
Metals and Non-metals

There are about 115 chemical elements known at present, (22 non-metals, 8 metalloids and the remaining metals). On the basis of their properties all the elements can be divided into three main groups (1) Metals, (2) Non-metals and (3) Metalloids.

Elements that border on the amphoteric line (shown in green) are metalloids. They have characteristics of both metals and non-metals. Aluminium (Al), however, definitely has mostly metallic characteristics, and boron (B) is mostly non-metallic.

Subgroup	Definition/Location
Metals	
Alkali Metals	Series of very reactive metals group 1 on periodic table (with
	the exception of gydrogen)
Alkaline	Series of reactive metals (less reactive than alkali metals).
Earth Metals	Group 2 on periodic table
Transition	Series of elements that exhibit characteristics of metals,
Metals	though less reactive and less metallic than the first two
	groups of metals.
	Groups 3-12 on periodic table
Metalloids	
Elements that e	xhibit metallic characteristics as well as some non-metallic

characteristics, such as reactivity (whether as metal or nonmetal) depending on which element it's reacting with groups 13-16, but only the highlighted ones next to stair steps on periodic table.

Subgroup	Definition/Location
	Non-metals
Halogens	Series of elements that are most reactive for nonmetals due to
	their near-stable electron configuration (a valence shell of 7
	electrons)
	Group 17 on periodic table
Noble	Series of elements that are inert (nonreactive) due to stable
Gases	electron configuration (a full valence shell of 8 electrons)
	Group 18 on periodic table

Metals

- 1. Have luster
- 2. Are malleable and ductile
- 3. Conduct heat and electricity

Nonmetals

- 1. Are dull 2. Are brittle 3. Do not conduct heat or electricity very well
- 4. Tend to lose electrons

4. Tend to gain electrons

1. Metals: Elements that conduct heat and electricity, and are malleable and ductile. They are also lustrous, hard, strong, heavy and sonorous, e.g.: Fe, Al, Cu, Ag, Au, Zn, Su, Pb, Hg etc. Mercury is a liquid metal.

During Chemical Reactions:

- Metal can from positive ions by loosing electrons;
- They form basic oxides.
- Most abundant metal Aluminium.

2. Non-metals: Elements that do not conduct electricity and heat and are neither malleable nor ductile. They are brittle, dull appearance and non-sonorous, e.g. C, S, P, Si, H₂, O₂.

During Chemical Reactions:

- Non-metals from negative ions by gaining electrons;
- They form acidic oxides.
- Most abundant non-metal Oxygen.

3. Metalloids share characteristics of both metals and nonmetals and are also called semimetals. Metalloids are typically semi-conductors, which mean that they both insulate and conduct electricity. This semi-conducting property makes metalloids very useful as a computer chip material. Examples of metalloid elements are Silicon and Boron.

Physical Property	Metals	Non-metals
State	Solid at room temp.	Mostly gases.
	Exceptions; Hg and Ga	Exceptions; C, S, P, I ₂
	are liquid	(solid) and Br2 (liquid)
Melting and	Very high.	Very low.
Boiling point	Exceptions; Na, K, Hg	Exceptions; C, Si, B
	(low melting & boiling	(high boiling point)
	point), Ga, Cs (low	
	melting point but high	
	boiling point)	
Hardness	Generally hard.	Solid non-metals are
	Exception; Na and K are	brittle. Exception;
	soft.	Diamond (hardest)

