SEQUENCE AND SERIES

1. DEFINITION

Sequence is a function whose domain is the set N of natural numbers.

Real Sequence : A sequence whose range is a subset of R is called a real sequence.

Series : If $a_1, a_2, a_3, a_4, \dots, a_n$, ..., is a sequence, then the expression

 $a_1 + a_2 + a_3 + a_4 + a_5 + \dots + a_n + \dots$ is a series.

A series is finite or infinite according as the number of terms in the corresponding sequence is finite or infinite.

Progressions : It is not necessary that the terms of a sequence always follow a certain pattern or they are described by some explicit formula for the n^{th} term. Those sequences whose terms follow certain patterns are called progressions.

1.1 An Arithmetic Progression (AP)

AP is a sequence whose terms increase or decrease by a fixed number. This fixed number is called the common difference. If a is the first term & d the common difference, then AP can be written as a, a + d, a + 2d, and nth term of this AP can be written as $t_n = a + (n - 1) d$, where $d = a_n - a_{n-1}$.

The sum of the first n terms the AP is given by ;

$$S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2} [a + \ell].$$

where ℓ is the last term.

NOTES :

Properties of Arithmetic Progression

- (i) If each term of an A.P. is increased, decreased, multiplied or divided by the same non zero number, then the resulting sequence is also an AP.
- (ii) 3 numbers in AP are a d, a, a + d;
 - 4 numbers in AP are a 3d, a d, a + d, a + 3d; 5 numbers in AP are a - 2d, a - d, a, a + d, a + 2d;

6 numbers in AP are a - 5d, a - 3d, a - d, a + d, a + 3d; a + 5d.

- (iii) The common difference can be zero, positive or negative.
- (iv) The sum of the two terms of an AP equidistant from the beginning & end is constant and equal to the sum of first & last terms.
- (v) Any term of an AP (except the first) is equal to half the sum of terms which are equidistant from it.

$$a_n = 1/2 (a_{n-k} + a_{n+k}), k < n.$$

For $k = 1, a_n = (1/2) (a_{n-1} + a_{n+1});$
For $k = 2, a_n = (1/2) (a_{n-2} + a_{n+2})$ and so on.

- (vi) $t_r = S_r S_{r-1}$
- (vii) If a, b, c are in AP \Rightarrow 2b = a + c.

- (viii) A sequence is an AP, iff its nth terms is of the form An+B i.e., a linear expression in n. The common difference in such a case is A i.e., the coefficient of n.
- (ix) A sequence is an AP if and only if the sum of its n terms is of the form $An^2 +Bn$, where A and B are constants independent of n.

1.2 Geometric Progression (GP)

GP is a sequence of numbers whose first term is non zero & each of the succeeding terms is equal to the proceeding terms multiplied by a constant. Thus in a GP the ratio of successive terms is constant. This constant factor is called the common ratio of the series & obtained by dividing any term by that which immediately proceeds it. Therefore a, ar, ar^2 , $ar^3 ar^4$, is a GP with a as the first term & r as common ratio.

(i) n^{th} term = a r^{n-1}

(ii) Sum of the Ist n terms i.e.
$$S_n = \frac{a(r^n - 1)}{r - 1}$$
, if $r \neq 1$.

(iii) Sum of an infinite GP when $|\mathbf{r}| < 1$ when $\mathbf{n} \to \infty$,

$$r^{n} \rightarrow 0 \text{ if } |\mathbf{r}| < 1 \text{ therefore, } S_{\infty} = \frac{a}{1-r} (|\mathbf{r}| < 1)$$

(iv) Any 3 consecutive terms of a GP can be taken as a/r, a, ar;

any 4 consecutive terms of a GP can be taken as a/r^3 , a/r, ar, ar^3 & so on.

NOTES :

Properties of Geometric Progressions

- 1. If all the terms of a GP be multiplied or divided by the same non-zero constant, then it remains a GP with the same common ratio.
- 2. The reciprocals of the terms of a given GP forms a GP.
- 3. If each term of a GP be raised to the same power, the resulting sequence also forms a G.P.
- 4. In a finite GP the product of the terms equidistant form the beginning and the end is always same and is equal to the product of the first and the last term.
- 5. Three non-zero numbers, a, b, c are in GP, if $b^2 = ac$.
- 6. If the terms of a given GP are chosen at regular intervals, then the new sequence so formed also forms a GP.
- If a₁, a₂, a₃, ..., a_n, ... is a GP of non-zero non-negative terms, then log a₁, log a₂, log a_n, ... is an AP and vice versa.

1.3 HARMONIC PROGRESSION (HP)

A sequence is said to HP if the reciprocals of its terms are in AP.

If the sequence a_1 , a_2 , a_3 , ..., a_n is an HP then $1/a_1$, $1/a_2$, ..., $1/a_n$ is an AP & converse. Here we do not have the formula for the sum of the n terms of an HP. For HP whose first terms is a & second term is b, then nth term

is
$$t_n = \frac{ab}{b + (n-1)(a-b)}$$

If a, b, c are in HP
$$\Rightarrow$$
 b = $\frac{2ac}{a+c}$ or $\frac{a}{c} = \frac{a-b}{b-c}$.

2. MEANS

2.1 Arithmetic Mean

If three terms are in AP then the middle term is called the AM between the other two, so if a, b, c, are in AP, b is AM of a & c.

AM for any n positive numbers a_1, a_2, \dots, a_n is ;

$$A = \frac{a_1 + a_2 + a_3 + \dots + a_n}{n}$$

2.2 n-Arithmetic Means between Two Numbers

If a, b are any two given numbers & a, A_1, A_2, \dots, A_n , b are in AP then A_1, A_2, \dots, A_n are n AM's between a & b.

$$A_{1} = a + \frac{b-a}{n+1}, A_{2} = a + \frac{2(b-a)}{n+1}, \dots, A_{n} = a + \frac{n(b-a)}{n+1}$$
$$A_{1} = a + d, A_{2} = a + 2d, \dots, A_{n} = a + nd, \text{ where } d = \frac{b-a}{n+1}$$

The arithmetic mean (AM) A of any two numbers a and b is given by the equation (a + b)/2. Plase note that the sequence a, A, b is in AP. If a_1, a_2, \dots, a_n are n numbers, the (AM)A, of these numbers is given by:

$$A = \frac{1}{n} (a_1 + a_2 + \dots + a_n)$$

Inserting 'n' AMs between 'a' and 'b'

Suppose $A_1, A_2, A_3, \dots, A_n$ be the n means between a and b. Thus, $a, A_1, A_2, \dots, A_n, b$ is an AP and b is the (n + 2)th term.

Thus,
$$b = a(n+1)d \implies d = \frac{b-a}{n+1}$$
.

Now,

$$A_{1} = a + d$$
$$A_{2} = a + 2d$$
$$\vdots$$
$$A_{1} = a + nd$$

$$\sum_{i=1}^{n} A_{i} = na + (1+2+3+\dots+n)d = na = \left(\frac{n(n+1)}{2}\right)d$$
$$= na + \left(\frac{n(n+1)}{2}\right)\left(\frac{b-a}{n+1}\right)$$
$$= \frac{n}{2}(2a+b-a) = nA \text{ where, } A = \frac{a+b}{2}$$

NOTES :

Sum of n AM's inserted between a & b is equal to n times the

single AM between a & b i.e. $\sum_{r=1}^{n} A_{r} = nA$ where A is the single AM between a & b.

2.3 Geometric Mean

If a, b, c are in GP, b is the GM between a & c. $b^2 = ac$, therefore $b = \sqrt{ac}$; a > 0, c > 0.

2.4 n-Geometric Means between a & b

If a, b are two given numbers & a, G_1, G_2, \dots, G_n , b are in GP. Then $G_1, G_2, G_3, \dots, G_n$ are n GMs between a & b. $G_1 = a (b/a)^{1/n+1} = ar, G_2 = a (b/a)^{2/n+1} = ar^2, \dots, G_n a (b/a)^{n/n+1} = ar^n$ where $r = (b/a)^{1/n+1}$

To Insert 'n' GMs Between a and b : If a and b are two positive numbers and we have to insert n GMs, G_1, G_2, \dots, G_n between the two numbers 'a' and 'b' then a, G_1, G_2, \dots, G_n , b will be in GP. The series consists of (n + 2) terms and the last term is b and the first term is

a.
$$b = ar^{n+2-1} \Rightarrow b = ar^{n+1} \Rightarrow r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$$

 $\Rightarrow G_1 = ar, G_2 = ar^2.....G_n = ar^n$

Note: $\prod_{r=1}^{n} G_r = (G)^n$, where $G = \sqrt{ab} (GM \text{ between } a \text{ and } b)$

NOTES :

The product of n GMs between a & b is equal to the nth power of the single GM between a & b i.e. $\prod_{r=1}^{n} G_r = (G)^n$ where G is the single GM between a & b.

2.5 Harmonic Mean

If a, b, c are in HP, b is the HM between a & c, then b = 2ac/[a+c].

2.6 Arithmetic, Geometric and Harmonic means between two given numbers

Let A, G and H be arithmetic, geometric and harmonic means of two positive numbers a and b. Then,

$$A = \frac{a+b}{2}$$
, $G = \sqrt{ab}$ and $H = \frac{2ab}{a+b}$

Relation between A.M. and GM

For any two non-negative number $A.M. \ge G.M$.

Proof. Let two non-negative numbers be \sqrt{a} and \sqrt{b} .

Now, we can write $\left(\sqrt{a} - \sqrt{b}\right)^2 \ge 0 \Rightarrow a - 2\sqrt{ab} + b \ge 0$

$$\Rightarrow a+b \ge 2\sqrt{ab} \Rightarrow \frac{a+b}{2} \ge \sqrt{ab} \Rightarrow A.M. \ge GM$$

Note : (i) Equality for AM, G.M. (i.e. A.M. = GM) exists when a = b.

(ii) Since $A.M. \ge GM; (AM)_{\min} = GM; (GM)_{\max} = AM$

These three means possess the following properties

- 1. $A \ge G \ge H$
- 2. A, G, H form a GP i.e., $G^2 = AH$.
- 3. The equation having a and b as its roots is $x^2-2Ax+G^2=0$
- 4. If A, G, H are arithmetic, geometric and harmonic means between three given numbers a, b and c, then the equation having a, b, c as its roots is

$$x^{3} - 3Ax^{2} + \frac{3G^{3}}{H}x - G^{3} = 0.$$

NOTES :

If A and G be the AM and GM between two positive numbers, then the number are $A \pm \sqrt{A^2 - G^2}$.

3. SIGMA NOTATIONS

3.1 Theorems

(i)
$$\sum_{r=1}^{n} (a_r \pm b_r) = \sum_{r=1}^{n} a_r \pm \sum_{r=1}^{n} b_r$$

(ii)
$$\sum_{r=1}^{n} k a_r = k \sum_{r=1}^{n} a_r$$

(iii) $\sum_{r=1}^{n} k = k + k + k... n \text{ times} = nk ; where k is a constant.$

4. SUM TO n TERMS OF SOME SPECIAL SEQUENCES

4.1 Sum of first n natural numbers

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

4.2 Sum of the squares of first n natural numbers

$$\sum_{k=1}^{n} k^{2} = 1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

4.3 Sum of the higher powers of first n natural numbers

$$\sum_{k=1}^{n} k^{3} = 1^{3} + 2^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2} = \left(\sum_{k=1}^{n} k\right)^{2}$$

$$\sum_{k=1}^{n} k^{4} = \frac{n}{30}(n+1)(2n+1)(3n^{2}+3n-1)$$

4.4 Sum of first n odd numbers

$$\sum_{k=1}^{n} (2k-1) = 1 + 3 + \dots + (2n-1) = n^{2}$$

4.5 Vn method :

This is method of resolving the nth term into partial fraction and summation by telescopic cancellation. First, find the nth term of the series and try to create a denominator part in the numerator by using partial fraction whenever the series is in the form of fraction of T_n like the following:

$$T_n = \frac{2}{n^2 - 1}$$

Using the partial fraction, we can write the nth term as

$$T_n = \frac{1}{n-1} - \frac{1}{n+1}$$

Now, when we find the summation, there will be telescopic cancellation and thus we will get the sum of the given series.

4.6 Method of Difference :

If T_1, T_2, T_3, T_4, T_5 is a sequence whose terms are sometimes in AP and sometimes in GP, then for such series we first compute their nth term and then compute the sum to n terms using sigma notation.

5. ARITHMETICO-GEOMETRIC SERIES

A series each term of which is formed by multiplying the corresponding term of an AP & GP is called the Arithmetico-Geometric Series. e.g. $1 + 3x + 5x^2 + 7x^3 + \dots$

Here, 1, 3, 5, are in AP & 1, x, x², x³ are in GP.

5.1 Sum of n terms of an Arithmetico-Geometric Series

Let $S_n = a + (a + d) r + (a + 2 d) r^2 + \dots + [a + (n - 1) d] r^{n-1}$

then
$$S_n = \frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2} - \frac{[a+(n-1)d]r^n}{1-r}, r \neq 1.$$

A series formed by multiplying the corresponding terms of AP and GP. is called arithmetic geometric progression (AGP).

Let a = first term of AP, b = first term of GP, d = common difference and r = common ratio of GP. then

AP:
$$a, a+d, a+2d, a+3d, ..., a+(n-1)d$$

GP:
$$b, br, br^2, br^3, ..., br^{n-1}$$

AGP

 $ab,(a+d)br,(a+2d)br^2....(a+(n-1)d)br^{n-1}$ (Standard appearance of AGP)

appearance of roll)

the general term (nth term) of an AGP is given as $T_n = \left\lceil a + (n-1)d \right\rceil br^{n-1}$

Series of AGP

To find the sum of n terms of an AGP, we suppose its sum as S_n and then multiply both the sides by the common ratio of the corresponding G.P. and then subtract as in the following way. Thus, we get a G.P. whose sum can be easily obtained.

$$S_n = ab + (a+d)br + (a+2d)br^2 + \dots + (a+(n-1)d)br^{n-1}$$
 ...(i)

 $rS_n = 0 + abr + (a + d)br^2 + \dots + (a + (n-1)d)br^n$...(ii)

After subtraction, we get

$$S_n(1-r) = ab + \left[dbr + dbr^2 + \dots + up \ to (n-1) terms \right]$$
$$- \left[\left(a + (n-1)d \right) br^n \right]$$

$$S_n(1-r) = ab + \frac{dbr(1-r^{n-1})}{1-r} - (a+(n-1)d)br^n$$

$$S_{n} = \frac{ab}{1-r} + \frac{dbr(1-r^{n-1})}{(1-r)^{2}} - \frac{(a+(n-1)d)br^{n}}{1-r}.$$
 This is the

sum of n terms of AGP

For an infinite AGP, AGP, $as n \to \infty$, then $r^n \to 0$ (:: |r| < 1)

$$\Rightarrow S_{\infty} = \frac{ab}{1-r} + \frac{dbr}{\left(1-r\right)^2} \,.$$

SOLVED EXAMPLES

Example - 1

Find

(i) 24th term of the A.P. 5, 8, 11, 14... 15th term of the A.P. 21, 16, 11, 6,... (ii) Sol. (i) 5, 8, 11, 14... a = 5; d = 8 - 5 = 3; n = 24*.*.. $t_n = a + (n-1) d$ *:*. \therefore $t_{24} = 5 + (24 - 1) 3$ $= 5 + 23 \times 3$ =5+69 $t_{24} = 74$ *:*. (ii) 21, 16, 11, 6... a = 21, d = 16 - 21 = -5; n = 15

$$\therefore \quad t_{15} = 21 + (15 - 1) (-5)$$
$$= 21 + (14) (-5)$$
$$= 21 - 70$$
$$t_{15} = -49$$

Example - 2

If for a sequence (t_n) , $S_n = 4n^2 - 3n$, show that sequence is an A.P.

