^2 \theta)$$

 $= a \cdot 1 \cdot \cos 2\theta = a \cos 2\theta$

From Eq. (ii), the required equation of the line is

 $x\cos\theta - y\sin\theta = a\cos2\theta$

Aliter : (From corollary (2) of Theorem (2) Equation of any line perpendicular to the line

$$x \sec \theta + y \csc \theta = a$$
, is

$$\frac{x}{\sec \theta} - \frac{y}{\csc \theta} = k$$

 $x\,\cos\theta - y\,\sin\theta = k$

or

Also, it pass through
$$(a \cos^3 \theta, a \sin^3 \theta)$$

$$a \cos^3 \theta \cdot \cos \theta - a \sin^3 \theta \cdot \sin \theta = k$$

or
$$k = a \left(\cos^4 \theta - \sin^4 \theta \right)$$

$$= a (\cos^2 \theta + \sin^2 \theta) (\cos^2 \theta - \sin^2 \theta)$$

$$= a \cdot 1 \cdot \cos 2\theta$$

 $= a \cos 2\theta$

From Eq. (iii), the required equation of the line is $x \cos \theta - y \sin \theta = a \cos 2\theta$...(iii)

Distance of a Point From a Line

Theorem : The length of perpendicular from a point (x_1, y_1) to the line ax + by + c = 0 is

$$\frac{|ax_1+by_1+c|}{\sqrt{(a^2+b^2)}}$$

Proof : Given line is ax + by + c = 0

 $\Rightarrow \qquad \frac{x}{\left(-\frac{c}{a}\right)} + \frac{y}{\left(-\frac{c}{b}\right)} = 1$

Let the given line intersects the *X*-axis and *Y*-axis at *A* and *B* respectively, then coordinates of *A* and *B* are $\left(-\frac{c}{a}, 0\right)$

and
$$\left(0, -\frac{c}{b}\right)$$
 respectively.

Draw *PM* perpendicular to *AB*.

Now, Area of Δ $P\!AB$

$$= \frac{1}{2} \left| x_1 \left(0 + \frac{c}{b} \right) - \frac{c}{a} \left(-\frac{c}{b} - y_1 \right) + 0 \left(y_1 - 0 \right) \right|$$
$$= \frac{1}{2} \left| \frac{c}{ab} \right| \left| ax_1 + by_1 + c \right| \qquad \dots(i)$$

Let PM = p

Also, area of ΔPAB

$$= \frac{1}{2} \cdot AB \cdot PM = \frac{1}{2} \sqrt{\left\{ \left(-\frac{c}{a} - 0 \right)^2 + \left(0 + \frac{c}{b} \right)^2 \right\}} \cdot p$$
$$= \frac{1}{2} \left| \frac{c}{ab} \right| \sqrt{(a^2 + b^2)} \cdot p \qquad \dots (ii)$$

From Eqs. (i) and (ii), we have

$$\frac{1}{2} \left| \frac{c}{ab} \right| \sqrt{(a^2 + b^2)} \cdot p = \frac{1}{2} \left| \frac{c}{ab} \right| |ax_1 + by_1 + c$$

$$p = \frac{|ax_1 + by_1 + c|}{\sqrt{(a^2 + b^2)}}$$

Aliter I : Let *PM* makes an angle θ with positive direction of *X*-axis.

Then, equation of PM in distance form will be

$$\frac{x - x_1}{\cos \theta} = \frac{y - y_1}{\sin \theta} = p \qquad (\because PM = p)$$

Therefore coordinates of *M* will be $(x_1 + p\cos\theta, y_1 + p\sin\theta)$

 $\tan\theta = \frac{b}{a}$

 $\frac{b}{\sqrt{(a^2+b^2)}}$

Since,
$$M$$
 lies on $ax + by + c = 0$, then
 $a(x_1 + p\cos\theta) + b(y_1 + p\sin\theta) + c = 0$
or $p(a\cos\theta + b\sin\theta) = -(ax_1 + by_1 + c)$...(iii)

Since, slope of
$$AB = -\frac{a}{b}$$

 \therefore Slope of $PM = \frac{b}{a}$

(:: *PM* makes an angle θ with positive direction of *X*-axis)

$$B = a = C$$

then
$$\sin\theta =$$

...