DensityHigh density. Exceptions; Li, Na, K (lower than water, 1 g/cm ³)Low density. Exception; DiamondConductivityGood conductor of heat and electricity. Exceptions; Bi and W are poor conductors of electricity.Bad conductors of heat and electricity. Exception; Graphite and gas carbon allotropic form of carbon are good conductor of electricity.Lustre (shining property)IustrousNot lustrous Exception; Zn graphite.Tensile strengthHigh. Exception; Zn ductileDo not have tensile strengthMalleability(which they can be beaten into thin wires)Generally malleable and ductileNeither malleable nor ductileSonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorousOccurrenceFound in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.Table: 8.2 Chemical Properties of Metals and Non-metalsNon-metalsNon-metalsNatureElectropositive (Al_O_,ZnO) lonic (Al_O_,ZnO) lonicNon-metal oxides; Acidic (CO_2,SO_2,NO_2 etc)NatureMetal Acid→ Metal vaide / hydroxide + H2 $Q_A_{L}Q_A_{P}G_{Q}A$ Non reaction (H_2,O_C otc) CovalentReaction with waterMetal A ccid→ Metal state in form metal oxide hQ_A, Te_Q_ANor reaction (SO_2, SO_2, NO_2 etc)Reaction with waterMetal Acid→ Metal state in form metal oxide e.g. Al_2Q_A, Fe_Q_ANor reaction (SO_2, SO_2, AD_2H_2O+2SO_2Reaction with waterMetal Acid→ Metal state in form metal oxid				
(lower than water, 1 g/cm ³)Image: second	Density	High density.	Low density.	
g/cm³)g/cm³)ConductivityGood conductor of heat and electricity. Exceptions; Bi and W are poor conductors of electricity.Bad conductors of heat and electricity. Exception; Graphite and gas carbon allotropic form of carbon are good conductor of electricity.Lustre (shining property)IustrousNot lustrous Exceptions; I2 and graphite.Tensile strengthHigh. Exception; Zn ductileDo not have tensile strengthMalleability(which they can be beaten into thin sheets)Generally malleable and ductileNeither malleable nor ductile.Ductility (which they can be drawn into thin wires)Give sonorous sound when struck.Non-sonorousSonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorousFable: 8.2 Chemical Properties of Metals and Non-metalsElectronegative $(Ter state)$ Electronegative $(Ter state)$ TatureElectropositive $(Ter state)$ Electronegative $(Ter state)$ Non-metalsReaction with O_2 $O Cuide]Metal state;(A_1O_3, ZnO) IonicNon-metal state;(Co_2, SO_2, NO_2 etc)Reaction withwaterMetal + A_2O \rightarrow Metal(A_1O_3, ZnO) IonicNon-metals + H_2O \rightarrowNor eactionReaction withwaterMetal + A_2O \rightarrow Metal(A_2O_3, Fe_3O_4)Non-metals + H_2O \rightarrowNor eactionReaction withwaterMetal + A_2O \rightarrow Metal(A_2O_3, Fe_3O_4)Nor eactionReaction withwaterMetal + A_2O \rightarrow Metal(A_2O_3, Fe_3O_4)Nor eactionReaction withwaterMet$		Exceptions; Li, Na, K	Exception; Diamond	
Conductivity Good conductor of heat and electricity. Exceptions; Bi and W are poor conductors of electricity. Bad conductors of heat and electricity. Exception; Graphite and gas carbon allotropic form of carbon are good conductor of electricity. Lustre (shining property) Ilustrous Not Exceptions; I ₂ and graphite. Tensile strength High. Exception; Zn Do not have tensile strength Not lustrous Malleability(which they can be beaten into thin sheets) Generally malleable and ductile Neither malleable nor ductile. Sonorousness (which they produce a ringing sound) Give sonorous sound when struck. Non-sonorous Fable: 8.2 Chemical Properties of Metals and Non-metals Found in free state as (free state) Wetals Non-metals Reaction with O ₂ O + 2e ⁻ → O ²⁻ [Element + Oxygen → Oxide] Metal voxide; Au _D O ₃ , F ₀ O ₄ Non-metal oxide; Aridic (CO ₂ , SO ₂ , NO ₂ etc) Reaction with water Metal + H ₂ O → Metal oxide / hydroxide + H ₂ ↑ Al and Fe reacts with steam to form metal oxide e.g. Al ₂ O ₃ , F ₈ O ₄ Non reaction [S reacts with conc. acids] Reaction with diluted acids Metal + Acid→ Metal Sult + H ₂ with H ₂ SO ₄ → sulphates HCl → Chlorides Nor reaction [S reacts with conc. acids]		(lower than water, 1		