Sol.
$$S_n = 4n^2 - 3n$$

 $t_{n+1} = S_{n+1} - S_n$
 $= [4 (n+1)^2 - 3 (n+1)] - [4n^2 - 3n]$
 $= 4n^2 + 8n + 4 - 3n - 3 - 4n^2 + 3n$
 $t_{n+1} = 8n + 1$
 $t_n = 8(n-1) + 1$
 $= 8n - 8 + 1$
 $t_{n+1} - t_n = 8n - 7$
 $= (8n + 1) - (8n - 7)$
 $= 8 = \text{constant}$
Hence as the difference between two corrections of the second s

Hence as the difference between two conseuctive terms is constant, it is A.P.

Example - 3

Find the value of n if 1 + 4 + 7 + 10 + ... to n terms = 590 Sol. 1 + 4 + 7 + 10 + ... to n terms = 590, a = 1, d = 4 - 1 = 3

$$\therefore \qquad S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\therefore$$
 590 = $\frac{n}{2} [2(1) + (n-1)3]$

- $\therefore \quad 2 \times 590 = n \left[2 + 3n 3 \right]$
- \therefore 1180 = n [3n 1]
- $\therefore 3n^2 n 1180 = 0$
- $\therefore \quad 3n^2 60n + 59n 1180 = 0$
- \therefore 3n(n-20) + 59 (n-20) = 0

$$\therefore$$
 (3n+59) (n-20) = 0

$$\therefore \quad n = \frac{-59}{3} \text{ or } n = 20$$

'n' can not be negative, $n \neq \frac{-59}{3}$

$$\therefore$$
 n=20

Example - 4

If for an A.P. $S_{16} = 784$, a = 4, find d Sol. $S_{16} = 784$, a = 4 \therefore $S_n = \frac{n}{2} [2a + (n-1)d]$

$$S_{16} = \frac{16}{2} [2(4) + (16 - 1) d]$$

784 = 8 [8 + 15d]
784 = 64 + 120 d
720 = 120 d

$$\therefore$$
 720 = 120 d

$$\therefore \qquad d = \frac{720}{120}$$

$$\therefore$$
 d=6

For the following G.P.'s find t_n

(i) 1,-4, 16,-64, ...
(ii)
$$\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, \frac{1}{9\sqrt{3}}$$

Sol. (i) 1, -4, 16, -64,... a = 1

$$r = \frac{-4}{1} = -4$$

- $\therefore \quad t_n = a(r)^{n-1} \\ = 1 \ (-4)^{n-1} \\ = (-4)^{n-1}$
- (ii) $\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, \frac{1}{9\sqrt{3}}, \dots$ $a = \sqrt{3}$ $\frac{1}{\sqrt{2}}$ 1

$$r = \frac{\sqrt{3}}{\sqrt{3}} = \frac{1}{3}$$

$$t_n = a (r^{n-1})$$
$$= \sqrt{3} \left(\frac{1}{3}\right)^{n-1}$$

.

Example - 6

- (i) Find three numbers in G.P. such that their sum is 35 and their product is 1000.
- (ii) Find three numbers in G.P. such that their sum is 13/

3 and the sum of their squares is $\frac{91}{9}$

Sol. (i) Let three number are $\frac{a}{r}$, a, ar

$$\therefore \quad \frac{a}{r} \times a \times ar = 1000$$

$$a^{3} = 1000$$

$$a = 10 \qquad \dots (1)$$

$$a \left[\frac{1}{r} + 1 + r \right] = 35$$

$$\frac{1}{r} + 1 + r = \frac{35}{a} = \frac{35}{10}$$

$$2(1 + r + r^{2}) = 7r$$

$$2r^{2} - 5r + 2 = 0$$

$$(r - 2)(2r - 1) = 0$$

$$r - 2 = 0 \text{ or } 2r - 1 = 0$$

$$r = 2 \text{ or } 2r = 1$$

for
$$r = 2$$
, $\frac{a}{r} = \frac{10}{2} = 5$, $ar = 10 \times 2 = 20$

the number are 5, 10, 20

for
$$r = \frac{1}{2}$$
, $\frac{a}{r} = \frac{10}{1/2} = 20$; $ar = 10 \times \frac{1}{2} = 5$

the number are 20, 10, 5

(ii) Let
$$\frac{a}{r}$$
, a, ar be three numbers in G.P.

$$\frac{a}{r} + a + ar = \frac{13}{3}$$
 ... (i)

$$\frac{a^2}{r^2} + a^2 + a^2 r^2 = \frac{91}{9} \qquad \dots (ii)$$

Taking square of (i)

$$\left(\frac{a}{r} + a + ar\right)^2 = \left(\frac{13}{3}\right)^2$$

$$\frac{a^{2}}{r^{2}} + a^{2} + a^{2}r^{2} + \frac{2a^{2}}{r} + 2a^{2} + 2a^{2}r = \frac{169}{9}$$
$$\left(\frac{a^{2}}{r^{2}} + a^{2} + a^{2}r^{2}\right) + 2a\left(\frac{a}{r} + a + ar\right) = \frac{169}{9}$$

$$\frac{91}{9} + 2a\left(\frac{13}{3}\right) = \frac{169}{9}$$

 $\frac{26a}{3} = \frac{169}{9} - \frac{91}{9}$

$$\frac{26a}{3} = \frac{26}{3}$$

a = 1 \Rightarrow

$$\frac{1}{r} + 1 + r = \frac{13}{3}$$

$$\frac{1+r+r^2}{r} = \frac{13}{3}$$

 $3 + 3r + 3r^2 = 13r$

 $3r^2 - 10r + 3 = 0$

(r-3)(3r-1)=0

$$r = 3 \text{ or } r = \frac{1}{3}$$

for
$$r = 3$$
, $\frac{a}{r} = \frac{1}{3}$, $ar = 1 \times 3 = 3$

three numbers are $\frac{1}{3}$, 1, 3 *.*..

for
$$r = \frac{1}{3}$$
, $\frac{a}{r} = \frac{1}{\frac{1}{3}} = 3$; $ar = 1 \times \frac{1}{3} = \frac{1}{3}$ three numbers are 3, 1, $\frac{1}{3}$

Example - 7

If x, y and z are pth, qth and rth terms of a G.P. respectively then show that x^{q-r} . y^{r-p} . $z^{p-q} = 1$

Sol. Let A be the first term and R be the common ratio of the given G.P. Then,

$$\begin{aligned} x &= pth \ term \Rightarrow x = AR^{(p-1)} \\ y &= qth \ term \Rightarrow y = AR^{(q-1)} \\ and \ z &= rth \ term \Rightarrow z = AR^{(r-1)} \end{aligned}$$

L.H.S.

$$= \left\{ AR^{(p-1)} \right\}^{q-r} \cdot \left\{ AR^{(q-1)} \right\}^{r-p} \cdot \left\{ AR^{(r-1)} \right\}^{p-q}$$

 $= A^{(q-r)} R^{(p-1) (q-r)} A^{(r-p)} R^{(q-1) (r-p)} A^{(p-q)} R^{(r-1) (p-q)}$

 $= A^{(q-r+r-p+p-q)} R^{(p-1) (q-r) + (q-1) (r-p) + (r-1) (p-q)}$

If for a squence, $t_n = \frac{2^{n-2}}{5^{n-3}}$, show that the sequence is a

G.P. Find its first term and the common ratio.

- $= \mathbf{A}^{O} \mathbf{R}^{pq-pr-q+r+qr-pq-r+p+pr-qr-p+q}$

= R.H.S.

Example - 8

Sol. $t_n = \frac{2^{n-2}}{5^{n-3}}$

 $=\frac{2^{n}.2^{-2}}{5^{n}.5^{-3}}$

 $=\left(\frac{5^3}{2^2}\right)\left(\frac{2}{5}\right)^n$

 $=\frac{125}{4}\left(\frac{2}{5}\right)^n$

Let $t_{(n+1)} = \frac{125}{4} \left(\frac{2}{5}\right)^{n+1}$

Hence sequence is in GP

 $t_1 = a = \frac{125}{4} \times \frac{2}{5} = \frac{25}{2}$

Hence first term $=\frac{25}{2}$

and common ratio $=\frac{2}{5}$

 $\frac{t_{(n+1)}}{t_n} = \frac{\frac{125}{4} \left(\frac{2}{5}\right)^{n+1}}{\frac{125}{4} \left(\frac{2}{5}\right)^n} = \frac{2}{5} = \text{ constant}$

- $= A^{O} R^{O} = 1$

For a G.P.

- (i) If $a = 2, r = 3, S_n = 242$, find n.
- (ii) If $S_3 = 125$, $S_6 = 152$. find r.

Sol. (i) $a = 2, r = 3, S_n = 242$

$$S_{n} = a \left[\frac{r^{n} - 1}{r - 1} \right]$$
$$242 = 2 \left[\frac{3^{n} - 1}{3 - 1} \right]$$
$$242 = 3^{n} - 1$$
$$243 = 3^{n}$$
$$3^{5} = 3^{n}$$
$$n = 5$$

(ii) $S_3 = 125, S_6 = 152,$

$$S_3 = a \left[\frac{r^3 - 1}{r - 1} \right]$$
 and $S_6 = a \left[\frac{r^6 - 1}{r - 1} \right]$

$$\frac{S_6}{S_3} = \frac{a\left[\frac{r^6 - 1}{r - 1}\right]}{a\left[\frac{r^3 - 1}{r - 1}\right]} = \frac{r^6 - 1}{r^3 - 1}$$

 $\frac{152}{125} = \frac{r^6 - 1}{r^3 - 1}$

By dividendo

:.

$$\frac{152 - 125}{125} = \frac{r^6 - 1 - (r^3 - 1)}{r^3 - 1}$$
$$\frac{27}{125} = \frac{r^6 - 1 - r^3 + 1}{r^3 - 1} = \frac{r^3(r^3 - 1)}{(r^3 - 1)}$$
$$\left(\frac{3}{5}\right)^3 = r^3$$
$$r = \frac{3}{5}$$

Example - 10

Find the sum to n terms.

- (i) $0.9 + 0.99 + 0.999 + \dots$
- (ii) $0.5 + 0.55 + 0.555 + \dots$

Sol.
$$S_n = [0.9 + 0.99 + 0.999 +]$$

= $[(1-0.1) + (1-0.01) + (1-0.001)....]$
= $[(1+1+1+...) - (0.1 + 0.01 + 0.001 +)$
= $n - (\text{sum of n terms in GP with } a = 0.1 \text{ and } r = 0.1)$

$$S_{n} = n - \left[\frac{(0.1)(1-0.1^{n})}{1-0.1}\right]$$
$$= n - \left[\frac{0.1}{0.9}\left(1-\frac{1}{10^{n}}\right)\right]$$
$$= n - \frac{1}{9}\left[1-\left(\frac{1}{10^{n}}\right)\right]$$

(ii)
$$S_n = 0.5 + 0.55 + 0.555 +$$

 $= 5 (0.1 + 0.11 + 0.111 +)$
 $= \frac{5}{9} (0.9 + 0.99 + 0.999 +)$
 $= [0.9 + 0.99 + 0.999 +]$
 $= \frac{5}{9} [(1 - 0.1) + (1 - 0.01) + (1 - 0.001)....]$
 $= \frac{5}{9} [(1 + 1 + 1 + ...) - (0.1 + 0.01 + 0.001 + ...)]$
 $= \frac{5}{9} [n - \text{sum of n terms of GP with}]$
 $= \frac{5}{9} \left\{ n - \left[\frac{(0.1)(1 - 0.1^n)}{1 - 0.1} \right] \right\}$
 $= \frac{5}{9} \left\{ n - \left[\frac{(0.1)(1 - 0.1^n)}{1 - 0.1} \right] \right\}$
 $= \frac{5}{9} \left\{ n - \left[\frac{0.1}{0.9} \left(1 - \frac{1}{10^n} \right) \right] \right\}$

Determine whether the sum of infinity of the following G.P.s exist, in the case they exist then find the sum

(ii)
$$1, \frac{3}{2}, \frac{9}{4}, \frac{27}{8}$$
.....

(iii)
$$5, \frac{-5}{2}, \frac{5}{4}, \frac{-5}{8}, \frac{5}{16}$$
.....

Sol. (i) a = 1; r = 2

$$\mathbf{S}_{n} = \mathbf{a}\left(\frac{1-r^{n}}{1-r}\right)$$

$$1\left[\frac{1-(2)^{n}}{1-2}\right] = 1\left[\frac{1-(2)^{n}}{-1}\right]$$
$$S_{n} = [1-(2)^{n}]$$
$$r = 2 > 1$$

 \therefore The sum of infinity does not exist.

(ii)
$$a = 1; r = \frac{3}{2}$$

$$\therefore \qquad \mathbf{S}_{n} = \mathbf{a} \left(\frac{1 - \mathbf{r}^{n}}{1 - \mathbf{r}} \right)$$
$$\left[1 - \left(\frac{3}{2} \right)^{n} \right]$$

$$=1\left[\frac{1-\frac{3}{2}}{1-\frac{3}{2}}\right]$$

$$=1\left[\frac{1-\left(\frac{3}{2}\right)^{n}}{\frac{-1}{2}}\right]$$

$$\mathbf{S}_{n} = -2\left[1 - \left(\frac{3}{2}\right)^{n}\right]$$

$$\therefore \qquad S_n = 2\left(\frac{3}{2}\right)^n - 2$$

$$\therefore \quad r = \frac{3}{2} > 1$$

Sum of infinity does not exist.

(iii)
$$a = 5, r = \frac{\frac{-5}{2}}{5} = \frac{-1}{2}$$

 $S_n = a \left(\frac{1 - r^n}{1 - r}\right)$
 $= 5 \left[\frac{1 - \left(\frac{-1}{2}\right)^n}{1 - \left(\frac{-1}{2}\right)}\right]$

$$\therefore \qquad S_n = \frac{10}{3} \left[1 - \left(\frac{-1}{2}\right)^n \right]$$
$$|r| = \left|\frac{-1}{2}\right| < 1$$
$$\therefore \qquad S_n = \frac{10}{3} \left[1 - 0 \right] \left\{ \because \left(-\frac{1}{2}\right)^n \to 0 \right\}$$
$$S_n = \frac{10}{3}$$

 $\therefore \qquad \text{Sum of infinity is } \frac{10}{3} \text{ of G.P.}$

For a sequence, if $S_n = 7$ (4ⁿ-1), find t_n and show that the sequence is a G.P.

Sol.
$$S_n = 7 (4^n - 1)$$

 $t_n = S_n - S_{n-1} = 7 [4^n - 1] - 7 [4^{n-1} - 1]$
 $= 7(4^n) - 7 - 7 \frac{(4)^n}{4} + 7$
 $= 7 \times 4^n \left[1 - \frac{1}{4} \right]$
 $= 7 \times 4^n \times \frac{3}{4} = 21 [4^{n-1}]$
 $r = \frac{t_{n+1}}{t_n} = \frac{21 [4^{n+1-1}]}{21 [4^{n-1}]} = \frac{4^n}{4^{n-1}} = 4$

common ratio is constant. Hence the given sequence is GP.

Example - 13

Find S_n of the following arithmetic geometric sequence.

