Time Response Analysis of Control System

The time response of a control system means as to how a system behaves in accordance with time when a specified input test signal is applied.

The time response of a control system is divided in two parts:

- (i) Transient response
- (ii) Steady state response

Transient part of time response reveals the nature of response and its speed, where as steady state part of time response reveals the accuracy of a control system.

Standard Input Test Signals

(a) Step function

where,

(b) Ramp function

(c) Parabolic function

(d) Impulse Function

$$\delta(t) = \dot{\mathbf{u}}(t)$$

$$\delta(t) = 0; t \neq 0$$

$$\lim_{\alpha \to 0} \int_{-\alpha}^{+\alpha} \delta(t) dt = 1$$

Time response of a first order control system

□ Transfer Function

(i) Subjected to Unit Step Input Function

☐ Time response expression

$$C(1) = \mathcal{L}^{-1}C(s) = 1 - e^{-t/T}$$

□ Error

$$\mathbf{e}(t) = \mathbf{r}(t) - \mathbf{c}(t) = \mathbf{e}^{-1/T}$$

☐ Steady state error

$$e_{ab} = \lim_{n \to \infty} e^{-kT} = 0$$

Note:

Lower the time constant, faster is the time response of a control system.

Subjected to Unit Ramp Input Function

Time response expression

$$c(t) = (t - T + Te^{-t/T})$$

□ Error

$$e(t) = r(t) - c(t) = (T - Te^{-t/T})$$

□ Steady State Error

$$e_{ss} = \lim_{t \to \infty} (T - Te^{-t/T}) = T$$

Subjected to Unit Impulse Input Function

☐ Time response expression

$$c(t) = \frac{1}{T}e^{-t/T}$$

Time Response of Second Order Control System

□ Transfer function

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

where, ω_n = Natural frequency of oscillations

 ζ = Damping ratio

 $\zeta \omega_n = Damping factor$

Damped frequency

$$\omega_{cl} = \omega_{n} \sqrt{1 - \zeta^{2}}$$

where, ω_d = Damped frequency of oscillations

Subjected to Unit Step Input Function

□ Time response expression

Case-1: ζ < 1 i.e. underdamped oscillations

$$c(t) = 1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \sin(\omega_d t + \phi)$$

$$\phi = \tan^{-1} \left(\frac{\sqrt{1 - \zeta^2}}{\zeta} \right)$$

Note:

• Response settles within 2% of the desired value (1 unit) after damping out the oscillations in a time 4T (or $4/\zeta\omega_n$).

Case-2: $\zeta = 0$ i.e. sustained (undamped) Oscillations

$$c(t) = (1 - \cos \omega_n t)$$

Case-3: $\zeta = 1$ i.e. critically Damped Oscillations

$$c(t) = [1 - e^{-\omega_n t} (1 + \omega_n t)]$$

Case-4: $\zeta > 1$ i.e. overdamped Oscillations

$$c(t) = 1 - \frac{e^{-\left(\zeta - \sqrt{\zeta^2 - 1}\right)\omega_n t}}{\left(2\sqrt{\zeta^2 - 1}\right)\left(\zeta - \sqrt{\zeta^2 - 1}\right)}$$

☐ Time constant of the response

$$T = \frac{1}{\left(\xi - \sqrt{\xi^2 - 1}\right)\omega_n}$$

Effect of ξ on Time Response

SNo.	Value of ξ	Type of closed poles	Nature of response	System classification
1.	ξ = 0	Purely imaginary	Oscillations with constant frequency and amplitude	Undamped
2.	0< ζ<1	Complex conjugate	Damped oscillation	Underdamped
3.	ξ = 1	Real, equal and negative	Critical and pure exponential	Critically damped
4.	1< ξ<∞	Real, unequal and negative	Purely exponential slow and sluggish	Overdamped

Pole Locations for Different Cases, for a Second Order System

Note:

- As ξ increases from 0 to 1 then the frequency of oscillation reduces.
- For all positive value of ξ , system are stable.
- Pole away from origin called insignificant pole, and does not affect the stability of system.
- $\theta = \cos^{-1} \xi$.

Some Practical Example of Second Order System

Series RLC Circuit	Parallel RLC Circuit	Translatory System	Rotational System
Characteristic equation	Characteristic equation	Characteristic equation	Characteristic equation
$s^2 + \frac{H}{L}s + \frac{1}{LC} = 0$	$s^2 + \frac{1}{RC}s + \frac{1}{LC} = 0$	$s^2 + \frac{f}{M}s + \frac{K}{M} = 0$	$s^2 + \frac{f}{J}s + \frac{K}{J} = 0$
$\omega_n = \frac{1}{\sqrt{LC}}$	$\omega_n = \frac{1}{\sqrt{LC}}$	$\omega_{\rm r} = \sqrt{\frac{K}{M}}$	$\omega_{r_1} = \sqrt{\frac{K}{J}}$
$\xi = \frac{R}{2}\sqrt{\frac{C}{L}}$	$\xi = \frac{1}{2R} \sqrt{\frac{L}{C}}$	$\xi = \frac{1}{2\sqrt{KM}}$	$\xi = \frac{f}{2\sqrt{KJ}}$