and electricity. Exceptions; Bi and W are poor conductors of electricity.and electricity. Exception; Graphite and gas carbon allotropic form of carbon are good conductor of electricity.Lustre (shining property)lustrousNot Iustrous Exceptions; I2 and graphite.Tensile strengthHigh. Exception; Zn ductileDo not have tensile strengthMalleability(which they can be beaten into thin sheets)Generally malleable and ductileNeither malleable nor ductile.Sonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorousFable: 8.2 Chemical PropertiesMetalsFound in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.Table: 8.2 Chemical PropertiesMetalsNon-metalsOccurrence (M ⁺ M ²⁺ M ²⁺)Electropositive (M ⁺ M ²⁺ M ²⁺)Electronegative X + e ⁻ $\rightarrow X_i[X^-, X^{2-}, X^{1-}]$ (M ⁺ M ²⁺ M ²⁺)Reaction with O2 $\rightarrow 0^{2-}$ [Element + 0xygen $\rightarrow 0xide]Metal + Acid\rightarrow Metaloxide / hydroxide + H2\uparrow Al and Fe reacts withsteam to form metaloxide / hydroxide + H2\uparrow Al and Fe reacts withsteam to form metaloxide / hydroxide + H2\uparrow Al and Fe reacts withsteam to form metaloxide / hydroxide + H2\uparrow Al and Fe reacts withsteam to form metaloxide / hydroxide + H2\uparrow Al and Fe reacts withsteam to form metaloxide / hydroxide + H2\uparrow Al and Fe reacts withsteam to form metaloxide / hydroxide + H2\uparrow Al and Fe reacts withsteam to form metaloxide / hydroxide + H2\uparrow Al and Fe reacts withsteam to form metaloxide / hydroxide + H2$		g/cm ³)		
Exceptions; Bi and W are poor conductors of electricity.Exception; Graphite and gas carbon allotropic form of carbon are good conductor of electricity.Lustre (shining property)lustrousNot lustrous Exception; I2 and graphite.Tensile strengthHigh. Exception; ZnDo not have tensile strengthMalleability(which they can be beaten into thin sheets)Generally malleable and ductileNeither malleable nor ductile.Ductility (which they can be drawn into thin sheets)Give sonorous sound when struck.Non-sonorousSonorousness (which they produce a ringing sound)Found in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.Chemical propertiesMetalMon-metalsNatureElectropositive (M $^{+}M^{+}h^{-}$); 	Conductivity	Good conductor of heat	Bad conductors of heat	
are poor conductors of electricity.gas carbon allotropic form of carbon are good conductor of electricity.Lustre (shining 		and electricity.	and electricity.	
electricity.form of carbon are good conductor of electricity.Lustre (shining property)lustrousNot lustrous Exceptions: I2 and graphite.Tensile strengthHigh. Exception; ZnDo not have tensile strengthMalleability(which they can be beaten into thin sheets)Generally malleable and ductileNeither malleable nor ductile.Ductility (which they can be drawn into thin wires)Generally malleable and ductileNeither malleable nor ductile.Sonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorousCocurrenceFound in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.Table: 8.2 Chemical PropertiesMetalsNon-metalsOreaction with O 0 Cut $(M^+M^{2*}M^{2*})$ Electronegative ($M^+M^{2*}M^{2*}$)Non-metal state;Reaction with O 0 Oxide]Metal $+H_2O \rightarrow$ Metal oxide / hydroxide $+H_2$ $1 Al and Fe reacts withsteam to form metaloxide / hydroxide +H_21 Al and Fe reacts withsteam to form metaloxide / hydroxide +H_21 Al and Fe reacts withsteam to form metaloxide / hydroxide +H_21 Al and Fe reacts withsteam to form metaloxide / hydroxide +H_21 Al and Fe reacts withsteam to form metaloxide / hydroxide +H_21 Al and Fe reacts withsteam to form metaloxide / hydroxide +H_21 Al and Fe reacts withsteam to form metaloxide / hydroxide +H_21 Al and Fe reacts withsteam to form metaloxide / hydroxide +H_21 Al and Fe reacts withsteam to form metaloxide / hydroxide +H_21 Al and $		Exceptions; Bi and W	Exception; Graphite and	