(i)
$$3, 6x, 9x^2, 12x^3, 15x^4$$
......
(ii) $1, 3x, 5x^2, 7x^3, 9x^4$

Sol. (i) In the given sequence AP is

$$\therefore \quad a = 3, d = 6 - 3 = 3$$

nth term will be
 $t_n = a + (n - 1) d$

 $t_n = 3 + (n-1) 3$ $t_n = 3n$ And, G.P. is 1, x, x², x³, x⁴,

$$\therefore \quad a=1, r=\frac{x}{1}=x$$

 \therefore nth term will be

$$t_n = ar^{n-1}$$

=(1)(x)ⁿ⁻¹

÷.

$$t^{n} = x^{n-1}$$

 $S_{n} = 3 + 6x + 9x^{2} + 12x^{3} \dots + 3(n-1) \cdot x^{n-2} + 3n \cdot x^{n-1}$

multiplying both the side x.

$$x.S_{n} = 3x + 6x^{2} + 9x^{3} + 12x^{4} \dots + 3(n-1)x^{n-1} + 3n.x^{n} \dots (ii)$$

..... (i)

Subtracting (ii) from (i)
∴ S_n-x S_n = (3 + 6 x + 9x² + 12x³... + 3 (n-1) xⁿ⁻² + 3(n) xⁿ⁻¹)
-(3x + 6x² + 9x³ + 12x⁴ + ... + 3 (n-1) xⁿ⁻¹ + 3nxⁿ),
⇒ (1-x) S_n = 3 + 3x + 3x² + 9x³... + 3xⁿ⁻¹ - 3nxⁿ
= 3 + 3x [1 + x + x² + x³... + xⁿ⁻²] - 3nxⁿ
= 3 + 3x [1 +
$$\frac{x}{x-1}$$
 (xⁿ⁻² - 1)] - 3nxⁿ
= 3 + 3x [1 + $\frac{x}{x-1}$ (xⁿ⁻² - 1)] - 3nxⁿ
(1-x) S_n = 3 + 3x + $\frac{3x^n}{x-1}$ - $\frac{3x^2}{x-1}$ - 3nxⁿ
(1-x) S_n = 3 + 3x + $\frac{3x^n}{x-1}$ - $\frac{3x^2}{x-1}$ - 3nxⁿ
S_n = $\frac{3}{1-x}$ [(1 + x) + $\frac{x^n - x^2}{x-1}$ - nxⁿ]
∴ S_n = $\frac{3}{1-x}$ [(1 + x) + $\frac{x^n - x^2}{x-1}$ - nxⁿ]
(ii) 1, 3x, 5x², 7x³, 9x⁴.......
In the given sequence A.P. will be
1, 3, 5, 7, 9......
∴ a = 1, d = 2
∴ t_n = a + (n-1) d
= 1 + 2n - 2
= 2n - 1
In the given sequence GP will be
∴ 1, x, x², x³.....
∴ a = 1, r = x
∴ t_n = aⁿ⁻¹
t_n = xⁿ⁻¹
∴ S_n = 1 + 3x + 5x² + 7x³..... + (2n - 3), xⁿ⁻² + (2n - 1) xⁿ⁻¹
....(i)
multiplying both the side by x.
∴ x S_n = x + 3x² + 5x³ + 7x⁴...... + (2n - 3), xⁿ⁻² + (2n - 1)xⁿ
....(ii)
subtracting (ii) from (i)
∴ S_n -x S_n = [(1 + 3x + 5x² + 7x³..... + (2n - 3), xⁿ⁻² + (2n - 1)xⁿ
= 1 + [2 (x + x² + x³ +xⁿ]] - (2n - 1)xⁿ

$$= 1 + \left[2 \cdot \frac{x}{x-1} \left\{x^{n-1} - 1\right\}\right] - (2n-1) x^{n}$$

$$= 1 + \frac{2x^{n}}{x-1} - \frac{2x}{x-1} - (2n-1) x^{n}$$

$$= 1 + \frac{2x^{n} - 2x}{x-1} - (2n-1) x^{n}$$

$$= 1 + \frac{2x(x^{n-1} - 1)}{x-1} - (2n-1) x^{n}$$

$$\therefore \qquad S_{n} = \frac{1}{1-x} \left[1 - (2n-1) x^{n} + \frac{2x(x^{n-1} - 1)}{(x-1)}\right]$$

Find the sum of $1 + (1 + x) + (1 + x + x^2) + + (1 + x + x^2 + ... + x^{n-1})$ Sol. $S_n = 1 + (1 + x) + (1 + x + x^2) + ... + (1 + x + x^2 + ... + x^{n-1})$ $T_r = 1 + x + x^2 + ... x^{r-1}$

This is GP with first term 1 and common ratio 'x'

$$\therefore \quad T_{r} = \frac{l\left[1 - x^{r}\right]}{1 - x}$$

$$S_{n} = \sum_{r=1}^{n} \frac{1 - x^{r}}{1 - x} = \frac{1}{1 - x} \sum_{r=1}^{n} 1 - \frac{1}{1 - x} \sum_{r=1}^{n} x^{r}$$

$$= \frac{1}{1 - x} (n) - \frac{1}{1 - x} \left[\frac{x(1 - x^{n})}{1 - x} \right]$$

$$= \frac{n}{1 - x} - \frac{x(1 - x^{n})}{(1 - x)^{2}}$$

Example - 15

Find the following sum

1.2.3 + 2.3.4 + 3.4.5 +....+ n(n+1) (n+2) Sol. Tr₁ = 1, 2, 3 = 1 + (r-1) 1 = r Tr₂ = 2, 3, 4 = 2 + (r-1) 1 = r + 1 Tr₃ = 3, 4, 5 = 3 + (r-1) 1 = r + 2 ∴ 1.2.3 + 2.3.4 + 3.4.5 +n terms $= \sum_{r=1}^{n} Tr_1 \cdot Tr_2 \cdot Tr_3 = \sum_{r=1}^{n} (r (r+1) \cdot (r+2))$ $= \sum_{r=1}^{n} r^3 + \sum_{r=1}^{n} 3r^2 + \sum_{r=1}^{n} 2r$ $= \frac{n^2(n+1)^2}{4} + \frac{3n(n+1)(2n+1)}{6} + \frac{2n(n+1)}{2}$ $= \frac{n(n+1)}{2} \left[\frac{n(n+1)}{2} + (2n+1) + 2 \right]$ $= \frac{n(n+1)}{2} \left[\frac{n(n+1) + 4n + 6}{2} \right]$ $= \frac{n(n+1)}{2} \left[\frac{n^2 + 5n + 6}{2} \right]$ $= \frac{n(n+1)(n+2)(n+3)}{4}$

EXERCISE - 1 : BASIC OBJECTIVE QUESTIONS

Arithmetic Progression

- 1. nth term of the sequence
 - a, a + d, a + 2d, is

(a) n + nd (b) a + (n-1) d

- (c) a + (n+1) d (d) none of these
- 2. Let T_r be the rth term of an A.P., for $r = 1, 2, 3, \dots$ If for some

positive integers m, n. We have $T_m = \frac{1}{n}$ and $T_n = \frac{1}{m}$, then T_{mn} equals :

(a)
$$\frac{1}{mn}$$
 (b) $\frac{1}{m} + \frac{1}{n}$
(c) 1 (d) 0

3. Which of the following sequences is an A.P. with common difference 3 ?

(a) $a_n = 2n^2 + 3n, n \in N$ (b) $a_n = 3n + 5, n \in N$ (c) $a_n = 3n^2 + 1, n \in N$ (d) $a_n = 2n^2 + 3, n \in N$

4. If $a_1, a_2, a_3, ..., a_{n+1}$ are in A.P., then

$$\frac{1}{a_{1}a_{2}} + \frac{1}{a_{2}a_{3}} \dots \frac{1}{a_{n}a_{n+1}}, \text{ is}$$
(a) $\frac{n-1}{a_{1}a_{n+1}}$
(b) $\frac{1}{a_{1}a_{n+1}}$
(c) $\frac{n+1}{a_{1}a_{n+1}}$
(d) $\frac{n}{a_{1}a_{n+1}}$

5. If $\log 2$, $\log (2^x - 1)$ and $\log (2^x + 3)$ are in AP, then the value of x is given by

(a) 5/2	(b) $\log_2 5$
(c) $\log_3 5$	(d) $\log_5 3$

- 6. If $\frac{b+c-a}{a}$, $\frac{c+a-b}{b}$, $\frac{a+b-c}{c}$ are in A.P. then which of the following is in A.P.
 - (a) a, b, c (b) a^2 , b^2 , c^2

(c)
$$\frac{1}{a}$$
, $\frac{1}{b}$, $\frac{1}{c}$ (d) none of these

Sum of terms in AP

- Three numbers are in A.P, such that their sum is 18 and sum 7. of their squares is 158. the greatest among them is (a) 10 (b)11 (c) 12 (d) None of these 8. If roots of the equation $x^3 - 12x^2 + 39x - 28 = 0$ are in AP, then its common difference is (a) ± 1 (b) ± 2 (c) ± 3 $(d) \pm 4$ The sum of first ten terms of an AP is four times the sum of 9. its first five terms, then ratio of first term and common difference is (a) 2 (b) 1/2(c) 4 (d) 1/410. The sum of all odd numbers of two digits is (b)2475 (a) 2530 (c) 4905 (d) none of these 11. Sum of first n odd natural numbers is (a) 2n + 1(b) n^2 (c) 2n - 1(d) none of these 12. The sum of numbers lying between 10 and 200 which are divisible by 7 will be: (a) 2800 (b)2835 (c) 2870 (d)2849 13. The sum of integers in between 1 and 100 which are divisible by 2 or 5 is (a) 3100 (b)3600 (c) 3050 (d)3500 14. If $\frac{3+5+7+...+n \text{ terms}}{5+8+11+...+10 \text{ terms}} = 7$, then the value of n is (a) 35 (b) 36 (c) 37 (d)4015. If for an A.P. $T_3 = 18$ and $T_7 = 30$ then S_{17} is equal to (a) 612 (b) 622
 - (d) none of these

(c) 306

16. If $S_n = n P + \frac{n(n-1)}{2}Q$, where S_n denotes the sum of the first n terms of an A.P., then the common difference is (a) P+Q (b) 2P+3Q (c) 2Q (d) Q

17. Let S_n denote the sum of first n terms of an A.P. If $S_{2n} = 3 S_n$ then the ratio S_{3n}/S_n is equal to

(a) 4	(b) 6
(c) 8	(d) 10

18. If a_1, a_2, a_3 , is an A.P such that

$$a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$$
,

then $a_1 + a_2 + a_3 + \dots + a_{23} + a_{24}$ is equal to

(a) 909	(b) 75
(c) 750	(d) 900

19. The first, second and middle term of an AP are a, b, c respectively. Sum of all terms is

(a)
$$\frac{2(c-a)}{b-a}$$
 (b) $\frac{2c(c-a)}{b-a} + c$

(c)
$$\frac{2c(b-a)}{c-a}$$
 (d) $\frac{2b(c-a)}{b-a}$

20. The sum of the series

a - (a + d) + (a + 2d) - (a + d)	$(-3d) + \dots$ upto $(2n+1)$ terms is
(a) - nd	(b) $a + 2 nd$
(c) $a + nd$	(d) 2nd

21. The sum of first n (odd) terms of an A.P. whose middle term is m is

(a) mn	$(b) m^n$
(c) n^m	(d) none of these

22. If the sum of first *p* terms, first *q* terms and first r terms of an A.P. be *x*, *y* and *z* respectively, then

$$\frac{x}{p}(q-r) + \frac{y}{q}(r-p) + \frac{z}{r}(p-q)$$
 is
(a) 0 (b) 2

(c)
$$pqr$$
 (d) $\frac{8xyz}{pqr}$

23. If A_1, A_2 are two AM's between two numbers a and b, then $(2A_1 - A_2) (2A_2 - A_1)$ is equal to

(a) a + b	(b) $\frac{ab}{a+b}$
(c) ab	(d) none of these

Geometric progression

24. If a, b, c are in G.P. and $a^{1/x} = b^{1/y} = c^{1/z}$ then x, y, z are in

(a) A.P.	(b) GP.
(c) H.P.	(d) none of these

25. If x, 2x + 2 and 3x + 3 are first three terms of a G.P., then its 4^{th} term is

(a) 27	(b)-27
(c) - 27/2	(d) 27/2

26. If first, second and eighth terms of a G.P. are respectively n^{-4} , n^n , n^{52} , then the value of n is

(a) 1	(b) 10	
(c) 4	(d) none of these	

27. If a_1, a_2, a_3 ($a_1 > 0$) are three successive terms of a G.P. with

common ratio r, the value of r for which $a_3 > 4a_2 - 3a_1$ holds is given by

(a)
$$1 < r < 3$$
 (b) $-3 < r < -1$
(c) $r > 3$ or $r < 1$ (d) None of these

28. If the first and the nth terms of a G.P. are a and b respectively and P is the product of the first n terms, then $P^2 =$

(a) ab	$(b)(ab)^n$		
(c) $(ab)^{n/2}$	$(d) (ab)^{2n}$		

29. The fourth, seventh and tenth terms of a G.P. are p, q, r respectively, then

(a)
$$p^2 = q^2 + r^2$$
 (b) $q^2 = pr$
(c) $p^2 = qr$ (d) $pqr + pq + 1 = 0$

30. The product of first n (odd) terms of a G.P. whose middle term is m is

(a) mn	$(b) m^n$
--------	-----------

(c) n^m (d) none of these

31.	Three numbers form an increasing GP. If the middle number is doubled, then the new numbers are in AP. The common ratio of the GP is			If the sum of an infinitely the squares of its terms terms is
	(a) $2 - \sqrt{3}$	(b) $2 + \sqrt{3}$		(a) 105/13
	(c) $\sqrt{3} - 2$	(d) $3 + \sqrt{2}$		(c) 729/8
32.	If a, b, c, d are in G.P. then	$a^n + b^n$, $b^n + c^n$, $c^n + d^n$ are in	40. If the sum of first	If the sum of first two te
	(a) A.P.	(b) GP.		first term is
	(c) H.P.	(d) none of these		(a) 1/3
33.	If a, b, c, d are in G.F. $(c^3 + d^3)^{-1}$ are in	P., then $(a^3 + b^3)^{-1}$, $(b^3 + c^3)^{-1}$,		(c) 1/4
	(a) A.P.	(b) GP.	41.	The value of 0.423 is
	(c) H.P.	(d) none of these		410
Sum	of terms in GP			(a) $\frac{419}{999}$
34.	The sum of first n terms of	of the series.		422
	$1 - 1 + 1 - 1 + \dots$ is			(c) $\frac{423}{100}$
	(a) 1 if n is odd and 0 when n is even			
	(b)-1		Geo	metric mean
	$(c)(-1)^{n}$	$(d) \pm 1$	42.	If 4 GM's be inserted be
35.	The n th term of a GP is 128 and the sum of its n terms is 255.			be
	If its common ratio is 2 then its first term is			(a) 8
	(a) 1	(b)3		(c) 20
26	(c) 8	(d) none of these	43.	If g_1 , g_2 are two G.M's b
30.	times the sum of odd term	ns. The common ratio of the GP is		$\frac{g_1^2}{g_2} + \frac{g_2^2}{g_1}$ is equal to
	4	1		02 01

(a) $-\frac{4}{5}$ (b) $\frac{1}{5}$ (d) None of these (c) 4

37. If $S = 1 + a + a^2 + \dots$ to ∞ (a < 1), then the value of a is

(a)
$$\frac{S}{S-1}$$
 (b) $\frac{S}{1-S}$

- (c) $\frac{S-1}{S}$ (d) $\frac{1-S}{S}$
- **38.** The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 192. The common ratio of the original G.P. is
 - (a) 1/2 (b) 2/3
 - (c) 1/3(d) - 1/2

39. If the sum of an infinitely decreasing GP is 3, and the sum of is 9/2, the sum of the cubes of the

(a) 105/13	(b) 108/13
(c) 729/8	(d) none of these

erms of an infinite GP is 1 and every of all the successive terms, then its

(a) 1/3	(b) 2/3
(c) 1/4	(d) 3/4

(b) $\frac{423}{999}$

- (d) none
- tween 160 and 5, then third GM will

(a) 8	(b) 118
(c) 20	(d) 40

between two numbers a and b, then

$$\frac{g_1^2}{g_2} + \frac{g_2^2}{g_1}$$
 is equal to
(a) a + b (b) ab
(c) $\frac{a+b}{ab}$ (d) none of these

44. If A_1, A_2 be two AM's and G_1, G_2 be two GM's between two

numbers a and b, then
$$\frac{A_1 + A_2}{G_1 G_2}$$
 is equal to

(a)
$$\frac{a+b}{2ab}$$
 (b) $\frac{2ab}{a+b}$

(c)
$$\frac{a+b}{ab}$$
 (d) $\frac{ab}{a+b}$

Harmonic Progression

45. The fourth term of the sequence $3, \frac{3}{2}, 1, \dots$ is

(a)
$$\frac{3}{4}$$
 (b) $\frac{4}{3}$
(c) $\frac{2}{3}$ (d) none of these

46. Let the positive numbers a,b,c,d be in A.P. Then, abc, abd, acd, bcd are

(a) not in A.P./G.P./H.P.	(b) in A.P.
(c) in G.P.	(d) in H.P.