and
$$\cos \theta = \frac{a}{\sqrt{a^2 + b^2}}$$

Now, from Eq. (iii),

$$p\left(\frac{a^2}{\sqrt{a^2+b^2}} + \frac{b^2}{\sqrt{a^2+b^2}}\right) = -(ax_1 + by_1 + c)$$
$$p = -\frac{(ax_1 + by_1 + c)}{\sqrt{a^2+b^2}}$$

Since, *p* is positive

or

$$p = \frac{|ax_1 + by_1 + c|}{\sqrt{(a^2 + b^2)}}$$

Aliter II : Let Q(x, y) be any point on the line

$$ax + by + c = 0$$

Hence, the length of perpendicular from *P* on *AB* will be least value of *PQ*.

or

Let
$$z = (PQ)^2$$

 $= (x - x_1)^2 + (y - y_1)^2$...(iv)
 $= (x - x_1)^2 + \left(-\frac{c}{b} - \frac{ax}{b} - y_1\right)^2$
 $\left(\begin{array}{c} \because ax + by + c = 0 \\ \because y = -\frac{c}{b} - \frac{ax}{b} \end{array} \right)$
 $\therefore \qquad \frac{dz}{dx} = 2(x - x_1) + 2\left(-\frac{c}{b} - \frac{ax}{b} - y_1\right)\left(-\frac{a}{b}\right)$
and $\qquad \frac{d^2z}{dx^2} = 2 + 2\left(-\frac{a}{b}\right)\left(-\frac{a}{b}\right) = 2\left(1 + \frac{a^2}{b^2}\right) = \text{positive}$

 \therefore *z* is minimum

 \therefore *PQ* is also minimum.

For maximum or minimum, $\frac{dz}{dx} = 0$

$$2(x - x_{1}) + 2\left(-\frac{c}{b} - \frac{ax}{b} - y_{1}\right)\left(-\frac{a}{b}\right) = 0$$

or
$$2(x - x_{1}) + 2(y - y_{1})\left(-\frac{a}{b}\right) = 0 \quad \left(\because y = -\frac{c}{b} - \frac{ax}{b}\right)$$

or
$$\frac{(x - x_{1})}{a} = \frac{(y - y_{1})}{b} = \frac{a(x - x_{1}) + b(y - y_{1})}{a \cdot a + b \cdot b}$$

$$=\frac{(ax+by+c)-(ax_1+by_1+c)}{(a^2+b^2)}$$

(by law of proportion)

$$= \frac{0 - (ax_1 + by_1 + c)}{(a^2 + b^2)} \quad (\because ax + by + c = 0)$$

$$\Rightarrow \qquad (x - x_1) = -\frac{a(ax_1 + by_1 + c)}{(a^2 + b^2)}$$

and
$$(y - y_1) = -\frac{b(ax_1 + by_1 + c)}{(a^2 + b^2)}$$

: From Eq. (iv),

$$PQ = \sqrt{(ax_1 + by_1 + c)^2 \frac{(a^2 + b^2)}{(a^2 + b^2)^2}} = \frac{|ax_1 + by_1 + c|}{\sqrt{(a^2 + b^2)^2}}$$

 \therefore Least value of *PQ* is *PM*

...

...

$$p = PM = \frac{|ax_1 + by_1 + c|}{\sqrt{(a^2 + b^2)}}$$

Aliter III : Let $M \equiv (h, k)$

Since, M(h, k) lies on AB,

$$ah + bk + c = 0 \qquad \qquad \dots (v)$$

Now, *AB* and *PM* are perpendicular to each other, then (slope of *PM*) × (slope of *AB*) = -1

$$\Rightarrow \qquad \frac{y_1 - k}{x_1 - h} \times \left(-\frac{a}{b}\right) = -1$$

$$\Rightarrow \qquad \frac{x_1 - h}{a} = \frac{y_1 - k}{b} = \frac{a(x_1 - h) + b(y_1 - k)}{a \cdot a + b \cdot b}$$