$\begin{tabular}{ c c c c c } \hline I ustrous & conductor of electricity. \\ \hline Lustre (shining property) & lustrous & Exceptions: I_2 and graphite. \\ \hline Tensile strength & High. Exception; Zn & Do not have tensile strength & ductile & ductil$		are poor conductors of	gas carbon allotropic	
Lustre (shining property)IustrousNot Iustrous Exceptions: I2 and graphite.Tensile strengthHigh. Exception; ZnDo not have tensile strengthMalleability(which they can be beaten into thin sheets)Generally malleable and ductileNeither malleable nor ductile.Ductility (which they can be drawn into thin wires)Give sonorous sound when struck.Non-sonorousSonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorousOccurrenceFound in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.Table: 8.2 Chemical Properties of Metals and Non-metalsNon-metalsNatureElectropositive $[M \rightarrow M^+ + e^-];$ $(M^+M^{2+}M^{3+})$ Electronegative $X + e^- \rightarrow X; [X^-, X^{2-}, X^{3-}]$ Reaction with O_2 $O 2 O_2^{-}$ [Element + Oxygen $\rightarrow Oxide]Metal oxides;Basic (Na_2O, MgOetc.),Amphoteric(Al_1O_3, ZnO) IonicNon-metal oxides;Acidic(CO_2, SO_2, NO_2 etc)Reaction withwaterMetal + H_2O \rightarrow Metaloxide/hydroxide + H_2\uparrow Al and Fe reacts withsteam to form metaloxide e.g.Al_2O_3/Fe_3O_4Nor reaction[S reacts with conc.acids]Reaction withdiluted acidsMetal + Acid\rightarrow Metalalt + H_2 withH_2SO_4 \rightarrow sulphatesHCI \rightarrow ChloridesNo reaction[S reacts with conc.acids]Heat - Acid\rightarrow MetalAla O_1 = ChloridesHCI \rightarrow ChloridesNo reaction[S reacts with conc.acids]$		electricity.	form of carbon are good	
property)Exceptions: I2 and graphite.Tensile strengthHigh. Exception; ZnDo not have tensile strengthMalleability(which they can be beaten into thin sheets)Generally malleable and ductileNeither malleable nor ductile.Ductility (which they can be drawn into thin wires)Give sonorous sound when struck.Non-sonorousSonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorousOccurrenceFound in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.Fable: 8.2 Chemical Properties of Metals and Non-metalsNon-metalsOrea (M*M2*M3*)Electronogative (M*M2*M3*)Non-metal state.Reaction with O2 • Oxide]Metal oxides; Amphoteric (A1_Q, ZnO) IonicNon-metal state, H2 O → Normetals + H2 O → Normetal state H2 O → No reactionReaction with waterMetal + H2 O → Metal oxide / hydroxide + H2 A1 and Fe reacts with steam to form metal oxide e.g. AL_Q, JFe3QNor reaction (S reacts with conc. acids]Reaction with diluted acidsMetal + Acid → Metal stat + H2 with H2SQ4 → sulphates HCI → ChloridesNo reaction S reacts with conc. acids]			conductor of electricity.	
Tensile strengthHigh. Exception; ZnDo not have tensile strengthMalleability(which they can be beaten into thin sheets)Generally malleable and ductileNeither malleable nor ductile.Ducility (which they can be drawn into thin wires)Give sonorous sound when struck.Non-sonorousSonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorousOccurrenceFound in combined state. (free state)Found in free state as well as in the combined state.Table: 8.2 Chemical Properties of Metals and Non-metalsNon-metalsNatureElectropositive ($M^+M^2^+M^{3+}$)Electronegative (CQ_2,SQ_2,NQ_2 etc)Reaction with O_2 $O xide]$ Metal oxides; Amphoteric ($Al_2O_3,ZnO)$ lonicNon-metal oxides; Acdic (CQ_2,SQ_2,NQ_2 etc)Reaction with waterMetal + $H_2O \rightarrow$ Metal oxide / hydroxide + H_2 $\uparrow Al and Fe reacts withsteam to form metaloxide e.g.Al_2O_3,Fe_3O_4Nor reactionReaction withdiluted acidsMetal + Acid \rightarrow Metalsalt + H_2 withH_2SO_4 \rightarrow sulphatesHCI \rightarrow ChloridesNo reaction$	Lustre (shining	lustrous	Not lustrous	