47. If $a_1, a_2, a_3, \dots, a_n$ are in H.P. then

$$\frac{a_1}{a_2+a_3+\ldots+a_n}, \frac{a_2}{a_1+a_3+\ldots+a_n}, \frac{a_3}{a_1+a_2+a_4+\ldots+a_n},$$

.....,
$$\frac{a_n}{a_1 + a_2 + + a_n}$$
 are in

(a) A.P.	(b) GP.
(c) H.P.	(d)A.G.P.

Arithmetico-geometric Progression

48. The sum to n terms of the series

$$1 + 2\left(1 + \frac{1}{n}\right) + 3\left(1 + \frac{1}{n}\right)^2 + \dots$$
 is given by

(a)
$$n^2$$
 (b) $n(n+1)$

(c)
$$n(1+1/n)^2$$
 (d) none of these

49. $1 + 2.2 + 3.2^2 + 4.2^3 + \dots + 100.2^{99}$ equals

(a)
$$99.2^{100}$$
 (b) 100.2^{100}

(c)
$$1 + 99.2^{100}$$
 (d) none of these

50. Sum of infinite terms of series $3 + 5 \cdot \frac{1}{4} + 7 \cdot \frac{1}{4^2} + \dots$ is

(a) 33/4	(b) 11/4
(a) 33/4	(b) 11/4

(c)
$$44/9$$
 (d) $44/8$

51. The sum of the series

1+3x+6x²+10x³+.....∞ is (where |x|<1)
(a)
$$\frac{1}{(1-x)^2}$$
 (b) $\frac{1}{1-x}$

(c)
$$\frac{1}{(1+x)^2}$$
 (d) $\frac{1}{(1-x)^3}$

Summation of Series

52. Sum of n term of series $1.3 + 3.5 + 5.7 + \dots$ is

(a)
$$\frac{1}{3}(n(n+1)(2n+1))+n$$

(b) $\frac{2}{3}(n(n+1)(2n+1))-n$

(c)
$$\frac{2}{3}(n(n-1)(2n-1))-n$$

(d) none of these

- 53. If $1 + 2 + 3 + \dots + n = 45$, then $1^3 + 2^3 + 3^3 + \dots + n^3$ is (a) $(45)^2$ (b) $(45)^3$ (c) $(45)^2 + 45$ (d) none of these
- **54.** The sum of series $1.3^2 + 2.5^2 + 3.7^2 + \dots$ up to 20 terms is (a) 188090 (b) 189080 (c) 199080 (d) None
- **55.** Sum of the series $4 + 6 + 9 + 13 + 18 + \dots n$ terms, is

(a)
$$\frac{n}{6} (n^2 + 3n + 20)$$
 (b) $n^2 + 3n + 20$
(c) $\frac{n}{3} (n^2 + 3n + 20)$ (d) None of these

- 56. Sum of the series $1 + 4 + 13 + 40 + 121 + \dots 16$ terms, is (a) $(3^{17} - 35)/4$ (b) $3^{17} - 35$ (c) $(3^{17} - 33)/2$ (d) $(3^{17} - 32)/4$
- 57. The sum to n terms of the series $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots$ is

(a)
$$\frac{1}{2n+1}$$
 (b) $\frac{2n}{2n+1}$

(c)
$$\frac{n}{2n+1}$$
 (d) $\frac{2n}{n+1}$

58. If
$$t_n = \frac{1}{4} (n+2) (n+3)$$
 for $n = 1, 2, 3, \dots$, then

$$\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + \dots + \frac{1}{t_{2003}} =$$
(a) $\frac{4006}{3006}$ (b) $\frac{4003}{3007}$

(c)
$$\frac{4000}{3008}$$
 (d) $\frac{4000}{3009}$

59. The sum to n terms of the series

$$\frac{3}{1^{2}} + \frac{5}{1^{2} + 2^{2}} + \frac{7}{1^{2} + 2^{2} + 3^{2}} + \dots, \text{ is}$$
(a) $\frac{6n}{n+1}$
(b) $\frac{9n}{n+1}$
(c) $\frac{12n}{n+1}$
(d) $\frac{3n}{n+1}$

Numerical Value Type Questions

- **60.** If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
- **61.** If a_n be the nth term of an AP and if $a_7 = 15$, then the value of the common difference that would make $a_2a_7a_{12}$ greatest is
- **62.** The 10th common term between the two arithmetic progressions 3, 7, 11, 15 and 1, 6, 11, 16 is
- 63. If (x + 1), 3x and (4x + 2) are first three terms of an AP then its 5th term is
- **64.** If first term of an AP is 5, last term is 45 and the sum of the 'n' terms is 400, then the number of terms are
- 65. The value of n, for which $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is A.M. between a and b is
- **66.** Six arithmetic means are inserted between 1 and 9/2, the 4th arithmetic mean is

- 67. nAM's are inserted between 2 and 38. If third AM is 14 then n is equal to
- **68.** Let $a_1, a_2, a_3, \dots, a_n$ be a GP such that $\frac{a_4}{a_6} = \frac{1}{4}$ and

 $a_2 + a_5 = 216$. Then integral value of a_1 is

- **69.** The second, third and sixth terms of an A.P. are consecutive terms of a G.P. The common ratio of the G.P. is
- 70. If p^{th} , q^{th} and r^{th} terms of an A.P. are equal to corresponding terms of a G.P. and these terms are respectively x, y, z, then $x^{y-z} \cdot y^{z-x} \cdot z^{x-y}$ equals
- 71. If the sum of first 6 terms of a G.P. is nine times of the sum of its first three terms, then its common ratio is
- 72. The value of $9^{1/3} \cdot 9^{1/9} \cdot 9^{1/27}$ to ∞ , is
- **73.** If rth term of a series is (2r + 1) 2^{-r}, then sum of its infinite terms is
- 74. If $3 + \frac{1}{4}(3+d) + \frac{1}{4^2}(3+2d) + \dots$ to $\infty = 8$, then the value of d is
- **75.** 9th term of the sequence

1, 1, 2, 3, 5, is

- 76. The sum of all numbers between 100 and 10,000 which are of the form n^3 ($n \in N$) is equal to
- 77. Sum of the series $3 + 7 + 14 + 24 + 37 + \dots 10$ terms, is
- 78. The limiting value of the sum to n terms of the series

$$\frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \frac{7}{3^2 \cdot 4^2} + \dots \text{ as } n \to \infty \text{ is}$$

79. If the value of

$$\left(1+\frac{2}{3}+\frac{6}{3^2}+\frac{10}{3^3}+\dots,upto\infty\right)^{\log_{(0,25)}\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\dots,upto\infty\right)}$$
 is,

then I^2 is equal to ____?

80. The mean of 10 numbers $7 \times 8, 10 \times 10, 13 \times 12, 16 \times 14, \dots$ is _____?

EXERCISE - 2 : PREVIOUS YEAR JEE MAIN QUESTIONS

(2015/Online Set-2)

8.

9.

11.

1. The sum of first 9 terms of the series

$$\frac{1^{3}}{1} + \frac{1^{3} + 2^{3}}{1 + 3} + \frac{1^{3} + 2^{3} + 3^{3}}{1 + 3 + 5} + \dots \text{ is}$$
(2015)
(a) 142 (b) 192
(c) 71 (d) 96

2. If m is the A.M. of two distinct real number l and n (l, n > 1) and G₁, G₂ and G₃ are three geometric means between l and n, then G₁⁴ + 2G₂⁴ + G₃⁴ equals. (2015)

(a) 4 l mn ²	(b) $4 l^2 m^2 n^2$
(c) 4 l^2 mn	(d) 4 lm^2n

3. The sum of the 3rd and the 4th term of a G.P. is 60 and the product of its first three terms is 1000. If the first term of this G.P. is positive, then its 7th term is :

(a) 7290	(b) 640
(c) 2430	(d) 320

4. If the 2nd, 5th and 9th terms of a non-constant A.P. are in G.P, then the common ratio of this G.P. is : (2016)

(a)
$$\frac{4}{3}$$
 (b) 1

(c) $\frac{7}{4}$

5. If the sum of the first ten terms of the series

(d) $\frac{8}{5}$

$$\left(1\frac{3}{5}\right)^2 + \left(2\frac{2}{5}\right)^2 + \left(3\frac{1}{5}\right)^2 + 4^2 + \left(4\frac{4}{5}\right) + \dots, \text{ is}$$

 $\frac{16}{5}m$, then m is equal to :
 (2016)

 (a) 101
 (b) 100

 (c) 99
 (d) 102

6. Let x, y, z be positive real numbers such that x+y+z=12 and $x^3y^4z^5=(0.1) (600)^3$. Then $x^3+y^3+z^3$ is equal to : (2016/Online Set-1) (a) 270 (b) 258

(c) 342	(d)216
---------	--------

7. Let $a_1, a_2, a_3, \dots, a_n$ be in A.P.

If $a_3 + a_7 + a_{11} + a_{15} = 72$, then the sum of its first 17 terms	
is equal to :	(2016/Online Set–2)
(a) 306	(b) 153
(c)612	(d) 204
F 1	

For any three positive real numbers

a, b and c, $9(25a^2 + b^2) + 25(c^2 - 3ac) = 15b(3a + c)$. Then: (2017)

- (a) b, c and a are in G.P
 (b) b, c and a are in A. P
 (c) a, b and c are in A.P
 (d) a, b and c are in G.P
- If the arithmetic mean of two numbers a and b, a > b > 0, is

five times their geometric mean, then $\frac{a+b}{a-b}$ is equal to :

(a)
$$\frac{\sqrt{6}}{2}$$
 (b) $\frac{3\sqrt{2}}{4}$

(c)
$$\frac{7\sqrt{3}}{12}$$
 (d) $\frac{5\sqrt{6}}{12}$

10. If the sum of the first n terms of the series $\sqrt{3} + \sqrt{75} + \sqrt{243} + \sqrt{507} + \dots$ is $435\sqrt{3}$, then n equal : (2017/Online Set-1)

(a) 18	(b) 15
(c) 13	(d) 29

If three positive numbers a, b and c are in A.P. such that abc = 8, then the minimum possible value of b is :

(2017/Online Set-2)

- (a) 2 (b) $4^{\frac{1}{3}}$
- (c) $4^{\frac{2}{3}}$ (d) 4

 $\dots + \frac{1+2+\dots+n}{1^3+2^3+\dots+n^3}$. If 100 S_n = n, then n is equal (2017/Online Set-2) to :

(a) 199 (b)99

(c) 200 (d) 19

13. Let $a_1, a_2, a_3, \dots, a_{49}$ be in A.P. such that

$$\sum_{k=0}^{12} a_{4k+1} = 416 \text{ and } a_9 + a_{43} = 66.$$

If $a_1^2 + a_2^2 + \dots + a_{17}^2 = 140$ m, then m is equal to :

19.

14. If
$$x_1, x_2, ..., x_n$$
 and $\frac{1}{h_1}, \frac{1}{h_2}, ..., \frac{1}{h_n}$ are two A.P.s such that

 $x_3 = h_2 = 8$ and $x_8 = h_7 = 20$, then x_5h_{10} equals :

(2018/Online Set-1)

(a) 2560	(b)2650
(c) 3200	(d) 1600

15. If b is the first term of an infinite G.P. whose sum is five, then b lies in the interval : (2018/Online Set-1)

(a)
$$(-\infty, -10]$$
(b) $(-10, 0)$ (c) $(0, 10)$ (d) $[10, \infty)$

If a, b, c are in A.P. and a^2 , b^2 , c^2 are in G.P. such that 16.

a < b < c and $a + b + c = \frac{3}{4}$, then the value of a is :

(2018/Online Set-2)

(a)
$$\frac{1}{4} - \frac{1}{2\sqrt{2}}$$
 (b) $\frac{1}{4} - \frac{1}{3\sqrt{2}}$

(c)
$$\frac{1}{4} - \frac{1}{2\sqrt{2}}$$
 (d) $\frac{1}{4} - \frac{1}{\sqrt{2}}$

 $A_n = \left(\frac{3}{4}\right) - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 - \dots + \left(-1\right)^{n-1} \left(\frac{3}{4}\right)^n$ and Let 17.

 $B_n = 1 - A_n$. Then, the least odd natural number p, so that $B_n > A_n$, for all $n \ge p$, is: (2018/Online Set-2) (a) 9 (b)7 (c)11 (d) 5

Let $\frac{1}{x_1}, \frac{1}{x_2}, ..., \frac{1}{x_n} (x_i \neq 0, \text{ for } i = 1, 2, ..., n)$ be in A.P. 18. such that $x_1 = 4$ and $x_{21} = 20$. If n is the least positive integer for which $x_n > 50$, then $\sum_{i=1}^{n} \left(\frac{1}{x_i}\right)$ is equal to :

(2018/Online Set-3)

(a)
$$\frac{1}{8}$$
 (b) 3

(c)
$$\frac{13}{8}$$
 (d) $\frac{13}{4}$

The sum of the first 20 terms of the series $1 + \frac{3}{2} + \frac{7}{4} + \frac{15}{8} + \frac{31}{16} + \dots$, is (2018/Online Set-3)

(a)
$$38 + \frac{1}{2^{19}}$$
 (b) $38 + \frac{1}{2^{20}}$

(c)
$$39 + \frac{1}{2^{20}}$$
 (d) $39 + \frac{1}{2^{19}}$

If three distinct numbers a, b, c are in G.P. and the equations 20. $ax^2 + 2bx + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root, then which one of the following statements is correct?

(8-04-2019/Shift-2)

(a)
$$\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$$
 are in A.P. (b) d, e, f are in A.P.
(c) d, e, f are in G.P. (d) are in G.P.

The sum $\sum_{k=1}^{20} k \frac{1}{2^k}$ is equal to : (8-04-2019/Shift-2) 21.

(a)
$$2 - \frac{3}{2^{17}}$$
 (b) $1 - \frac{11}{2^{20}}$

(c)
$$2 - \frac{11}{2^{19}}$$
 (d) $2 - \frac{21}{2^{20}}$

22. Let the sum of the first n terms of a non-com		terms of a non-constant A.P.,
	a_1, a_2, a_3, \dots be $50n + \frac{n(n)}{2}$	$\frac{-7}{2}$ A, where A is a constant.
	If d is the common differen	nce of this A.P., then the ordered
	pair (d, a_{50}) is equal to: (9-04-2019/8)	
	(a) (50,50+46A)	(b) (50,50+45A)
	(c)(A, 50+45A)	(d)(A, 50+46A)
23.	If the sum and product of are 33 and 1155, respective	the first three terms in an A.P. ely, then a value of its 11^{th} terms

is: (9-04-2019/Shift-2) (b) 25 (a) -35

> (c)-36 (d)-25

- The sum of the series $1 + 2 \times 3 + 3 \times 5 + 4 \times 7 + \dots$ up to 11^{th} 24. (9-04-2019/Shift-2) terms is: (a)915 (b)946 (c)945 (d)916
- If a_1, a_2, a_3, \dots are in A.P. and $a_1 + a_4 + a_7 + \dots + a_{16} = 114$, 25. then $a_1 + a_6 + a_{11} + a_{16}$ is equal to: (10-04-2019/Shift-1)

26. The sum
$$\frac{3 \times 1^3}{1^2} + \frac{5 \times (1^3 + 2^3)}{1^2 + 2^2} + \frac{7 \times (1^3 + 2^3 + 3^3)}{1^2 + 2^2 + 3^2} + \dots$$

upto 10th term, is:

27. The sum
$$1 + \frac{1^3 + 2^3}{1 + 2} + \frac{1^3 + 2^3 + 3^3}{1 + 2 + 3} + \dots +$$

 $\frac{1^3 + 2^3 + 3^3 + \dots + 15^3}{1 + 2 + 3 + \dots + 15} - \frac{1}{2} (1 + 2 + 3 + \dots + 15)$ is equal to :

28. Let a, b and c be in G.P. with common ratio r, where $a \neq 0$

and $0 < r \le \frac{1}{2}$. If 3a, 7b and 15c are the first three terms of an A.P., then the 4th terms of this A.P. is:

(a)
$$\frac{2}{3}a$$
 (b) 5a

(c)
$$\frac{7}{3}a$$
 (d) a

29. Let S_n denote the sum of the first n terms of an A.P. If $S_4 = 16$ and $S_6 = -48$, then S_{10} is equal to

(12-04-2019/Shift-1)

If a_1, a_2, a_3, \dots are in A.P. such that $a_1 + a_7 + a_{16} = 40$, 30. then the sum of the first 15 terms of this A.P. is _____.