(by law of proportion)

$$=\frac{(ax_{1} + by_{1} + c) - (ah + bk + c)}{a^{2} + b^{2}}$$
$$=\frac{ax_{1} + by_{1} + c}{a^{2} + b^{2}}$$
 [from Eq. (v)]

$$(PM)^{2} = (x - x_{1})^{2} + (y - y_{1})^{2}$$
$$= \left(\frac{ax_{1} + by_{1} + c}{a^{2} + b^{2}}\right)^{2} (a^{2} + b^{2})$$

 \therefore Length of perpendicular

$$PM = \pm \frac{(ax_1 + by_1 + c)}{\sqrt{(a^2 + b^2)}}$$

Hence, $PM = p = \frac{|ax_1 + by_1 + c)}{\sqrt{(a^2 + b^2)}}$

Aliter IV : Equation of *AB* in normal form is

$$\frac{a}{\sqrt{(a^2 + b^2)}} x + \frac{b}{\sqrt{(a^2 + b^2)}} y = \frac{-c}{\sqrt{(a^2 + b^2)}}$$

$$\Rightarrow OL = -\frac{c}{\sqrt{(a^2 + b^2)}}$$

$$y = \frac{c}{\sqrt{(a^2 + b^2)}}$$

$$y = \frac{c}{\sqrt{(a^2 + b^2)}}$$

Equation of line parallel to *AB* and passes through (x_1, y_1) is

$$a(x - x_1) + b(y - y_1) = 0$$

or

or

$$ax + by = ax_1 + by_1$$

Normal form is

$$\frac{a}{\sqrt{(a^2+b^2)}} x + \frac{b}{\sqrt{(a^2+b^2)}} y = \frac{ax_1+by_1}{\sqrt{(a^2+b^2)}}$$

$$\Rightarrow \qquad OQ = \frac{dx_1 + by_1}{\sqrt{a^2 + b^2}}$$

$$\therefore \qquad PM = QL = OQ - OL = \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$$

Hence, required perpendicular distance

$$p = \frac{|ax_1 + by_1 + c|}{\sqrt{(a^2 + b^2)}}$$

Aliter V: The equation of line through $P(x_1, y_1)$ and perpendicular to ax + by + c = 0 is

$$b(x - x_1) - a(y - y_1) = 0$$
 ...(vi)

If this perpendicular meet the line ax + by + c = 0 in $M(x_2, y_2)$ then (x_2, y_2) lie on both the lines ax + by + c = 0 and Eq. (vi), then $b(x_2 - x_1) - a(y_2 - y_1) = 0, ax_2 + by_2 + c = 0$ $x_{0} + by_{0} + c = a(x_{0} - x_{1}) + b(y_{0} - y_{1}) + ax_{1} + by_{2} + c = by_{0}$

$$ax_{2} + by_{2} + c = a(x_{2} - x_{1}) + b(y_{2} - y_{1}) + ax_{1} + by_{1} + c = 0$$

or $b(x_{2} - x_{1}) - a(y_{2} - y_{1}) = 0$...(vii)

and
$$a(x_2 - x_1) + b(y_2 - y_1) = -(ax_1 + by_1 + c)$$
 ...(viii)

On squaring and adding Eqs. (vii) and (viii), we get

$$(a^{2} + b^{2})((x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}) = (ax_{1} + by_{1} + c)^{2}$$
$$PM = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$
$$|ax_{1} + by_{2} + c|$$

 $=\frac{|ax_{1}+by_{1}+c|}{\sqrt{(a^{2}+b^{2})}}$

Hence, length of perpendicular

$$PM = p = \frac{|ax_1 + by_1 + c|}{\sqrt{(a^2 + b^2)}}$$

Corollary 1 : The length of perpendicular from the origin to the line ax + by + c = 0 is

$$\frac{|a \cdot 0 + b \cdot 0 + c|}{\sqrt{(a^2 + b^2)}} \quad \text{i.e.} \quad \frac{|c|}{\sqrt{(a^2 + b^2)}}$$

Corollary **2** : The length of perpendicular from (x_1, y_1) to the line $x \cos \alpha + y \sin \alpha = p$ is

$$\frac{|x_1 \cos \alpha + y_1 \sin \alpha - p|}{\sqrt{(\cos^2 \alpha + \sin^2 \alpha)}} = |x_1 \cos \alpha + y_1 \sin \alpha - p|$$

Working Rule :

 \Rightarrow *.*..