Tensile strength Malleability(which they can be beaten into thin sheets)High. Exception; ZnDo not have tensile strength Malleability (which they can be beaten into thin sheets)Generally malleable and ductileNeither malleable nor ductile. Sonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorous Occurrence Found in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state. Table: 8.2 Chemical propertiesMetals Non-metals Nature Electropositive ($M \rightarrow M^+ + e^-$]; ($M^+M^{2*}M^{3*}$)Electronegative $X + e^- \rightarrow X; [X^-, X^{2-}, X^{3-}]$ Reaction with waterMetal axides; Basic (Na_2O, MgO etc.),Non-metal oxides; Acidic (CO ₂ , SO ₂ , NO ₂ etc.) Reaction with waterMetal + H ₂ O \rightarrow Metal oxide / hydroxide + H ₂ \uparrow Al and Fe reacts with steam to form metal oxide e.g. Al ₂ O ₃ , Fe ₃ O ₄ Non reaction (S reacts with conc. acids] Reaction with diluted acidsMetal + Acid \rightarrow Metal salt + H $_2$ with H ₂ SO ₄ \rightarrow sulphates HCI \rightarrow Chlorides UNO \rightarrow With conc. acids]No reaction (S reacts with conc. acids]	property)			
Malleability(which they can be beaten into thin sheets)Generally malleable and ductileNeither malleable nor ductile.Ductility (which they can be drawn into thin wires)Give sonorous sound when struck.Non-sonorousSonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorousOccurrenceFound in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.Table: 8.2 Chemical propertiesMetalsNon-metalsChemical propertiesMetalsNon-metalsNatureElectropositive ($M \rightarrow M^+ + e^-$]; ($M^+M^{2^h}M^{3^h}$)Electronegative (CO_2, SO_2, NO_2 etc.)Reaction with O_2 \rightarrow Oxide]Metal oxides; Basic (Na_2O, MgO etc.), Amphoteric (Al_2O_3, ZnO) IonicNon-metals + H_2O \rightarrow No reaction (H_2O, CO etc) CovalentReaction with waterMetal + H_2O \rightarrow Metal oxide / hydroxide + H2 1 Al and Fe reacts with steam to form metal oxide e.g. Al_2O_3, Fe_3O_4 Non reaction (S reacts with conc. acids]Reaction with diluted acidsMetal + Acid \rightarrow Metal $Al and Fe reacts withsteam to form metaloxide e.g.Al_2O_3, Fe_3O_4No reaction(S reacts with conc.acids]HellAl Cl \cap \to ChloridesHCl \rightarrow ChloridesHCl \rightarrow ChloridesNo reaction(S reacts with conc.acids]$			graphite.	
Malleability(which they can be beaten into thin sheets)Generally malleable and ductileNeither malleable nor ductile.Ductility (which they can be drawn into thin wires)Give sonorous sound when struck.Non-sonorousSonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorousOccurrenceFound in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.Table: 8.2 Chemical Properties of Metals and Non-metalsNon-metalsOther PropertiesElectropositive [$M \rightarrow M^+ + e^-$]; ($M^+M^{2+}M^{3+}$)Electronegative $X + e^- \rightarrow X; [X^-, X^{2-}, X^{3-}]$ Reaction with O 2 O + 2e^- $\rightarrow O^{2+}$ [Element + Oxygen $\rightarrow Oxide]Metal oxides;Basic (Na_2O, MgOetc.),Amphoteric(Al_2O_3, ZnO) IonicNon-metals + M_2O \rightarrowNormetal state H _2O \rightarrow Metaloxide / hydroxide + H_2\uparrow Al and Fe reacts withsteam to form metaloxide e.g.Al_2O_3/Fe_3O_4Non reaction[S reacts with conc.acids]Reaction withdiluted acidsMetal + Acid\rightarrow MetalAl_2SQ_4 \rightarrow 2H_2O+2SQ_2No reaction$	Tensile strength	High. Exception; Zn	Do not have tensile	