(12-04-2019/Shift-2)

(a) 200	(b) 280
(c) 120	(d) 150

31. If a, b and c be three distinct real numbers in G.P. and a + b + c = xb, then sum of all the integral values of x which don't satisfy the above equation is:

(9-01-2019/Shift-1)

32. Let
$$a_1, a_2, \dots, a_{30}$$
 be an A.P.,

$$S = \sum_{i=1}^{30} a_i$$
 and $T = \sum_{i=1}^{15} a_{(2i-1)}$

If $a_5 = 27$ and S - 2T = 75, then a_{10} is equal to:

(9-01-2019/Shift-1)

The sum of the following series 33.

$$1+6+\frac{9 \left(1^2+2^2+3^2\right)}{7}+\frac{12 \left(1^2+2^2+3^2+4^2\right)}{9}$$

$$+\frac{15(1^2+2^2+...+5^2)}{11}+.... \text{ up to 15 terms, is:}$$

(9-01-2019/Shift-2)

(a) 7520	(b) 7510
(c) 7830	(d) 7820

Let a, b and c be the 7th, 11th and 13th terms respectively 34. of a non-constant A.P. If these are also the three

consecutive terms of a GP., then
$$\frac{a}{c}$$
 is equal to

(b) $\frac{1}{2}$ (a) 2

(c)
$$\frac{7}{13}$$
 (d) 4

35. The sum of all two digit positive numbers which when divided by 7 yield 2 or 5 as remainder is:

(10-1-2019/Shift-1)

(b) 1465 (a) 1256

36. The sum of an infinite geometric series with positive terms is 3 and the sum of the cubes of its terms is $\frac{27}{19}$. Then the common ratio of this series is : (11-01-2019/Shift-1)

(a)
$$\frac{1}{3}$$
 (b) $\frac{2}{3}$

(c)
$$\frac{2}{9}$$
 (d) $\frac{4}{9}$

37. Let
$$a_1, a_2, \dots, a_{10}$$
 be a G.P. If $\frac{a_3}{a_1} = 25$, then $\frac{a_9}{a_5}$ equals :

(11-01-2019/Shift-1)

- (a) 5^4 $(b) 4(5^2)$ (c) 5^3 $(d) 2(5^2)$
- 38. Let x, y be positive real numbers and m, n positive integers. The maximum value of the expression

$$\frac{x^m y^n}{(1+x^{2m})(1+y^{2n})}$$
 is: (11-01-2019/Shift-2)

(a) 1 (b)
$$\frac{1}{2}$$

(c)
$$\frac{1}{4}$$
 (d) $\frac{m+n}{6mn}$

39. Let α and β be the roots of the quadratic equation $x^2 \sin \theta - x (\sin \theta \cos \theta + 1) + \cos \theta = 0 (0 < \theta < 45^\circ)$, and

$$\alpha < \beta. \text{ Then } \sum_{n=0}^{\infty} \left(\alpha^n + \frac{(-1)^n}{\beta^n} \right) \text{ is equal to : } (11-01-2019)$$
(a) $\frac{1}{1-\cos\theta} - \frac{1}{1+\sin\theta}$ (b) $\frac{1}{1+\cos\theta} - \frac{1}{1-\sin\theta}$
(c) $\frac{1}{1-\cos\theta} + \frac{1}{1+\sin\theta}$ (d) $\frac{1}{1+\cos\theta} - \frac{1}{1-\sin\theta}$

- 40. If 19th term of a non-zero A.P. is zero, then its (49th term): (11-01-2019/Shift-2) (29th term) is :
 - (a) 4 : 1 (b) 1 : 3 (c) 3 : 1 (d) 2 : 1
- 41. The product of three consecutive terms of a G.P. is 512. If 4 is added to each of the first and the second of these terms, the three terms now form an AP. Then the sum of the original three terms of the given G.P. is :

(12-01-2019/Shift-1)

42. Let
$$S_k = \frac{1+2+3+\ldots+k}{k}$$
. If $S_1^2 + S_2^2 + \ldots + S_{10}^2 = \frac{5}{12}$ A,
Then A is equal to (12-01-2019/Shift-1)

If $\sin^4 \alpha + 4\cos^4 \beta + 2 = 4\sqrt{2} \sin \alpha \cos \beta$; 43.

$$\alpha, \beta \in [0, \pi]$$
 then $\cos(\alpha + \beta) - \cos(\alpha - \beta)$ is equal to

(c)
$$\sqrt{2}$$
 (d) $-\sqrt{2}$

44. If the sum of the first 15 terms of the series

 $\left(\frac{3}{4}\right)^2 + \left(1\frac{1}{2}\right)^3 + \left(2\frac{1}{4}\right)^3 + 3^3 + \left(3\frac{3}{4}\right)^3 + \dots$ is equal to 225k then k is equal to _____. (12-01-2019/Shift-2) (a) 108 (b) 27 (c) 54 (d)9

45. The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lies in :

(2-9-2020/Shift-1)

(a)
$$(-\infty, -9] \cup [3, \infty)$$
 (b) $[-3, \infty)$
(c) $(-\infty, 9]$ (d) $(-\infty, -3] \cup [9, \infty)$

If $|x| \le 1$, $|y| \le 1$ and $x \ne y$, then the sum to infinity of 46. the following series

$$(x + y) + (x^{2} + xy + y^{2}) + (x^{3} + x^{2}y + xy^{2} + y^{3}) + \dots$$
 is:
(2-9-2020/Shift-1)

(a)
$$\frac{x+y+xy}{(1-x)(1-y)}$$
 (b) $\frac{x+y-xy}{(1-x)(1-y)}$

(c)
$$\frac{x+y+xy}{(1+x)(1+y)}$$
 (d) $\frac{x+y-xy}{(1+x)(1+y)}$

47. If the sum of first 11 terms of an A.P., a_1, a_2, a_3, \dots is $0 (a_1 \neq 0)$ then the sum of the A.P., $a_1, a_3, a_5, \dots, a_{23}$ is ka₁, where k is equal to : (2-09-2020/Shift-2)

(a)
$$-\frac{121}{10}$$
 (b) $-\frac{72}{5}$

(c) $\frac{72}{5}$ (d) $\frac{121}{10}$

48. Let S be the sum of the first 9 terms of the series :

$$\{x+ka\} + \{x^{2} + (k+2)a\} + \{x^{3} + (k+4)a\} + \{x^{4} + (k+6)a\} + \dots$$

where $a \neq 0$ and $a \neq 1$.

If
$$S = \frac{x^{10} - x + 45a(x-1)}{x-1}$$
, then k is equal to :

(2-09-2020/Shift-2)

(a) 3 (b)
$$-3$$

(c) 1 (d) -5

49. If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is : (3-09-2020/Shift-1)

(a)
$$\frac{1}{6}$$
 (b) $\frac{1}{5}$

(c)
$$\frac{1}{4}$$
 (d) $\frac{1}{7}$

The value of $(0.16)^{\log_{2.5} \left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^2} + \dots + \log \infty\right)}$ is equal to ... 50. (3-9-2020/Shift-1)

If the sum of the series $20 + 19\frac{3}{5} + 19\frac{1}{5} + 18\frac{4}{5} + \dots$ upto 51.

nth term is 488 and the nth term is negative, then :

(a)
$$n = 60$$
 (b) $n = 41$

(c) nth term is
$$-4$$
 (d) nth term is $-4\frac{2}{5}$

52. If m arithmetic means (A.Ms) and three geometric means (G.Ms) are inserted between 3 and 243 such that 4th A.M. is equal to 2nd G.M., then m is equal to

(3-09-2020/Shift-2)

53. If
$$1 + (1 - 2^2 \cdot 1) + (1 - 4^2 \cdot 3) + (1 - 6^2 \cdot 5)$$

+.....+ $(1-20^2, 19) = \alpha - 220\beta$, then an ordered pair

(α, β) is equal to :	(4-09-2020/Shift-1)	
(a) (10,97)	(b) (11,103)	
(c)(11,97)	(d) (10,103)	

The minimum value of $2^{\sin x} + 2^{\cos x}$ is : 54.

(4-9-2020/Shift-2)

(a)
$$2^{1-\sqrt{2}}$$
 (b) $2^{1-\frac{1}{\sqrt{2}}}$
(c) $2^{-1+\sqrt{2}}$ (d) $2^{-1+\frac{1}{\sqrt{2}}}$

Let
$$a_1, a_2, ..., a_n$$
 be a given A.P. whose common difference
is an integer and $S_n = a_1 + a_2 + ... + a_n$. If $a_1 = 1$,

 $a_n = 300$ and $15 \le n \le 50$, then the ordered pair

$$(S_{n-4}, a_{n-4})$$
 is equal to:(4-9-2020/Shift-2)(a) (2480, 248)(b) (2480, 249)(c) (2490, 249)(d) (2490, 248)

If $2^{10} + 2^9 \cdot 3^1 + 2^8 \cdot 3^2 + ... + 2 \cdot 3^9 + 3^{10} = S - 2^{11}$, then S is 56. (5-09-2020/Shift-1) equal to:

(a)
$$3^{11}$$
 (b) $\frac{3^{11}}{2} + 2^{10}$

(c)
$$2.3^{11}$$
 (d) $3^{11} - 2^{12}$

If $3^{2\sin 2\alpha - 1}$, 14 and $3^{4-2\sin 2\alpha}$ are the first three terms of 57. an A.P. for some α , then the sixth term of this A.P. is:

(5-09-2020/Shift-1)

(a)65	(b)81
(c)78	(d)66

If the sum of the first 20 terms of the series 58. $\log_{(7^{1/2})} x + \log_{(7^{1/3})} x + \log_{(7^{1/4})} x + \dots$ is 460, then x is equal to: (5-09-2020/Shift-2) (a) $7^{1/2}$ (b) 7^2 (c) e^{2} (d) 7^{46/21}

59. If the sum of the second, third and fourth terms of a positive term G.P is 3 and the sum of its sixth, seventh and eighth terms is 243, then the sum of the first 50 terms of this G.P is: (5-09-2020/Shift-2)

(a)
$$\frac{2}{13}(3^{50}-1)$$
 (b) $\frac{1}{26}(3^{49}-1)$
(c) $\frac{1}{13}(3^{50}-1)$ (d) $\frac{1}{26}(3^{50}-1)$

- 60. Let a, b, c, d and p be any non zero distinct real numbers such that $(a^2+b^2+c^2) p^2 - 2 (ab+bc+cd) p + (b^2+c^2+d^2)$ = 0. Then: (6-09-2020/Shift-1) (a) a, c, p are in G.P. (b) a, b, c, d are in G.P. (c) a, b, c, d are in A.P. (d) a, c, p are in A.P.
- 61. If f(x+y) = f(x) f(y) and

$$\sum_{x=1}^{\infty} f(x) = 2, x, y \in N, \text{ where N is the set of all natural}$$

number, then the value of $\frac{f(4)}{f(2)}$ is :

(6-09-2020/Shift-1)

(a)
$$\frac{2}{3}$$
 (b) $\frac{1}{9}$

(c)
$$\frac{1}{3}$$
 (d) $\frac{4}{9}$

62. The common difference of the A.P. b_1, b_2, \dots, b_m is 2 more than the common difference of A.P. a_1, a_2, \dots, a_n If $a_{40} = -159, a_{100} = -399$ and $b_{100} = a_{70}$, then b_1 is equal to : (6-09-2020/Shift-2) (a)-127 (b) 81 (c) 127 (d) -81

63. Suppose that function $f: R \to R$ satisfies

64. Five number are in A.P., whose sum is 25 and product is 2520. If one of these five numbers is -¹/₂ then the greatest number amongst them is (7-01-2020/Shift-1) (a) 16 (b) 27 (c) 7 (d) ²¹/₂
65. If the sum of the first 40 terms of the series.

If the sum of the first 40 te	inis or u	ie series,
3+4+8+9+13+14+18	+ 19 +	is (102)m, then m is
equal to :		(7-01-2020/Shift-2)
(a) 10	(b) 25	
(c) 5	(d) 20	

66. Let a_1, a_2, a_3, \dots be a G.P. such that $a_1 < 0, a_1 + a_2 = 4$ and

$$a_3 + a_4 = 16$$
. If $\sum_{i=1}^{9} a_i = 4\lambda$, then λ is equal to:

(7-01-2020/Shift-2)

(a) 171	(b) $\frac{511}{3}$
(c)-171	(d)-513

67. Let $f : R \to R$ be such that for all

$$x \in R, (2^{1+x} + 2^{1-x}), f(x) \text{ and } (3^{x} + 3^{-x}) \text{ are in A.P.},$$

then the minimum value of f(x) is:

(8-01-2020/Shift-1)

(a) 0	(b) 4
(c) 3	(d) 2

68. The sum $\sum_{k=1}^{20} (1+2+3+....+k)$ is _____

(8-01-2020/Shift-1)

69. If the 10th term of an A.P. is $\frac{1}{20}$ and its 20th term is $\frac{1}{10}$, then the sum of its first 200 terms is:

(8-01-2020/Shift-2)

(a)
$$50\frac{1}{4}$$
 (b) 100

(c) 50 (d) $100\frac{1}{2}$

76. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence such that $a_1 = 1, a_2 = 1$ and $a_{n+2} = 2a_{n+1} + a_n$ for all $n \ge 1$. Then the value of

(c) 7

$$47\sum_{n=1}^{\infty} \frac{a_n}{2^{3n}}$$
 is equal to _____? (20-07-2021/Shift-2)

(d)9

77. Let S_n be the sum of the first n terms of an arithmetic

progression. If $S_{3n} = 3S_{2n}$, then the value of $\frac{S_{4n}}{S_{2n}}$ is ?

(27-07-2021/Shift-2)

78. If $\log_3 2$, $\log_3 (2^x - 5)$, $\log_3 (2^x - \frac{7}{2})$ are in an arithmetic

79. If $\tan\left(\frac{\pi}{9}\right)$, x, $\tan\left(\frac{7\pi}{18}\right)$ are in arithmetic progression and

 $\tan\left(\frac{\pi}{9}\right)$, y, $\tan\left(\frac{5\pi}{18}\right)$ are also in arithmetic progression,

then |x-2y| is equal to:

80. The sum of all the elements in the set $\{n \in \{1, 2, \dots, 100\} | \text{H.F.C of } n \text{ and } 2040 \text{ is } 1\}$ is equal to . (22-07-2021/Shift-2)

81. Let S_n denote the sum of first n-terms of an arithmetic progression. If $S_{10} = 530$, $S_5 = 140$, then $S_{20} - S_6$ is equal to: (22-07-2021/Shift-2) (a) 1852 (b) 1842 (c) 1872 (d) 1862

82. If $\begin{bmatrix} x \end{bmatrix}$ be the greatest integer less than or equal to x, then

$$\sum_{n=8}^{100} \left[\frac{(-1)^n n}{2} \right] \text{ is equal to:} \qquad (25-07-2021/\text{Shift-2})$$
(a) -2 (b) 4
(c) 2 (d) 0

83. Let

$$S_n = 1 \cdot (n-1) + 2 \cdot (n-2) + 3 \cdot (n-3) + \dots + (n-1) \cdot 1, n \ge 4$$

The sum
$$\sum_{n=4}^{\infty} \left(\frac{2S_n}{n!} - \frac{1}{(n-2)!} \right)$$
 is equal to

(01-09-2021/Shift-2)

(a)
$$\frac{e-1}{3}$$
 (b) $\frac{e-2}{6}$
(c) $\frac{e}{6}$ (d) $\frac{e}{3}$

Let a_1, a_2, \dots, a_{21} be an AP such that $\sum_{n=1}^{20} \frac{1}{a_n a_{n+1}} = \frac{4}{9}$. If the 84.

sum of this AP is 189, then a_6a_{16} is equal to

(01-09-2021/Shift-2)

85.
$$\lim_{x \to 2} \left(\sum_{n=1}^{9} \frac{x}{n(n+1)x^2 + 2(2n+1)x + 4} \right)$$
 is equal to

(26-08-2021/Shift-2)

91.