or

- (i) Put the point (x_1, y_1) for (x, y) on the LHS while the RHS is zero.
- (ii) Divide LHS after Eq. (i) by $\sqrt{(a^2 + b^2)}$, where *a* and *b* are the coefficients of *x* and *y* respectively.
- **Example 55.** Find the sum of the abscissas of all the points on the line x + y = 4 that lie at a unit distance from the line 4x + 3y - 10 = 0.
- **Sol.** Any point on the line x + y = 4 can be taken as $(x_1, 4 x_1)$. As it is at a unit distance from the line 4x + 3y - 10 = 0, we get

$$\frac{|4x_1 + 3(4 - x_1) - 10|}{\sqrt{(4^2 + 3^2)}} = 1$$

$$\Rightarrow |x_1 + 2| = 5 \Rightarrow x_1 + 2 = \pm 5$$

$$\Rightarrow x_1 = 3 \text{ or } -7$$

$$\therefore \text{ Required sum } = 3 - 7 = -4.$$

Example 56. If *p* and *p'* are the length of the perpendiculars from the origin to the straight lines whose equations are $x \sec \theta + y \cos ec \theta = a$ and $x\cos\theta - y\sin\theta = a\cos 2\theta$, then find the value of $4p^2 + p'^2$.

Sol. We have,
$$p = \frac{|-a|}{\sqrt{(\sec^2\theta + \csc^2\theta)}}$$

 $\therefore \qquad p^2 = \frac{a^2}{\sec^2\theta + \csc^2\theta} = \frac{a^2\sin^2\theta\cos^2\theta}{1}$
 $\Rightarrow \qquad 4p^2 = a^2\sin^22\theta \qquad \dots(i)$
and $p' = \frac{|-a\cos^2\theta|}{\sqrt{(\cos^2\theta + \sin^2\theta)}} = |-a\cos^2\theta|$
 $\therefore \qquad (p')^2 = a^2\cos^22\theta \qquad \dots(ii)$

:. Adding Eqs. (i) and (ii), we get

$$4p^2 + p'^2 = a^2$$

Example 57. If *p* is the length of the perpendicular from the origin to the line $\frac{x}{a} + \frac{y}{b} = 1$, then prove that

$$\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2}.$$

Sol. *p* = length of perpendicular from origin to

$$\frac{x}{a} + \frac{y}{b} = 1$$

$$= \frac{|0+0-1|}{\sqrt{\left(\frac{1}{a}\right)^2 + \left(\frac{1}{b}\right)^2}} = \frac{1}{\sqrt{\left(\frac{1}{a^2} + \frac{1}{b^2}\right)}}$$

$$\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} \text{ or } \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2}$$

Example 58. Prove that no line can be drawn through the point (4, -5) so that its distance from (-2, 3) will be equal to 12.

Sol. Suppose, if possible.

Equation of line through
$$(4, -5)$$
 with slope of *m* is
 $y + 5 = m (x - 4)$
 $\Rightarrow mx - y - 4m - 5 = 0$
Then, $\frac{|m(-2) - 3 - 4m - 5|}{\sqrt{m^2 + 1}} = 12$
 $\Rightarrow |-6m - 8| = 12 \sqrt{(m^2 + 1)}$
On squaring, $(6m + 8)^2 = 144 (m^2 + 1)$
 $\Rightarrow 4 (3m + 4)^2 = 144 (m^2 + 1)$
 $\Rightarrow (3m + 4)^2 = 36 (m^2 + 1)$
 $\Rightarrow 27m^2 - 24m + 20 = 0$...(i)

Since, the discriminant of Eq. (i) is $(-24)^2 - 4 \cdot 27 \cdot 20 = -1584$ which is negative, there is no real value of *m*. Hence no such line is possible.

Distance between Two Parallel Lines

Let the two parallel lines be

ax + by + c = 0 and $ax + by + c_1 = 0$

The distance between the parallel lines is the perpendicular distance of any point on one line from the other line.