they can be beaten into thin sheets)ductileductileDuctility (which they can be drawn into thin wires)ductileductile.Sonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorousOccurrenceFound in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.Table: 8.2 Chemical propertiesMetalsNon-metalsNatureElectropositive [$M \rightarrow M^+ + e^-$]; ($M^+M^{2+}M^{3+}$)Electronegative $X + e^- \rightarrow X; [X^-, X^{2-}, X^{3-}]$ Reaction with O 2 $\rightarrow Oxide$]Metal oxides; Basic (Na_2O, MgO etc.),Non-metal oxides; Acidic (CO2, SO2, NO, etc)Reaction with waterMetal + H_2O \rightarrow Metal oxide / hydroxide + H2 $\uparrow Al and Fe reacts withsteam to form metaloxide e.g.Al_2O_3/Fe_3O_4Non reaction[S reacts with conc.acids]Reaction withdiluted acidsMetal + Acid\rightarrow MetalAl_2SO_4 \rightarrow sulphatesHC1 \rightarrow ChloridesNo reaction[S reacts with conc.acids]$			strength	
into thin sheets) Ductility (which they can be drawn into thin wires)Give sonorous sound when struck.Non-sonorousSonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorousOccurrenceFound in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.Table: 8.2 Chemical Properties of Metals and Non-metalsNon-metalsChemical propertiesMetalsNon-metalsNatureElectropositive (M ⁺ M ²⁺ M ³⁺)Electronegative (CO ₂ ,SO ₂ ,NO ₂ etc)Reaction with O → Oxide]Metal + H ₂ O → Metal oxide/ hydroxide + H ₂ Al and Fe reacts with steam to form metal oxide e.g. Al ₂ O ₃ ,Fe ₃ O ₄ Non-metals + H ₂ O → No reactionReaction with diluted acidsMetal + Acid→ Metal salt + H ₂ with H ₂ SO ₄ → sulphates HCI → ChloridesNo reaction side]	• •	Generally malleable and		
Ductility (which they can be drawn into thin wires)Give sonorous sound when struck.Non-sonorousSonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorousOccurrenceFound in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.Table: 8.2 Chemical Properties of Metals and Non-metalsNon-metalsChemical propertiesMetalsNon-metalsNatureElectropositive $[M \rightarrow M^+ + e^-];$ $(M^+M^{2+}M^{3+})$ Electronegative $X + e^- \rightarrow X; [X^-, X^{2-}, X^{3-}]$ Reaction with O_2 $\rightarrow O^{2^c}$ [Element + Oxygen $\rightarrow Oxide]$ Metal oxides; Basic (Na_2O, MgO etc.), Amphoteric (Al_2O_3, ZnO) IonicNon-metal oxides; Acidic $(CO_2, SO_2, NO_2 etc)$ Reaction with waterMetal + H_2O \rightarrow Metal oxide / hydroxide + H2 \uparrow Al and Fe reacts with steam to form metal oxide e.g. Al_2O_3, Fe_3Q_4 Non reaction [S reacts with conc. acids]Reaction with diluted acidsMetal + Acid \rightarrow Metal $Hcl \rightarrow Chlorides$ Nor reactionHCl $\rightarrow Chlorides$ $HCl \rightarrow ChloridesNor eaction$	2	ductile	ductile.	
they can be drawn into thin wires)Give sonorous sound when struck.Non-sonorousSonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorousOccurrenceFound in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.Table: 8.2 Chemical Properties of Metals and Non-metalsMetalsNon-metalsTable: 8.2 Chemical Properties of Metals and Non-metalsElectronegative $X + e^- \rightarrow X; [X^-, X^{2^-}, X^{3^-}]$ $(M^+M^{2^+}M^{3^+})$ Electronegative $X + e^- \rightarrow X; [X^-, X^{2^-}, X^{3^-}]$ Reaction with O_2 $\rightarrow O^{2^+}$ [Element + Oxygen $\rightarrow Oxide]$ Metal oxides; Basic (Na_2O, MgO etc.), Amphoteric (Al_2O_3, ZnO) IonicNon-metal oxides; Acidic $(CO_2, SO_2, NO_2 etc)$ Reaction with waterMetal + H_2O \rightarrow Metal oxide / hydroxide + H2 \uparrow Al and Fe reacts with steam to form metal oxide e.g. Al_2O_3, Fe_3O_4 Non reaction [S reacts with conc. acids]Reaction with diluted acidsMetal + Acid \rightarrow Metal $H_2SO_4 \rightarrow$ sulphates $HCI \rightarrow ChloridesNo reactionS+2H_2O_4 - 2H_2O+2SO_2$				