Transient Response Specifications of Second Order Control System

1. Delay Time (t_d)

It is the time require for the response to rise from 0 to 50% of the final value.

$$t_d = \frac{1 + 0.7\xi}{\omega_n}$$

2. Rise Time (t,)

It is the time required for the response to rise from

0 to 100% (underdamped) → for underdamped system

5 to 95% (critical damped) \rightarrow for critically damped system

10 to 90% (over damped) → for overdamped system

of the final value

$$t_{r} = \frac{\pi - \tan^{-1}\left(\frac{\sqrt{1 - \xi^{2}}}{\xi}\right)}{\omega_{d}} = \frac{\pi - \cos^{-1}\xi}{\omega_{d}} \text{ radian}$$

3. Peak Time (tp)

It is the time required for the response to rise from zero to peaks of the time response.

$$t_p = \frac{n\pi}{\omega_c}$$

where.

 $n = 1, 2, 3, \dots$

for

n = 1, first overshoot

n = 2, first undershoot

4. Settling Time (t_s)

It is the time require for response to rise and reach to the tolerance band

For 2% tolerance band,

$$t_s = 4\tau = \frac{4}{\xi \omega_n}$$

For 5% tolerance band,

$$t_s = 3\tau = \frac{3}{\xi \omega_n}$$

5. Peak Over Shoot (M_p)

It gives the normalised difference between the steady state output to first peak of the time response.

$$200 \times 100\%$$

Note:

• The time period of the oscillation before reaching the steady state.

$$T_{\text{oscillation}} = \frac{2\pi}{\omega_d}$$

Number of oscillation before reaching steady state is

$$N = \frac{T_{\text{settling}}}{T_{\text{oscillation}}}$$

Types and Order of System

- Every Transfer function representing the control system has certain type and order.
- The steady state analysis depends on type of the system.
- The type of the system is obtain from open loop transfer function i.e.
 G(s) H(s).
- The number of open loop poles occurring at origin determines the type of the system.

Let
$$G(s) H(s) = \frac{K(1+sT_a)}{s^p(1+sT_1)}$$

For

P = 0 for Type-0 system

P = 1 for Type-1 system

P = n for Type-n system

- Transient state analysis depends on order of the system.
- · The order of system is obtain from closed loop transfer function i.e.

$$\frac{G(s)}{1+G(s)H(s)}$$

 The highest power of characteristic equation, i.e. 1 + G(s) H(s) = 0 determines the order of control system.

Steady State Error

$$E(s) = \frac{R(s)}{1 + G(s)H(s)}$$

Steady state error,

$$e_{ss} = \lim_{t \to \infty} e(t)$$
 (in time-domain)

$$e_{ss} = \lim_{s \to 0} sE(s)$$
 (in s-domain)

$$e_{ss} = \lim_{s \to 0} s \frac{R(s)}{1 + G(s)H(s)}$$

$$e_{ss} = \frac{\lim_{s \to 0} sR(s)}{1 + \lim_{s \to 0} G(s)H(s)}$$

Note:

Steady state error depends on two factor:

- (i) Type of input applied i.e. R(s).
- (ii) Type of system i.e. G(s) H(s).
- 1. Steady State Error for Different Types of Input
- (i) Step input

$$R(s) = \frac{A}{s}$$

$$e_{ss} = \frac{A}{1 + K_p}$$

$$K_p = \lim_{s \to 0} G(s) H(s)$$

where, $K_p = Static position error constant$

(ii) Ramp input

$$R(s) = \frac{A}{s^2}$$

$$e_{ss} = \frac{A}{K_v}$$

$$K_v = \lim_{s \to 0} sG(s)H(s)$$

where, $K_v = Static velocity error constant$

(iii) Parabolic input

$$R(s) = \frac{A}{s^3}$$

$$e_{ss} = \frac{A}{K_a}$$

$$K_a = \lim_{s \to 0} s^2 G(s) H(s)$$

where, $K_a = Static$ acceleration error constant

2. Steady State Error for Different Types of System.

Туре	Step input	Ramp input	Parabolic input
Type-0	A 1+ K	¢o.	∞
Type-1	0	A K	00
Туре-2	0	0	<u>A</u>
<u>_</u>		<u>-</u>	K

Where, K is the system gain.

Observation

- (i) $e_{ss} \propto \frac{1}{\kappa}$, so, as system gain increases, steady state error decreases.
- (ii) For Linear Time Invariant (LTI) system, the maximum type number is two. Beyond type-2, the system exhibits non-linear characteristics.

Note:

- Steady state error is valid only for closed loop stable system'
- Steady state error are calculated to the closed loop system by using open loop transfer function.