Let (x_1, y_1) be any point on ax + by + c = 0

:.
$$ax_1 + by_1 + c = 0$$
 ...(i)

Now, perpendicular distance of the point (x_1, y_1) from the line $ax + by + c_1 = 0$ is

$$\frac{|ax_1 + by_1 + c_1|}{\sqrt{(a^2 + b^2)}} = \frac{|c_1 - c|}{\sqrt{(a^2 + b^2)}} \quad \text{[from Eq. (i)]}$$

This is required distance between the given parallel lines. **Aliter I :** The distance between the lines is

$$d = \frac{\lambda}{\sqrt{(a^2 + b^2)}}$$

- (i) $\lambda = |c_1 c|$, if both the lines are on the same side of the origin.
- (ii) $\lambda = |c_1| + |c|$, if the lines are on the opposite side of the origin.

Aliter II : Find the coordinates of any point on one of the given lines, preferably putting x = 0 or y = 0. Then the perpendicular distance of this point from the other line is the required distance between the lines.

Example 59. Find the distance between the lines 5x - 12y + 2 = 0 and 5x - 12y - 3 = 0.

Sol. The distance between the lines

$$5x - 12y + 2 = 0$$
 and $5x - 12y - 3 = 0$ is
 $\frac{|2 - (-3)|}{\sqrt{(5)^2 + (-12)^2}} = \frac{5}{13}$

Aliter I : The constant term in both equations are 2 and -3 which are of opposite sign. Hence origin lies between them. \therefore Distance between lines is $\frac{|2| + |-3|}{\sqrt{2}} = \frac{5}{10}$

$$\frac{1}{\sqrt{(5)^2 + (-12)^2}} - \frac{1}{12}$$

Aliter II: Putting y = 0 in 5x - 12y - 3 = 0 then $x = \frac{3}{5}$

:
$$\left(\frac{3}{5}, 0\right)$$
 lie on $5x - 12y - 3 = 0$

Hence, distance between the lines

$$5x - 12y + 2 = 0 \text{ and } (5x - 12y - 3 = 0)$$

= Distance from $\left(\frac{3}{5}, 0\right)$ to the line $5x - 12y + 2 = 0$
$$= \frac{\left|5 \times \frac{3}{5} - 0 + 2\right|}{\sqrt{5^2 + (-12)^2}} = \frac{5}{13}$$

Example 60. Find the equations of the line parallel to 5x - 12y + 26 = 0 and at a distance of 4 units from it.

Sol. Equation of any line parallel to 5x - 12y + 26 = 0 is

$$5x - 12y + \lambda = 0 \qquad \dots (i)$$

Since, the distance between the parallel lines is 4 units, then $|\lambda - 26|$

$$\frac{1}{\sqrt{(5)^2 + (-12)^2}} = 4$$

or $|\lambda - 26| = 52$ or $\lambda - 26 = \pm 52$
or $\lambda = 26 \pm 52$ $\therefore \lambda = -26$ or 78
Substituting the values of λ in Eq. (i), we get
 $5x - 12y - 26 = 0$
and $5x - 12y + 78 = 0$

Area of Parallelogram

Theorem : Area of parallelogram *ABCD* whose sides *AB*, *BC*, *CD* and *DA* are represented by $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$, $a_1x + b_1y + d_1 = 0$

and $a_2 x + b_2 y + d_2 = 0$ is

$$\frac{p_1 p_2}{\sin \theta} \quad \text{or} \quad \frac{|c_1 - d_1| |c_2 - d_2|}{|\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}|$$

where, p_1 and p_2 are the distances between parallel sides and θ is the angle between two adjacent sides. **Proof** : Since, p_1 and p_1 are the distances between the pairs of parallel sides of the parallelogram and θ is the angle between two adjacent sides, then

Area of parallelogram ABCD

$$= 2 \times \text{Area of } \Delta ABD$$

$$= 2 \times \frac{1}{2} \times AB \times p_1$$

$$= AB \times p_1$$

$$= \frac{p_2}{\sin \theta} \times p_1 \qquad \left(\because \text{ in } \Delta ABL, \sin \theta = \frac{p_2}{AB}\right)$$

$$= \frac{p_1 p_2}{\sin \theta} \qquad \dots (i)$$

Now, p_1 = Distance between parallel sides *AB* and *DC*

$$=\frac{|c_1 - d_1|}{\sqrt{(a_1^2 + b_1^2)}}$$

and p_2 = Distance between parallel sides AD and BC

$$= \frac{|c_2 - d_2|}{\sqrt{(a_2^2 + b_2^2)}}$$
Also, $\tan \theta = \left|\frac{m_1 - m_2}{1 + m_1 m_2}\right| = \left|\frac{-\frac{a_1}{b_1} - \left(-\frac{a_2}{b_2}\right)}{1 + \left(-\frac{a_1}{b_1}\right)\left(-\frac{a_2}{b_2}\right)}\right|$