into thin wires)Give sonorous sound when struck.Non-sonorousSonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorousOccurrenceFound in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.Table: 8.2 Chemical Properties of Metals and Non-metalsMetalsNon-metalsOreanical propertiesMetalsNon-metalsNatureElectropositive [$M \rightarrow M^+ + e^-$]; ($M^+M^{2+}M^{3+}$)Electronegative $X + e^- \rightarrow X; [X^-, X^{2^-}, X^{3^-}]$ Reaction with O 2 ($D + 2e^- \rightarrow O^{2^-}$ [Element + Oxygen $\rightarrow Oxide]Metal oxides;Basic (Na_2O, MgOetc.),Amphoteric(Al_2O_3, ZnO) IonicNon-metal oxides;Acidic(CO_2, SO_2, NO_2 etc.)Reaction withwaterMetal + H_2O \rightarrow Metaloxide/ hydroxide + H22Al and Fe reacts withsteam to form metaloxide e.g.Al_2O_3, Fe_3O_4Non reaction[S reacts with conc.acids]Reaction withdiluted acidsMetal + Acid\rightarrow MetalAlt + H_2 withH_2SO_4 \rightarrow sulphatesHCl \rightarrow ChloridesS + 2H_2SO_4 \rightarrow 2H_2O + 2SO_2$	• `			
Sonorousness (which they produce a ringing sound)Give sonorous sound when struck.Non-sonorousOccurrenceFound in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.Table: 8.2 Chemical Properties of Metals and Non-metalsMetalsNon-metalsChemical propertiesMetalsNon-metalsNatureElectropositive $[M \rightarrow M^+ + e^-];$ $(M^+M^{2+}M^{3+})$ Electronegative $X + e^- \rightarrow X; [X^-, X^{2-}, X^{3-}]$ Reaction with O 2 (Element + Oxygen $\rightarrow Oxide]$ Metal oxides; Basic (Na 2O, MgO etc.), Amphoteric (Al_2O_3, ZnO) IonicNon-metal oxides; Acidic $(CO_2, SO_2, NO_2 etc)$ Reaction with waterMetal + H_2O \rightarrow Metal oxide/ hydroxide + H2 $\uparrow Al and Fe reacts withsteam to form metaloxide e.g.Al_2O_3, Fe_3O_4Non reaction[S reacts with conc.acids]Reaction withdiluted acidsMetal + Acid\rightarrow Metalh_2SO_4 \rightarrow sulphatesHCl \rightarrow ChloridesS + 2H_2SO_4 \rightarrow 2H_2O + 2SO_2$	•			
(which they produce a ringing sound)when struck.Found in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state. Cocurrence Found in combined state.Found in free state as well as in the combined state. Table: 8.2 Chemical Properties of Metals and Non-metalsNon-metals Chemical propertiesMetalsNon-metals Chemical propertiesMetalsNon-metals Chemical propertiesMetalsNon-metals Reaction with $\rightarrow 0^2$ [Element + Oxygen $\rightarrow Oxide]$ Metal oxides; Basic (Na_2O, MgO etc.),Non-metal oxides; Acidic (CO_2,SO_2,NO_2 etc) Reaction with waterMetal + H_2O \rightarrow Metal oxide/ hydroxide + H2 \uparrow Al and Fe reacts with steam to form metal oxide e.g. Al_2O_3/Fe_3O_4 Non reaction [S reacts with conc. acids] Reaction with diluted acidsMetal + Acid \rightarrow Metal $salt + H_2$ with $H_2SO_4 \rightarrow$ sulphates $HCl \rightarrow$ Chlorides $S + 2H_2SO_4 \rightarrow 2H_2O + 2SO_2$,			
a ringing sound)Found in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.OccurrenceFound in free state as (free state)Found in free state as well as in the combined state.Table: 8.2 Chemical Properties of Metals and Non-metalsNon-metalsOhemical propertiesMetalsNon-metalsNatureElectropositive $[M \rightarrow M^+ + e^-];$ $(M^+M^{2+}M^{3+})$ Electronegative $X + e^- \rightarrow X; [X^-, X^{2-}, X^{3-}]$ Reaction with O2 $\rightarrow Oz^2$ Metal oxides; Basic (Na2O, MgO (CO2, SO2, NO2 etc)Non-metal oxides; Acidic $(CO2, SO2, NO2 etc)$ Reaction with $\rightarrow Oxide]$ Metal + H2O → Metal oxide / hydroxide + H2 $\uparrow Al and Fe reacts withsteam to form metaloxide e.g.Al_2O_3, Fe_3O_4Non-metals + H2O →No reactionReaction withdiluted acidsMetal + Acid→ Metalsalt + H_2 withH_2SO_4 → sulphatesHCl → ChloridesNo reactionS + 2H_2SO_4 \rightarrow 2H_2O + 2SO_2$			Non-sonorous	
OccurrenceFound in combined state. Exception; Noble metals (free state)Found in free state as well as in the combined state.Table: 8.2 Chemical Properties of Metals and Non-metalsMon-metalsChemical propertiesMetalsNon-metalsNatureElectropositive [M → M ⁺ + e ⁻]; (M ⁺ M ²⁺ M ³⁺)Electronegative X + e ⁻ → X;[X ⁻ ,X ²⁻ ,X ³⁻]Reaction with O2 → Oxide]Metal oxides; Basic (Na2O, MgO etc.),Non-metal oxides; Acidic (CO2,SO2,NO2 etc)Reaction with waterMetal + H2O → Metal oxide/ hydroxide + H2 ↑ Al and Fe reacts with steam to form metal oxide e.g. Al2O3,Fe3O4Nor reactionReaction with diluted acidsMetal + Acid→ Metal salt + H2 with H2SO4 → sulphates HC1 → ChloridesNor reaction		when struck.		