(a)
$$\frac{7}{36}$$
 (b) $\frac{5}{24}$

(c)
$$\frac{1}{5}$$
 (d) $\frac{9}{44}$

The sum of all 3-digit numbers less than or equal to 500, 86. that are formed without using the digit "1" and they all are multiple of 11, is _____. (26-08-2021/Shift-2) Let $a_1, a_2 \dots a_{10}$ be an AP with common difference -3 and 87. $\boldsymbol{b}_1, \boldsymbol{b}_2 \dots \boldsymbol{b}_{10}$ be a GP with common ration 2. Let $c_k = a_k + b_r, k = 1, 2, ..., 10.$ If $C_2 = 12$ and $C_3 = 13$, then $\sum_{k=1}^{10} c_k$ is equal to _____. (26-08-2021/Shift-2)

If the sum of an infinite GP a, ar, ar^2 , ar^3 , is 15 and 88. the sum of the squares of its each term is 150, then the sum of ar^2 , ar^4 , ar^6 , is: (26-08-2021/Shift-1)

(a)
$$\frac{1}{2}$$
 (b) $\frac{5}{2}$

(c)
$$\frac{25}{2}$$
 (d) $\frac{9}{2}$

The sum of the series 89.

$$\frac{1}{x+1} + \frac{2}{x^2+1} + \frac{2^2}{x^4+1} + \dots + \frac{2^{100}}{x^{2^{100}}+1}$$
 when $x = 2$ is:

(26-08-2021/Shift-1)

(a)
$$1 - \frac{2^{101}}{4^{101} - 1}$$
 (b) $1 + \frac{2^{101}}{4^{101} - 1}$

(c)
$$1 - \frac{2^{100}}{4^{100} - 1}$$
 (d) $1 + \frac{2^{100}}{4^{100} - 1}$

90. If
$$0 < x < 1$$
 and $y = \frac{1}{2}x^2 + \frac{2}{3}x^3 + \frac{3}{4}x^4 + ...$, then the

value of
$$e^{1+y}$$
 at $x = \frac{1}{2}$ is: (27-08-2021/Shift-2)

(a)
$$\frac{1}{2}e^2$$
 (b) 2e

(c)
$$2e^2$$
 (d) $\frac{1}{2}\sqrt{e}$

Three numbers are in an increasing geometric progression
with common ratio r. If the middle number is doubled, then
the new numbers are in arithmetic progression with
common difference d. If the fourth term of GP is
$$3r^2$$
, then

$$r^2 - d$$
 is equal to?
 (31-08-2021/Shift-1)

 (a) $7 + 3\sqrt{3}$
 (b) $7 - \sqrt{3}$

 (c) $7 - 7\sqrt{3}$
 (d) $7 + \sqrt{3}$

value of
$$e^{1+y}$$
 at $x = \frac{1}{2}$ is:

If
$$0 < x < 1$$
 and $y = \frac{1}{2}x^2 + \frac{2}{3}y$

If
$$0 < x < 1$$
 and $y = \frac{1}{2}x^2 + \frac{2}{3}x^3 + \frac{3}{4}x^4 + \frac{3}{4$

(c)
$$1 - \frac{2}{4^{100} - 1}$$
 (d) $1 + \frac{2}{4^{100} - 1}$

$$\frac{3}{1^2 \times 2^2} + \frac{5}{2^2 \times 3^2} + \frac{7}{3^2 \times 4^2} + \dots \text{ is? (31-08-2021/Shift-1)}$$

(a)
$$\frac{120}{121}$$
 (b) 1

(c)
$$\frac{143}{144}$$
 (d) $\frac{99}{100}$

93. Let a_1, a_2, a_3, \dots be an A.P. If

 $\frac{a_1 + a_2 + \dots + a_{10}}{a_1 + a_2 + \dots + a_p} = \frac{100}{p^2}, p \neq 10, \text{ then } \frac{a_{11}}{a_{10}} \text{ is equal to:}$

(31-08-2021/Shift-2)

(a)
$$\frac{121}{100}$$
 (b) $\frac{100}{121}$
(c) $\frac{19}{21}$ (d) $\frac{21}{19}$

94. If S =
$$\frac{7}{5} + \frac{9}{5^2} + \frac{13}{5^3} + \frac{19}{5^4} + \dots$$
, then 160S is equal to _____

95. If for $x, y \in R, x > 0$,

$$\mathbf{y} = \left(\log_{10} \mathbf{x}\right) + \left(\log_{10} \mathbf{x}^{\frac{1}{3}}\right) + \left(\log_{10} \mathbf{x}^{\frac{1}{9}}\right) + \dots \text{ upto } \infty \text{ terms}$$

and
$$\frac{2+4+6+...+2y}{3+6+9+...+3y} = \frac{4}{\log_{10} x}$$
, then the ordered pair

- (x, y) is equal to : (27-08-2021/Shift-1)
- (a) $(10^6, 6)$ (b) $(10^6, 9)$

(c)
$$(10^2, 3)$$
 (d) $(10^4, 6)$

96. If
$$0 < x < 1$$
, then $\frac{3}{2}x^2 + \frac{5}{3}x^3 + \frac{7}{4}x^4 + ...$, is equal to:

(27-08-2021/Shift-1)

(a)
$$x\left(\frac{1+x}{1-x}\right) + \log_{e}(1-x)$$

(b) $x\left(\frac{1-x}{1+x}\right) + \log_{e}(1-x)$

(c)
$$\frac{1-x}{1+x} + \log_e(1-x)$$

$$(d) \frac{1+x}{1-x} + \log_e \left(1-x\right)$$

97. Let

$$S_{n}(x) = \log_{\frac{1}{a^{2}}} x + \log_{\frac{1}{a^{3}}} x + \log_{\frac{1}{a^{6}}} x + \log_{\frac{1}{a^{11}}} x + \log_{\frac{1}{a^{18}}} x$$

$$+\log_{\frac{1}{27}} x + \dots$$
 upto n-terms where $a > 1$.

If $S_{24}(x) = 1093$ and $S_{12}(2x) = 265$, then the value of a is equal to ____. (16-03-2021/Shift-2)

98. Let $\frac{1}{16}$, a and b in G.P. $\frac{1}{a}$, $\frac{1}{b}$, 6 are in A.P., where a, b > 0. Then 72(a + b) is equal to _____.

99. Let
$$S_k = \sum_{r=1}^k \tan^{-1} \left(\frac{6^r}{2^{2r+1} + 3^{2r+1}} \right)$$
. Then $\lim_{k \to \infty} S_k$ is equal to:

(a)
$$\tan^{-1}\left(\frac{3}{2}\right)$$
 (b) $\tan^{-1}(3)$

(c)
$$\frac{\pi}{2}$$
 (d) $\cot^{-1}\left(\frac{3}{2}\right)$

100. Let [x] denote greatest integer less than or equal to x. If

for
$$n \in N$$
, $(1 - x + x^3)^n = \sum_{j=0}^{3n} a_j x^j$, then

$$\begin{bmatrix} \frac{3n}{2} \\ \sum_{j=0}^{2} a_{2j} + 4 \sum_{j=0}^{\lfloor \frac{3n-1}{2} \rfloor} a_{2j+1} \text{ is equal to:} \quad (16-03-2021/\text{Shift-1})$$

(b) n

(d) 2

101. Consider an arithmetic series and a geometric series having four initial terms from the set {11, 8, 21, 16, 26, 32, 4}. If the last terms of these series are the maximum possible four digit numbers, then the number of common terms in these two series is equal to _____. (16-03-2021/Shift-1)

(a) 2^{n-1}

(c) 1

102. Let S_1 be the sum of first 2n terms of an arithmetic progression. Let S_2 be the sum of first 4n terms of the same arithmetic progression. If $(S_2 - S_1) (S_2 - S_1)$ is 1000, then the sum of the first 6n terms of the arithmetic progression is equal to : (18-03-2021/Shift-2) (a) 3000 (b) 5000 (c) 7000 (d) 1000

(\mathbf{c})		(4) 1000	
10			

103. If $\sum_{r=1}^{\infty} r! (r^3 + 6r^2 + 2r + 5) = \alpha$ (11!), then the value of α is equal to _____. (18-03-2021/Shift-2)

104. The value
$$3 + \frac{1}{4 + \frac{1}{3 + \frac{1}{4 + \frac{1}{3 + \dots + \infty}}}}$$
 is equal to :

(18-03-2021/Shift-1)

- (a) $2 + \sqrt{3}$ (b) $4 + \sqrt{3}$
- (c) $3 + 2\sqrt{3}$ (d) $1.5 + \sqrt{3}$

105.
$$\frac{1}{3^2 - 1} + \frac{1}{5^2 - 1} + \frac{1}{7^2 - 1} + \dots + \frac{1}{(201)^2 - 1}$$
 is equal to:
(18-03-2021/Shift-1)

(a)
$$\frac{101}{408}$$
 (b) $\frac{101}{404}$

c)
$$\frac{99}{400}$$
 (d) $\frac{25}{100}$

(

106. If α , β are natural numbers such that $100^{\alpha} - 199$ $\beta = (100)(100) + (99)(101) + (98)(102) + ... + (1)(199)$, then the slope of the line passing through (α, β) and origin is (18-03-2021/Shift-1) (a) 540 (b) 510 (c) 550 (d) 530

107. The missing value in the following figure is

(18-03-2021/Shift-1)

108. The sum of first four terms of a geometric progression (G.P.) is $\frac{65}{12}$ and the sum of their respective reciprocals is $\frac{65}{18}$. If the product of first three terms of the G.P. is 1, and the third term is α , then 2α , is ____. (24-02-2021/Shift-2)

109. The minimum of $f(x) = a^{a^x} + a^{1-a^x}$, where $a, x \in R$ and a > 0, is equal to: (25-02-2021/Shift-2)

(b) $2\sqrt{a}$

(c) 2a (d)
$$a + \frac{1}{a}$$

(a) a + 1

110. If
$$0 < \theta, \phi < \frac{\pi}{2}, x = \sum_{n=0}^{\infty} \cos^{2n} \theta, y = \sum_{n=0}^{\infty} \sin^{2n} \phi$$
 and
 $z = \sum_{n=0}^{\infty} \cos^{2n} \theta \cdot \sin^{2n} \phi$ then: (25-02-2021/Shift-1)
(a) $xyz = 4$ (b) $xy + yz + zx = z$
(c) $xy + z = (x + y)z$ (d) $xy - z = (x + y)z$

111. Let $A_1, A_2, A_3, ...$ be squares such that for each $n \ge 1$, the length of the side of A_n equals the length of diagonal of A_{n+1} . If the length of A_1 is 12 cm, then the smallest value of n for which area of A_n is less than one, is _____.

(25-02-2021/Shift-1)

112. The sum of the series
$$\sum_{n=1}^{\infty} \frac{n^2 + 6n + 10}{(2n+1)!}$$
 is equal to

(26-02-2021/Shift-2)

(a)
$$\frac{41}{8}e + \frac{19}{8}e^{-1} - 10$$
 (b) $-\frac{41}{8}e + \frac{19}{8}e^{-1} - 10$
(c) $\frac{41}{8}e - \frac{19}{8}e^{-1} - 10$ (d) $\frac{41}{8}e + \frac{19}{8}e^{-1} + 10$

- 113. If the arithmetic mean and geometric mean of the p^{th} and q^{th} terms of the sequence -16, 8, -4, 2,... satisfy the equation $4x^2 9x + 5 = 0$, then p+q is equal to ... (26-02-2021/Shift-2)
- 114. In an increasing geometric series, the sum of the second and the sixth term is $\frac{25}{2}$ and the product of the third and fifth term is 25. Then, the sum of 4th, 6th and 8th terms is equal to : (26-02-2021/Shift-1) (a) 26 (b) 30 (c) 32 (d) 35
- **115.** The sum of the infinite series

$$1 + \frac{2}{3} + \frac{7}{3^2} + \frac{12}{3^3} + \frac{17}{3^4} + \frac{22}{3^5} + \dots$$
 is equal to

(26-02-2021/Shift-1)

(a)
$$\frac{13}{4}$$
 (b) $\frac{15}{4}$

(c)
$$\frac{9}{4}$$
 (d) $\frac{11}{4}$

EXERCISE - 3 : ADVANCED OBJECTIVE QUESTIONS

Objective Questions I [Only one correct option]		
1.	If the sum to n terms of a series be $5n^2 + 2n$, then second term is	
	(a) 15	(b) 17
	(c) 10	(d) 5
2.	If the sum of the 10 terms of its 5 terms, then the rat difference is	of an A.P. is 4 times to the sum of io of first term and common
	(a) 1 : 2	(b) 2 : 1
	(c) 2 : 3	(d) 3 : 2
3.	In a G.P. if the $(m+n)^{th}$ term the m th term is	be p and $(m-n)^{th}$ term be q then
	(a) \sqrt{pq}	(b) \sqrt{p}/q
	(c) \sqrt{q}/p	(d) \sqrt{p}/q
4.	The least value of n for whether the sense of the terms is greater than 7000 terms is greater te	hich the sum $1 + 3 + 3^2 +$ to n is
	(a) 7	(b) 9
	(c) 11	(d) 13
5.	A G.P. consist of even nur terms occupying the odd p in the even places is S_2 , th is	nber of terms. If the sum of the blaces is S_1 and that of the terms en the common ratio of the G.P.
	(a) $\frac{S_1}{S_2}$	(b) $\frac{S_2}{S_1}$
	(c) $\frac{2S_1}{S_2}$	(d) $\frac{S_2}{2S_1}$
6.	The value of $9^{1/3}$. $9^{1/9}$. $9^{1/27}$	will be
	(a) 3^2	(b) 3^3
	(c) 3	(d) 3^{∞}

7. If the third term of a G.P. is 4, then the product of its first 5 terms is

(a) 4^{3}	(b) 4^4
(c) 4^5	(d) None

8. Six arithmetic means are inserted between 1 and 9/2, the 4th arithmetic mean is

(a) 2	(b) 1
(c) 3	(d) 4

9. If one G.M., g and two A.M.'s p and q are inserted between

two number a and b, then $\frac{(2p-q)(p-2q)}{g^2} =$

(a) 1 (b)
$$-1$$

(c) 2 (d) -3

10. If a, b and c are positive real numbers, then the least value

of
$$(a+b+c)$$
 $\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$ is

11. If a, b and c are positive real numbers then $\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$ is

greater than or equal to

(a) 3	(b) 6
(c) 27	(d) none of these

- 12. The sum of the series $1^3 + 3^3 + 5^3 + ...$ to 20 terms is (a) 319600 (b) 321760 (c) 306000 (d) 347500
- 13. If a, 4, b are in AP; a, 2, b are in G.P., then a, 1, b are in
 (a) HP
 (b) AP
 (c) GP
 (d) none of these

14. If $a_1, a_2, a_3, ..., a_n$ are in A.P. where $a_i > 0 \quad \forall i$, then

$$\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}} =$$

(a)
$$\frac{n-1}{\sqrt{a_1} + \sqrt{a_n}}$$
 (b) $\frac{n+1}{\sqrt{a_1} + \sqrt{a_n}}$

(c)
$$\frac{n-1}{\sqrt{a_1} - \sqrt{a_n}}$$
 (d) $\frac{n+1}{\sqrt{a_1} - \sqrt{a_n}}$

15. The first and last term of an A.P. are a and *l* respectively. If s be the sum of all terms of the A.P., then common difference is

(a)
$$\frac{\ell^2 - a^2}{2s - (\ell + a)}$$
 (b) $\frac{\ell^2 - a^2}{2s - (\ell - a)}$

(c)
$$\frac{\ell^2 + a^2}{2s + (\ell + a)}$$
 (d) $\frac{\ell^2 + a^2}{2s - (\ell + a)}$

16. Given p A.P.'s, each of which consists of n terms. If their first terms are 1, 2, 3,, p and common differences are 1, 3, 5,, 2p – 1 respectively, then sum of the terms of all the progressions is

(a)
$$\frac{1}{2}$$
np (np+1)
(b) $\frac{1}{2}$ n (p+1)
(c) np (n+1)
(d) none of these

- If the sum of m consecutive odd integers is m⁴, then the first integer is
 - (a) $m^3 + m + 1$ (b) $m^3 + m - 1$ (c) $m^3 - m - 1$ (d) $m^3 - m + 1$
- 18. If α , β be roots of $x^2 3x + a = 0$ and γ , δ are the roots of $x^2 12x + b = 0$ and α , β , γ , δ (in order) form an increasing GP., then
 - (a) a = 3, b = 12 (b) a = 12, b = 13(c) a = 2, b = 32 (d) a = 4, b = 16
- **19.** The sum of the first 10 terms of $\frac{3}{2} + \frac{5}{4} + \frac{9}{8} + \frac{17}{16} + \dots$ is
 - (a) $10 2^{-10}$ (b) $9 2^{-10}$ (c) $11 - 2^{-10}$ (d) none of these
- **20.** The sum of an infinite G.P. series is 3. A series which is formed by squares of its terms have the sum also 3. First series will be

(a)
$$\frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \frac{3}{16}$$
... (b) $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$...