$$\begin{pmatrix} \because m_1 = \text{slope of } AB = -\frac{a_1}{b_1}\\ \text{and } m_2 = \text{slope of } AD = -\frac{a_2}{b_2} \end{pmatrix}$$

$$= \left|\frac{a_1 b_2 - a_2 b_1}{a_1 a_2 + b_1 b_2}\right|$$

$$\therefore \qquad \sin \theta = \frac{|a_1 b_2 - a_2 b_1|}{\sqrt{(a_1^2 + b_1^2)(a_2^2 + b_2^2)}}$$

Now, substitute the values of p_1 , p_2 and $\sin \theta$ in Eq. (i)

:. Area of parallelogram
$$ABCD = \frac{|c_1 - d_1| |c_2 - d_2|}{|a_1 b_2 - a_2 b_1|}$$
$$= \frac{|c_1 - d_1| |c_2 - d_2|}{|\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}|}$$

Corollaries :

1. If $p_1 = p_2$, then *ABCD* becomes a rhombus

:. Area of rhombus
$$ABCD = \frac{p_1^2}{\sin \theta}$$

= $\frac{(c_1 - d_1)^2}{|a_1 b_2 - a_2 b_1| \sqrt{\left(\frac{a_1^2 + b_1^2}{a_2^2 + b_2^2}\right)}}$

2. If d_1 and d_2 are the lengths of two perpendicular diagonals of a rhombus, then

Area of rhombus =
$$\frac{1}{2} d_1 d_2$$

3. Area of the parallelogram whose sides are y = mx + a, y = mx + b, y = nx + c and y = nx + d is $\frac{|a-b||c-d|}{|m-n|}$.

Example 61. Show that the area of the parallelogram formed by the lines x + 3y - a = 0, 3x - 2y + 3a = 0, x + 3y + 4a = 0 and 3x - 2y + 7a = 0 is $\frac{20}{11}a^2$ sq units.

Sol. Required area of the parallelogram

$$= \frac{|-a-4a||3a-7a|}{|\begin{vmatrix}1&3\\3&-2\end{vmatrix}} = \frac{20}{11}a^2 \text{ sq units}$$

Example 62. Show that the area of the parallelogram formed by the lines

$$x\cos \alpha + y\sin \alpha = p, \ x\cos \alpha + y\sin \alpha = q,$$
$$x\cos \beta + y\sin \beta = r, \ x\cos \beta + y\sin \beta = s \text{ is}$$
$$|(p-q)(r-s)\csc (\alpha - \beta)|.$$

Sol. The equation of sides of the parallelogram are

and

 $x\cos\alpha + y\sin\alpha - p = 0$, $x\cos\alpha + y\sin\alpha - q = 0,$ $x\cos\beta + y\sin\beta - r = 0$, $x\cos\beta + y\sin\beta - s = 0$

.:. Required area of the parallelogram

$$= \frac{|-p - (-q)| |-r - (-s)|}{\left| \begin{vmatrix} \cos \alpha & \sin \alpha \\ \cos \beta & \sin \beta \end{vmatrix}} = \frac{|p - q| |r - s}{|\sin(\beta - \alpha)|}$$
$$= |(p - q)(r - s) \operatorname{cosec} (\alpha - \beta)|$$

Example 63. Prove that the diagonals of the parallelogram formed by the lines

$$\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1, \frac{x}{a} + \frac{y}{b} = 2 \text{ and } \frac{x}{b} + \frac{y}{a} = 2$$

are at right angles. Also find its area ($a \neq b$).

Sol. The distance between the parallel sides

$$\frac{x}{a} + \frac{y}{b} = 1 \text{ and } \frac{x}{a} + \frac{y}{b} = 2$$

is
$$\frac{|2-1|}{\sqrt{\left(\frac{1}{a^2} + \frac{1}{b^2}\right)}} = \frac{1}{\sqrt{\left(\frac{1}{a^2} + \frac{1}{b^2}\right)}} = p_1 \quad (\text{say})$$

and the distance between the parallel sides

$$\frac{x}{b} + \frac{y}{a} = 1 \text{ and } \frac{x}{b} + \frac{y}{a} = 2$$

is
$$\frac{|2-1|}{\sqrt{\left(\frac{1}{b^2} + \frac{1}{a^2}\right)}} = \frac{1}{\sqrt{\left(\frac{1}{a^2} + \frac{1}{b^2}\right)}} = p_2 \quad (\text{say})$$

Here, $p_1 = p_2$.

Here,

: Parallelogram is a rhombus.

But we know that diagonals of rhombus are perpendicular to each other.

$$\therefore \quad \text{Area of the rhombus} = \frac{|(-1+2)(-1+2)|}{\left| \begin{vmatrix} \frac{1}{a} & \frac{1}{b} \\ \frac{1}{b} & \frac{1}{a} \end{vmatrix}} \right|$$
$$= \frac{a^2 b^2}{|b^2 - a^2|} (a \neq b)$$

Example 64. Show that the four lines $ax \pm by \pm c = 0$ enclose a rhombus whose area is $\frac{2c^2}{|ab|}$

Sol. The given lines are

and

$$ax + by + c = 0 \qquad \dots(i)$$

$$ax + by - c = 0 \qquad \dots(ii)$$

$$ax + by - c = 0 \qquad \qquad \dots (ii)$$
$$ax - by + c = 0 \qquad \qquad \dots (iii)$$

$$ax - by - c = 0 \qquad \qquad \dots (in)$$

Distance between the parallel lines Eqs. (i) and (ii) is

$$\frac{2c}{\sqrt{(a^2 + b^2)}} = p_1 \text{ (say) and distance between the parallel}$$

lines Eqs. (iii) and (iv) is

$$\frac{2c}{\sqrt{(a^2+b^2)}} = p_2 \tag{say}$$

Here,
$$p_1 = p_2$$

 \therefore it is a rhombus.
 \therefore Area of rhombus = $|(c + c)(c + c)|$

$$\therefore \text{ Area of rhombus} = \frac{|(c+c)(c+c)|}{\begin{vmatrix} a & b \\ a & -b \end{vmatrix}} = \frac{4c^2}{|-2ab|} = \frac{2c^2}{|ab|}$$

Exercise for Session 2

1.	The number of lines that are parallel to $2x + 6y - 7 = 0$ and have an intercept 10 between the coordinate axes is				
	(a) 1	(b) 2	(c) 4	(d) infinitely many	
2.	The distance between the lines $4x + 3y = 11$ and $8x + 6y = 15$ is				
	(a) $\frac{7}{2}$	(b) $\frac{7}{5}$	(c) $\frac{7}{10}$	(d) $\frac{9}{10}$	
3.	If the algebraic sum of the perpendicular distances from the points (2, 0), (0, 2) and (1, 1) to a variable straight line is zero, then the line passes through the point				
	(a) (1, 1)	(b) (-1, 1)	(c) (-1, -1)	(d) (1, -1)	
4 .	If the quadrilateral formed by the lines $ax + by + c = 0$, $a'x + b'y + c' = 0$, $ax + by + c' = 0$ and $a'x + b'y + c' = 0$ have perpendicular diagonals, then				
	(a) $b^2 + c^2 = b'^2 + c'^2$	(b) $c^2 + a^2 = c'^2 + a'^2$	(c) $a^2 + b^2 = a'^2 + b'^2$	(d) None of these	
5	The area of the parallel	aram formed by the lines 3x	4y + 1 = 0.3y + 4y + 3 = 0	4x - 3y - 1 - 0 and	

5. The area of the parallelogram formed by the lines 3x - 4y + 1 = 0, 3x - 4y + 3 = 0, 4x - 3y - 1 = 0 and 4x - 3y - 2 = 0, is

(a)
$$\frac{1}{7}$$
 sq units (b) $\frac{2}{7}$ sq units (c) $\frac{3}{7}$ sq units (d) $\frac{4}{7}$ sq units

6. Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 equals

(a)
$$\frac{|m+n|}{(m-n)^2}$$
 (b) $\frac{2}{|m+n|}$ (c) $\frac{1}{|m+n|}$ (d) $\frac{1}{|m-n|}$

7. The coordinates of a point on the line y = x where perpendicular distance from the line 3x + 4y = 12 is 4 units, are

(a)
$$\left(\frac{3}{7}, \frac{5}{7}\right)$$
 (b) $\left(\frac{3}{2}, \frac{3}{2}\right)$ (c) $\left(-\frac{8}{7}, -\frac{8}{7}\right)$ (d) $\left(\frac{32}{7}, -\frac{32}{7}\right)$

- 8. A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3, then its *y*-intercept is (a) $-\frac{2}{3}$ (b) $\frac{2}{3}$ (c) $-\frac{4}{3}$ (d) $\frac{4}{3}$
- 9. If the points (1, 2) and (3, 4) were to be on the opposite side of the line 3x 5y + a = 0, then (a) 7 < a < 11 (b) a = 7 (c) a = 11 (d) a < 7 or a > 11
- **10.** The lines y = mx, y + 2x = 0, y = 2x + k and y + mx = k form a rhombus if *m* equals

(a)
$$-1$$
 (b) $\frac{1}{2}$ (c) 1 (d) 2

11. The points on the axis of x, whose perpendicular distance from the straight line $\frac{x}{a} + \frac{y}{b} = 1$ is a

(a)
$$\frac{b}{a} (a \pm \sqrt{(a^2 + b^2)}), 0)$$

(b) $\frac{a}{b} (b \pm \sqrt{(a^2 + b^2)}), 0)$
(c) $\frac{b}{a} (a + b, 0)$
(d) $\frac{a}{b} (a \pm \sqrt{(a^2 + b^2)}), 0)$

12. The three sides of a triangle are given by $(x^2 - y^2)(2x + 3y - 6) = 0$. If the point (-2, a) lies inside and (b, 1) lies outside the triangle, then

(a)
$$a \in \left(2, \frac{10}{3}\right); b \in (-1, 1)$$

(b) $a \in \left(-2, \frac{10}{3}\right); b \in \left(-1, \frac{9}{2}\right)$
(c) $a \in \left(1, \frac{10}{3}\right); b \in (-3, 5)$
(d) None of these

- **13.** Are the points (3, 4) and (2, -6) on the same or opposite sides of the line 3x 4y = 8?
- **14.** If the points (4, 7) and ($\cos \theta$, $\sin \theta$), where $0 < \theta < \pi$, lie on the same side of the line x + y 1 = 0, then prove that θ lies in the first quadrant.
- **15.** Find the equations of lines parallel to 3x 4y 5 = 0 at a unit distance from it.
- **16.** Show that the area of the parallelogram formed by the lines 2x 3y + a = 0, 3x 2y a = 0, 2x 3y + 3a = 0and 3x - 2y - 2a = 0 is $\frac{2a^2}{5}$ sq units.
- **17.** A line '*L*' is drawn from *P* (4, 3) to meet the lines $L_1 : 3x + 4y + 5 = 0$ and $L_2 : 3x + 4y + 15 = 0$ at point *A* and *B* respectively. From '*A*' a line, perpendicular to *L* is drawn meeting the line L_2 at A_1 . Similarly from point '*B*' a line, perpendicular to *L* is drawn meeting the line L_1 at B_1 . Thus a parallelogram AA_1BB_1 is formed. Find the equation (*s*) of '*L*' so that the area of the parallelogram AA_1BB_1 is least.
- **18.** The vertices of a $\triangle OBC$ are O(0, 0), B(-3, -1), C(-1, -3). Find the equation of the line parallel to BC and intersecting the sides OB and OC and whose perpendicular distance from the origin is $\frac{1}{2}$.

Answers

Exercise for Session 2

1. (b) **2.** (c) **3.** (a) **4.** (c) **5.** (b) **6.** (d) **7.** (c,d) **8.** (d) **9.** (d) **10.** (d) **11.** (b) **12.** (d) **13.** The two points are on the opposite side of the given line. **15.** 3x - 4y = 0 and 3x - 4y - 10 = 0**17.** 7x + y - 31 = 0 **18.** $2x + 2y + \sqrt{2} = 0$