(c)
$$\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \cdots$$
 (d) $1, -\frac{1}{3}, \frac{1}{3^2}, -\frac{1}{3^3}, \cdots$

21. The sum of the series $5.05 + 1.212 + 0.29088 + ... \infty$ is (a) 6.93378 (b) 6.87342 (c) 6.74384 (d) 6.64474 22. If a, b, c are in H.P., then the value of $\frac{b+a}{b-a} + \frac{b+c}{b-c}$ is

$$(5+\sqrt{2})x^2 - (4+\sqrt{5})x + (8+2\sqrt{5}) = 0$$
 is
(a) 2 (b) 4
(c) 6 (d) 8

- 24. The harmonic mean between two numbers is $14 \frac{2}{5}$ and the geometric mean is 24. The greatest number between them is :
 - (a) 72 (b) 36 (c) 18 (d) 60
- **25.** Let x be the arithmetic mean and y, z be the two geometric means between any two positive number. Then value of

$$\frac{y^{3} + z^{3}}{xyz}$$
 is
(a) 2 (b) 3
(c) 1/2 (d) 3/2

26. If $x_1^2 + x_2^2 + x_3^2 + \dots + x_{50}^2 = 50$ and $\frac{1}{x_1^2 x_2^2 \dots x_{50}^2} = A$ then

(a)
$$A_{minimum} = 1$$
 (b) $A_{maximum} = 1$
(c) $A_{minimum} = 50$ (d) $A_{maximum} = 50$

27. A series whose nth term is $\frac{n}{x} + y$, the sum of r terms will be

(a)
$$\frac{r(r+1)}{2x} + ry$$
 (b) $\frac{r(r-1)}{2x}$

(c)
$$\frac{r}{2x}(r-1)-ry$$
 (d) $\frac{r(r+1)}{2y}-rx$

28. The sum of series $1.3^2 + 2.5^2 + 3.7^2 + \dots$ upto 20 terms is (a) 188090 (b) 189080 (c) 199080 (d) None 29. $1^2 - 2^2 + 3^2 - 4^2 + \dots$ to 21 terms = (a) 210 (b) 231

(c)-210 (d)-231

- 30. 1+3+7+15+31+... to n terms = (a) $2^{n+1}-n$ (b) $2^{n+1}-n-2$ (c) 2^n-n-2 (d) None
- 31. If nth term of a series is $\frac{1}{(n+1)(n+3)}$, then sum of infinite terms of the series
 - (a) 3/2 (b) 1/2(c) 5/2 (d) 5/12
- 32. Let $\sum_{r=1}^{n} r^4 = f(n)$, then $\sum_{r=1}^{n} (2r-1)^4$ is equal to (a) f(2n) - 16f(n) (b) f(2n) - 7f(n)(c) f(2n-1) - 8(f(n)) (d) none of these
- **33.** The sum of the n terms of the series $1 + (1+3) + (1+3+5) \dots$

(a)
$$n^2$$
 (b) $\left[\frac{n(n+1)}{2}\right]^2$

(c)
$$\left[\frac{n(n+1)(2n+1)}{6}\right]$$
 (d) none of these

34. Consider the sequence 1, 2, 2, 3, 3, 3 ... where n occurs n times. The number that occurs as 2007th term is

(a) 61 ((b) 62
----------	--------

(c) 63	(d) 64

- 35. If p, q, r are in A.P., then pth, qth and rth terms of any G.P. are in(a) A.P.(b) G.P.
 - (c) H.P. (d) A.G.P.
- 36. If ln(x+z) + ln(x-2y+z) = 2 ln(x-z), then x, y, z are in (a) A.P (b) G.P (c) H.P (d) none of these
- **37.** If a, b, c are three unequal numbers such that a, b, c are in A.P. and b a, c b, a are in G.P., then a : b : c =

(a) 2 : 3 : 5	(b) 1 : 2 : 4
(c) 1 : 3 : 5	(d) 1 : 2 : 3

38. If a, b, c are 3 positive numbers in A.P. and a², b², c² are in H.P., then

(a)
$$a = b = c$$
 (b) $2b = 3a + c$

(c)
$$b^2 = \left(\frac{ac}{8}\right)^{1/2}$$
 (d) None

39. The sum of three consecutive terms in G.P. is 14. If 1 is added to the first and the second term and 1 subtracted from the third, the resulting new terms are in A.P. Then the lowest of the original terms is

(a) 1	(b) 2
(c) 4	(d) 8

40. If 5x - y, 2x + y, x + 2y are in A.P. and $(x-1)^2$, (xy+1), $(y+1)^2$ are in G.P., $x \neq 0$, then x + y =

(a)
$$\frac{3}{4}$$
 (b) 3

- (c) -5 (d) none of these
- 41. Four distinct integers a, b, c, d are in A.P. If $a^2 + b^2 + c^2 = d$, then a + b + c + d =

(a) 1 (b) 0
(c)
$$-1$$
 (d) none of these

42. The sum of n terms of the following series $1 + (1 + x) + (1 + x + x^2) + \dots$ will be

(a)
$$\frac{1-x^n}{1-x}$$
 (b) $\frac{x(1-x^n)}{1-x}$

(c)
$$\frac{n(1-x)-x(1-x^n)}{(1-x)^2}$$
 (d) none

43. If the sum of n terms of G.P. is S, product is P and sum of their inverses is R, then $P^2 =$

(a)
$$R/S$$
 (b) S/R
(c) $(R/S)^n$ (d) $(S/R)^n$

44. If $x = 111 \dots 1$ (20 digits), $y = 333 \dots 3$ (10 digits) and $z = 222 \dots 2$

(10 digits), then $\frac{x-y^2}{z} =$	
(a) 1	(b)2
(c) $\frac{1}{2}$	(d) 3

45. The largest positive term of the H.P., whose first two terms

are
$$\frac{2}{5}$$
 and $\frac{12}{23}$ is
(a) $\frac{13}{2}$ (b) 6
(c) $\frac{15}{2}$ (d) 8

If a, b, c are in H.P., then which one of the following is true

(a)
$$\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{b}$$
 (b) $\frac{ac}{a+c} = b$

(c)
$$\frac{b+a}{b-a} + \frac{b+c}{b-c} = 1$$
 (d) None

47.
$$\sum_{n=1}^{\infty} \frac{n}{4n^4 + 1}$$
 equals to:
(a) 0 (b) 1
(c) ∞ (d) 1/4

If a, b, c are in A.P., then $\frac{a}{bc}$, $\frac{1}{c}$, $\frac{2}{b}$ are in 48. (a) A.P. (b)G.P.

(c) H.P.

Objective Questions II [One or more than one correct option]

(d) None

- 49. If the first two terms of a progression are log, 256 and log₃81 respectively, then which of the following statements are true :
 - (a) If third term is $\log_4 16$, then the terms are in G.P.
 - (b) If third term is $2 \log_6 1$, then the terms are in A.P.
 - (c) If third term is $\frac{2}{3} \log_2 16$, then the terms are in H.P.
 - (d) If the third term is log, 8, then terms are in A.P.
- 50. If the first and the (2n-1) th term of an AP, GP and HP are equal and their nth terms are a, b and c respectively, then which of the following may be correct.

(a) a = b = c	(b) $a \ge b \ge c$
(c) $a + c = b$	(d) $ac - b^2 = 0$

Numerical Value Type Questions

Two consecutive numbers from 1, 2, 3 n are removed. 51.

The arithmetic mean of remaining n – 2 numbers is $\frac{105}{4}$.

Then n must be

 $1.2^{1}+2.2^{2}+3.2^{3}+\ldots+n.2^{n}=2^{n+10}+2$, is

53. If
$$S_n = \frac{1}{2n} - \frac{1}{n+1} + \frac{1}{2(n+2)}$$
 then $\sum_{n=1}^{15} S_n = \frac{135}{k}$, then the

numerical quantity k must be

Assertion & Reason

Use the following codes to answer the questions

- **(A)** If both ASSERTION and REASON are correct and reason is the correct explanation of ASSERTION.
- If both ASSERTION and REASON are true but and **(B) REASON** is not the correct explanation of ASSERTION.
- **(C)** If ASSERTION is true but REASON is false.
- **(D)** If ASSERTION is false but REASON is true.
- If ASSERTION and REASON are both false. **(E)**
- 54. Assertion : There exists an A.P. whose three terms are $\sqrt{2}, \sqrt{3}, \sqrt{5}.$

Reason: There exists distinct real numbers p, q, r satisfying

$$\sqrt{2} = A + (p-1) d, \sqrt{3} = A + (q-1) d,$$

 $\sqrt{5} = A + (r-1) d.$
(a) A (b) B (c) C
(d) D (e) E

55. Assertion : If all terms of a series with positive terms are smaller than 10^{-5} , then the sum of the series upto infinity will be finite.

Reason : If
$$S_n < \frac{n}{10^5}$$
 then $\lim_{n \to \infty} S_n$ is finite.
(a) A (b) B (c) C

56. Assertion: If three positive numbers in G.P. represent sides of a triangle, then the common ratio of the G.P. must lie

(e) E

between
$$\frac{\sqrt{5}-1}{2}$$
 and $\frac{\sqrt{5}+1}{2}$.

(d) D

Reason : Three positive real numbers can form sides of a triangle if sum of any two is greater than the third.

57. Assertion: The sum of an infinite A.G.P.

> $a + (a + d) x + (a + 2d) x^{2} + (a + 3d) x^{3} + \dots$, where |x| < 1 always exist.

Reason : The sum of the infinite series

$$a + ar + ar^2 + \dots$$
 converges if $|r| < 1$.

$$(a)A (b)B (c)C$$

(d) D (e) E

46.

Match the Following

Each question has two columns. Four options are given representing matching of elements from Column-I and Column-II. Only one of these four options corresponds to a correct matching.For each question, choose the option corresponding to the correct matching.

58. Column I consist of some terms where a,b,c are in HP and Column II consist of name of corresponding progression formed by terms in column I.

Column - I

(1)
$$\frac{a}{b+c-a}, \frac{b}{c+a-b}, \frac{c}{a+b-c}$$
 (P) HP

(II)
$$\frac{1}{b-a}, \frac{1}{b}, \frac{1}{b-c}$$
 (Q) GP

(III)
$$a - \frac{b}{2}, \frac{b}{2}, c - \frac{b}{2}$$
 (R) AP

(IV)
$$\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$$

Which of the Following is Incorrect:

(a) $I - P$	(b) $II - Q$
(c) III – Q	(d) IV – P

59. Column I consist of progression which roots of equation $ax^3 + bx^2 + cx + d = 0$ form and column II consist of relation between a,b,c,d

Column - I	Column - II
AP	(P) $b^{3}d=ac^{3}$
GP	(Q) $27ad^3 = 9bcd^2 - 2c^3d$
HP	(R) $2b^3 - 9abc + 27a^2d = 0$
	Column - I AP GP HP

Which of the Following is Incorrect:

(a) I – R	(b) II – P
(c) III – Q	(d) I - Q

Text

Column - II

- 60. If the equation $x^4 4x^3 + ax^2 + bx + 1 = 0$ has four positive roots, then find a and b.
- 61. If a, b, c are different positive numbers prove that $a^4 + b^4 + c^4 > abc (a + b + c)$.
- 62. If x, y, z are positive real numbers satisfying the equation $x^2+9y^2+25z^2=3xy+15$ yz + 5zx then find the progression of x, y and z.

63. Show that
$$\frac{1^4}{1.3} + \frac{2^4}{3.5} + \frac{3^4}{5.7} + \dots + \frac{n^4}{(2n-1)(2n+1)}$$

$$=\frac{n(4n^2+6n+5)}{48}+\frac{n}{16(2n+1)}.$$

- 64. Find the sum of the series $\frac{1}{1.3} + \frac{2}{1.3.5} + \frac{3}{1.3.5.7} + \dots n$ terms
- 65. A sequence of real numbers $a_1, a_2, a_3, ..., a_n$ is such that $a_1 = 0, |a_2| = |a_1 + 1|, |a_3| = |a_2 + 1|, ..., |a_n| = |a_{n-1} + 1|.$

Prove that
$$\frac{1}{n}\left(\sum_{i=1}^{n}a_{i}\right) \geq -\frac{1}{2}$$
.

EXERCISE - 4 : PREVIOUS YEAR JEE ADVANCED QUESTIONS

9.

13.

Objective Questions I [Only one correct option]

1. If a, b, c and d are positive real numbers such that

a + b + c + d = 2, then M = (a + b) (c + d) satisfies the relation : (2000)

$(a) 0 \le M \le 1$	(b) 1 <u>≤</u> M <u>≤</u> 2
(c) $2 \leq M \leq 3$	(d) $3 \leq M \leq 4$

Consider an infinite geometric series with first term *a* and common ratio *r*. If its sum is 4 and the second term is 3/4, then : (2000)

(a)
$$a = \frac{4}{7}, r = \frac{3}{7}$$
 (b) $a = 2, r = 3/8$
(c) $a = 3/2, r = 1/2$ (d) $a = 3, r = 1/4$

3. Let α , β be the roots of $x^2 - x + p = 0$ and γ , δ be the roots of $x^2 - 4x + q = 0$ If α , β , γ , δ are in G. P., then the integer values of p and q respectively are : (2001)

(a)-2,-32	(b)-2, 3
(c)-6,3	(d)-6,-32

4. If the sum of the first 2n terms of the A.P. 2, 5, 8, is equal to the sum of the first *n* terms of the A. P. 57, 59, 61 then n equals : (2001)
(a) 10 (b) 12

(d) 13

- 5. Let the positive numbers a, b, c, d be in A. P. Then abc, abd, acd, bcd are : (2001)
 (a) in H.P. (b) in A. P.
 (c) in G.P. (d) none of these
- 6. If a_1, a_2, \dots, a_n are positive real numbers whose product is a fixed number c, then the minimum value of $a_1 + a_2 + \dots + a_{n-1} + 2a_n$ is: (2002) (a) n (2c)^{1/n} (b) (n+1)c^{1/n} (c) 2nc^{1/n} (d) (n+1) (2c)^{1/n}
- 7. Suppose a, b, c are in A. P. and a^2 , b^2 , c^2 are in G. P. If a < b < c and a + b + c = 3/2, then the value of *a* is : (2002)

(a)
$$\frac{1}{2\sqrt{2}}$$
 (b) $\frac{1}{2\sqrt{3}}$
(c) $\frac{1}{2} - \frac{1}{\sqrt{3}}$ (d) $\frac{1}{2} - \frac{1}{\sqrt{2}}$

8.	If $\alpha \in \left(0, \frac{\pi}{2}\right)$ then $\sqrt{x^2 + x} + \frac{\tan^2 \alpha}{\sqrt{x^2 + x}}$ i	s always greater
	than or equal to :	(2003)

(a) 2 tan α	(b) 1

(c) 2 (d) $\sec^2 \alpha$ An infinite G.P. has first term 'x' and sum 5, then x belongs

to: (a) x < -10 (b) -10 < x < 0(c) 0 < x < 10 (d) x > 10

10. α,β are roots of $ax^2 + bx + c = 0$, $a \neq 0$ and $\Delta = b^2 - 4ac$. If $\alpha + \beta$, $\alpha^2 + \beta^2$ and $\alpha^3 + \beta^3$ are in G. P., then : (2005) (a) $\Delta \neq 0$ (b) $b\Delta = 0$

(c)
$$c \Delta = 0$$
 (d) $bc \neq 0$

If the sum of first n terms of an A.P. is cn², then the sum of squares of these n terms is : (2009)

(a)
$$\frac{n(4n^2-1)c^2}{6}$$
 (b) $\frac{n(4n^2+1)c^2}{3}$

(c)
$$\frac{n(4n^2-1)c^2}{3}$$
 (d) $\frac{n(4n^2+1)c^2}{6}$

12. Let $a_1, a_2, a_3,...$ be in a harmonic progression with $a_1 = 5$ and $a_{20} = 25$. The least positive integer n for which $a_n < 0$ is

(2012)

(2004)

Let $b_i > 1$ for i = 1, 2, ..., 101. Suppose $log_e b_1, log_e b_2, ..., log_e b_{101}$ are in Arithmetic Progression (A.P.) with the common difference $log_e 2$. Suppose $a_1, a_2, ..., a_{101}$ are in A.P. such that $a_1 = b_1$ and $a_{51} = b_{51}$. If $t = b_1 + b_2 + ... + b_{51}$ and $s = a_1 + a_2 + ... + a_{51}$, then (2016) (a) s > t and $a_{101} > b_{101}$ (b) s > t and $a_{101} < b_{101}$

(c)
$$s < t$$
 and $a_{101} > b_{101}$ (d) $s < t$ and $a_{101} < b_{101}$

Objective Questions II [One or more than one correct option]

14. Let
$$S_n = \sum_{1}^{4n} (-1)^{\frac{k(k+1)}{2}} k^2$$
. Then, S_n can take value(s)

(2013)

(a) 1056	(b) 1088
(c) 1120	(d) 1332

Numerical Value Type Questions

15. Let
$$A_n = \left(\frac{3}{4}\right) - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 + \dots + (-1)^{n-1} \left(\frac{3}{4}\right)^n$$

 $B_n = 1 - A_n$. Find a least odd natural number n_0 , so that $B_n > A_n, \forall n \ge n_0.$ (2006)

Let S_k , k = 1, 2, ..., 100, denote the sum of the infinite 16. geometric series whose first term is $\frac{k-1}{k}$ and the common

ratio is
$$\frac{1}{k}$$
. Then the value of

$$\frac{100^2}{100!} + \sum_{k=2}^{100} |(k^2 - 3k + 1)| S_k \text{ is...}$$
(2010)

- 17. Let $a_1, a_2, a_3, \dots, a_{11}$ be real numbers satisfying $a_1 = 15, 27 - 2a_2 > 0$ and $a_k = 2a_{k-1} - a_{k-2}$ for k = 3, 4, ..., 11. If $\frac{a_1^2 + a_2^2 + \dots + a_{11}^2}{11} = 90$, then the value of $\frac{a_1 + a_2 + \dots + a_{11}}{11}$ is equal to (2010)
- 18. Let $a_1, a_2, a_3, ..., a_{100}$ be a non constant arithmetic progression with $a_1 = 3$ and $S_p = \sum_{i=1}^{p} a_i$, $1 \le p \le 100$. For any integer n

with
$$1 \le n \le 20$$
, let $m = 5n$. If $\frac{S_m}{S_n}$ does not depend on n,

then a, is (2011)

- 19. The minimum value of the sum of real numbers a^{-5} , a^{-4} , $3a^{-3}$, $1, a^8$ and a^{10} with a > 0 is ... (2011)
- 20. A pack contains n card numbered from 1 to n. Two consecutive numbered card are removed from the pack and the sum of the numbers on the remaining cards is 1224. If the smallest of the numbers on the removed cards is k, then k - 20 is equal to (2013)

- Let a,b,c, be positive integers such that $\frac{b}{a}$ is an integer. If 21. a,b,c are in geometric progression and the arithmetic mean of a,b,c is b + 2, then the value of $\frac{a^2 + a - 14}{a + 1}$ is (2014)
- 22. Suppose that all the terms of an arithmetic progression (A.P.) are natural numbers. If the ratio of the sum of the first seven terms to the sum of the first eleven terms is 6 : 11 and the seventh term lies in between 130 and 140, then the common difference of this A.P. is. (2015)
- The sides of a right angled triangle are in arithmetic 23. progression. If the triangle has area 24, then what is the length of its smallest side ? (2017)
- 24. Let X be the set consisting of the first 2018 terms of the arithmetic progression 1, 6, 11,, and Y be the set consisting of the first 2018 terms of the arithmetic progression 9, 16, 23, Then, the number of elements in the set $X \cup Y$ is _____ (2018)
- Let AP (a, d) denote the set of all the terms of an infinite 25. arithmetic progression with first term a and common difference d > 0. If

 $AP(1,3) \cap AP(2,5) \cap AP(3,7) = AP(a,d)$

then a + d equals.....

(2019)

- 26. Let m be the minimum possible value of $\log_3 (3^{y_1} + 3^{y_2} + 3^{y_3})$, where y_1, y_2, y_3 are real numbers for which $y_1+y_2+y_3=9$. Let M be the maximum possible value of $(\log_3 x_1 + \log_3 x_2 + \log_3 x_3)$, where x_1, x_2, x_3 are positive real numbers for which $x_1 + x_2 + x_3 = 9$. Then the value of $\log_2 (m^3) + \log_3 (M^2)$ is (2020)
- 27. Let a_1, a_2, a_3, \dots be a sequence of positive integers in arithmetic progression with common difference 2. Also, let b_1, b_2, b_3, \dots be a sequence of positive integers in geometric progression with common ratio 2. If $a_1 = b_1 = c$, then the number of all possible values of c, for which the equality

$$2(a_1 + a_2 + \dots + a_n) = b_1 + b_2 + \dots + b_n$$

Assertion & Reason

- (A) If ASSERTION is true, REASON is true, REASON is a correct explanation for ASSERTION.
- (B) If ASSERTION is true, REASON is true, REASON is not a correct explanation for ASSERTION.
- (C) If ASSERTION is true, REASON is false.
- (D) If ASSERTION is false, REASON is true.
- 28. Suppose four distinct positive numbers a_1, a_2, a_3, a_4 are in G.P. Let $b_1 = a_1, b_2 = b_1 + a_2, b_3 = b_2 + a_3$ and $b_4 = b_3 + a_4$. Assertion : The numbers b_1, b_2, b_3, b_4 are neither in AP nor in G.P. Reason : The numbers b_1, b_2, b_3, b_4 are in HP. (2008)

(a) A (b) B (c) C (d) D (2000)

Using the following passage, solve Q.29 to Q.31

Passage - 1

Let V_r denote the sum of the first r terms of an arithmetic progression (A.P.) whose first term is r and the common difference is (2r-1). Let $T_r = V_{r+1} - V_r - 2$ and $Q_r = T_{r+1} - T_r$ for r = 1, 2, ... (2007) The sum V + V + ... + V is :

29. The sum
$$V_1 + V_2 + ... + V_n$$
 is:
(a) $\frac{1}{12}n(n+1)(3n^2 - n + 1)$ (b) $\frac{1}{12}n(n+1)(3n^2 + n + 2)$
(c) $\frac{1}{2}n(2n^2 - n + 1)$ (d) $\frac{1}{3}(2n^3 - 2n + 3)$

30. T_r is always :

(a) an odd number	(b) an even number
(c) a prime number	(d) a composite number

Which one of the following is a correct statement ?
(a) Q₁, Q₂, Q₃, ... are in A.P. with common difference 5
(b) Q₁, Q₂, Q₃... are in A.P. with common difference 6
(c) Q₁, Q₂, Q₃... are in A.P. with common difference 11
(d) Q₁=Q₂=Q₃=...

Using the following passage, solve Q.32 to Q.34

Passage – 2

Let A_1 , G_1 , H_1 denote the arithmetic, geometric and harmonic means, respectively, of two distinct positive numbers. For $n \ge 2$, let A_{n-1} and H_{n-1} has arithmetic, geometric and harmonic means as A_n , G_n , H_n respectively. (2007)

...

32. Which one of the following statements is correct? (a) $G \ge G \ge G \ge$

(a)
$$G_1 > G_2 > G_3 > ...$$

(b) $G_1 < G_2 < G_3 < ...$
(c) $G_1 = G_2 = G_3 = ...$
(d) $G_1 < G_3 < G_5 < ...$ and $G_2 > G_4 > G_6 >$

33. Which of the following statements is correct ?

(a)
$$A_1 > A_2 > ...$$

(b) $A_1 < A_2 < A_3 < ...$
(c) $A_1 > A_3 > A_5 > ...$ and $A_2 < A_4 < A_6 < ...$
(d) $A_1 < A_3 < A_5 < ...$ and $A_2 > A_4 > A_6 > ...$

Which of the following statements is correct ?
(a) H₁>H₂>H₃>...
(b) H₁<H₂<H₃<...
(c) H₁>H₃>H₅>... and H₂<H₄<H₆<...
(d) H₁<H₃<H₅<... and H₂>H₄>H₆>...

۱	
eι	KΤ.
· 2	

35. Let a₁, a₂, be positive real numbers in geometric progression. For each n, let A_n, G_n, H_n be respectively, the arithmetic mean, geometric mean, and harmonic mean of a₁, a₂,, a_n. Find an expression for the geometric mean of G₁, G₂,..., G_n in terms of A₁, A₂, ..., A_n, H₁, H₂,..., H_n. (2001)

Answer Key

CHAPTER -3 SEQUENCE AND SERIES

EXERCISE - 1: BASIC OBJECTIVE QUESTIONS

I. (b)	2. (c)	3. (b)	4. (d)	5. (b)
6. (c)	7. (b)	8. (c)	9. (b)	10. (b)
11. (b)	12. (b)	13. (c)	14. (a)	15. (a)
16. (d)	17. (b)	18. (d)	19. (b)	20. (c)
21. (a)	22. (a)	23. (c)	24. (a)	25. (c)
26. (c)	27. (c)	28. (b)	29. (b)	30. (b)
31. (b)	32. (b)	33. (b)	34. (a)	35. (a)
36. (c)	37. (c)	38. (d)	39. (b)	40. (d)
41. (b)	42. (c)	43. (a)	44. (c)	45. (a)
46. (d)	47. (c)	48. (a)	49. (c)	50. (c)
51. (d)	52. (b)	53. (a)	54. (a)	55. (a)
56. (a)	57. (c)	58. (d)	59. (a)	60. (89)
61. (0)	62. (191)	63. (24)	64. (16)	65. (1)
66. (3)	67. (8)	68. (12)	69. (3)	70. (1)
71. (2)	72. (3)	73. (5)	74. (9)	75. (34)
76. (53261))	77. (570)	78. (1)	79. (3.00)
80. (398.0	0)			

1. (d)	2. (d)	3. (d)	4. (a)	5. (a)
6. (d)	7. (a)	8. (b)	9. (d)	10. (b)
11. (a)	12. (a)	13. (d)	14. (a)	15. (c)
16. (c)	17. (b)	18. (d)	19. (a)	20. (a)
21. (c)	22. (d)	23. (d)	24. (b)	()
25. (76.00)	26. (660.00	D)	27. (a)	28. (d)
29. (c)	30. (a)	31. 3.00	32. (52.00)	33. (d)
34. (a)	35. (a)	36. (D)	37. (a)	38. (C)
39. (c)	40. (c)	41. (28.00)	42. (303.00	D)
43. (d)	44. (b)	45. (d)	46. (b)	47. (b)
48. (b)	49. (a)	50. (4.00)	51. (c)	
52. (39.00))	53. (b)	54. (b)	55. (d)
56. (a)	57. (d)	58. (b)	59. (d)	60. (b)
61. (d)	62. (d)	63. (5.00)	64. (a)	65. (d)
66. (c)	67. (c)	68. (1540.0	00)	69. (d)
70. (504.00))	71. (c)	72. (c)	73. (d)
74. (14.00)	75. (a)	76. (7.00)	77. (b)	78. (3.00)
79. (a)	80. (1251.00))	81. (d)	82. (b)
83. (a)	84. (a)	85. (d)	86. (7744.0	00)
87. (2021.0	0)	88. (a)	89. (a)	90. (a)
91. (d)	92. (a)	93. (d)	94. (305.0	0)
95. (b)	96. (a)	97. (16.00)	98. (14.00)	99. (d)
100. (c)	101. (3.00)	102. (a)	103. (160.0	0)
104. (d)	105. (d)	106. (c)	107. (4.00)	
108. (3.00)	109. (b)	110. (c)	111. (9.00)	112. (c)
113. (10.00)	114. (d)	115. (a)		

CHAPTER -3 SEQUENCE AND SERIES

EXERCISE - 3: ADVANCED OBJECTIVE QUESTIONS

1. (b)	2. (a)	3. (a)	4. (b)	5. (b)
6. (c)	7. (c)	8. (c)	9. (b)	10. (a)
11. (a)	12. (a)	13. (a)	14. (a)	15. (a)
16. (a)	17. (d)	18. (c)	19. (c)	20. (a)
21. (d)	22. (c)	23. (b)	24. (a)	25. (a)
26. (a)	27. (a)	28. (a)	29. (b)	30. (b)
31. (d)	32. (a)	33. (c)	34. (c)	35. (b)
36. (c)	37. (d)	38. (a)	39. (b)	40. (a)
41. (d)	42. (c)	43. (d)	44. (a)	45. (b)
46. (d)	47. (d)	48. (d)	49. (a,b,c))
50. (a,b,d)) 51. (50)	52. (513)	53. (544)	54. (d)
55. (e)	56. (a)	57. (a)	58. (b)	59. (d)
60. (a=6, b = -4)		62. (Harm	onic progre	ession)

EXERCISE - 4: PREVIOUS YEAR JEE ADVANCED QUESTIONS

1. (a)	2. (d)	3. (a)	4. (c)	5. (a)
6. (a)	7. (d)	8. (a)	9. (c)	10. (c)
11. (c)	12. (d)	13. (b)	14. (a,d)	15. (7)
16. (3)	17. (0)	18. (9)	19. (8)	20. (5)
21. (4)	22. (9)	23. (6)	24. (3748)	
25. (157.00)	26. (8.00)	27. (1.00)	28. (c)

29. (b) **30.** (d) **31.** (b) **32.** (c) **33.** (a)

34. (b) 35.
$$G_m = (A_1 A_2 \dots A_n H_1 H_2 \dots H_n)^{\frac{1}{2n}}$$

64. = $\frac{1}{2} \left[1 - \frac{1}{1 \cdot 3 \cdot 5 \cdot .. \cdot (2n+1)} \right]$