Exception; Noble metals (free state)well as in the combined state.Table: 8.2 Chemical Properties of Metals and Non-metalsNon-metalsChemical propertiesMetalsNon-metalsNatureElectropositive $[M \rightarrow M^+ + e^-];$ $(M^+M^{2+}M^{3+})$ Electronegative $X + e^- \rightarrow X; [X^-, X^{2-}, X^{3-}]$ Reaction with O_2 $0 + 2e^- \rightarrow O^{2-}$ [Element + Oxygen $\rightarrow Oxide]$ Metal oxides; Basic (Na ₂ O, MgO etc.),Non-metal oxides; Acidic $(CO_2, SO_2, NO_2 etc)$ Reaction with waterMetal + H ₂ O \rightarrow Metal oxide/ hydroxide + H ₂ $\uparrow Al and Fe reacts withsteam to form metaloxide e.g.Al_2O_3, Fe_3O_4Non-metal st H2O \rightarrowNo reactionReaction withdiluted acidsMetal + Acid \rightarrow MetalBalt + H_2 withH_2SO_4 \rightarrow sulphatesHC1 \rightarrow ChloridesNo reactionS + 2H_2SO_4 \rightarrow 2H_2O + 2SO_2$				
(free state)combined state.Table: 8.2 Chemical Properties of Metals and Non-metalsChemical propertiesMetalsNon-metalsNatureElectropositive $[M \rightarrow M^+ + e^-];$ $(M^+M^{2+}M^{3+})$ Electronegative $X + e^- \rightarrow X; [X^-, X^{2-}, X^{3-}]$ Reaction with O2 $O + 2e^- \rightarrow O^{2-}$ [Element + Oxygen $\rightarrow Oxide]$ Metal oxides; Basic (Na2O, MgO etc.),Non-metal oxides; Acidic $(CO_2, SO_2, NO_2 etc)$ Reaction with ϕ Oxide]Metal + H_2O \rightarrow Metal oxide/ hydroxide + H2 $\uparrow Al and Fe reacts withsteam to form metaloxide e.g.Al_2O_3/Fe_3O_4Non-metals + H_2O \rightarrowNo reactionReaction withdiluted acidsMetal + Acid\rightarrow MetalH_2SO_4 \rightarrow sulphatesHCl \rightarrow ChloridesNo reactionS + 2H_2SO_4 \rightarrow 2H_2O + 2SO_2$	Occurrence			
Rable: 8.2 Chemical Properties of Metals and Non-metalsChemical propertiesMetalsNon-metalsNatureElectropositive $[M \rightarrow M^+ + e^-];$ $(M^+M^{2+}M^{3+})$ Electronegative $X + e^- \rightarrow X; [X^-, X^{2-}, X^{3-}]$ Reaction with O_2 $O + 2e^- \rightarrow O^{2-}$ [Element + Oxygen $\rightarrow Oxide]$ Metal oxides; Basic (Na ₂ O, MgO etc.),Non-metal oxides; Acidic $(CO_2, SO_2, NO_2 etc)$ Reaction with $\rightarrow Oxide]$ Metal + H ₂ O \rightarrow Metal oxide/ hydroxide + H ₂ \uparrow Al and Fe reacts with steam to form metal oxide e.g. Al_2O_3, Fe_3O_4 Non-metals + H ₂ O \rightarrow No reactionReaction with diluted acidsMetal + Acid \rightarrow Metal salt + H ₂ with H ₂ SO ₄ \rightarrow sulphates HC1 \rightarrow ChloridesNo reaction		-		
$\begin{array}{ c c c c } \hline \mbox{Chemical} & \mbox{Metals} & \mbox{Non-metals} \\ \hline \mbox{properties} & & \mbox{Electropositive} & \mbox{Electronegative} \\ \hline \mbox{Nature} & \mbox{Electropositive} & \mbox{Electronegative} \\ \hline \mbox{[}M \rightarrow M^+ + e^-]; & \mbox{$X + e^- \rightarrow X; [X^-, X^{2^-}, X^{3^-}]$} \\ \hline \mbox{(}M^+M^{2+}M^{3+}) & & \mbox{Non-metal oxides;} \\ \hline \mbox{O+2e^- \rightarrow O^{2^-}} & \mbox{Basic (Na_2O, MgO} \\ \mbox{[Element + Oxygen} & \mbox{etc.}), & \mbox{Non-metal oxides;} \\ \hline \mbox{Oxide]} & \mbox{etc.}), & \mbox{Non-metal oxides;} \\ \hline \mbox{Acidic} & (CO_2, SO_2, NO_2 \mbox{etc}) \\ \hline \mbox{Notice} & \mbox{(}Al_2O_3, ZnO) \mbox{Ionic} & \mbox{(}H_2O, CO \mbox{etc}) \mbox{Covalent} \\ \hline \mbox{Reaction with} & \mbox{Metal + H}_2O \rightarrow \mbox{Metal} \\ \mbox{oxide / hydroxide + H}_2 \\ \hline \mbox{Al and Fe reacts with} \\ \mbox{steam to form metal} \\ \mbox{oxide e.g.} \\ \hline \mbox{Al}_2O_3, Fe_3O_4 & \mbox{Non-metation} \\ \hline \mbox{Reaction with} & \mbox{Metal + Acid} \rightarrow \mbox{Metal} \\ \mbox{diluted acids} & \mbox{salt + H}_2 \mbox{ with} \\ \mbox{Hcl} \rightarrow \mbox{Chlorides} & \mbox{Steats with conc.} \\ \mbox{acids} \\ \mbox{Hcl} \rightarrow \mbox{Chlorides} & \mbox{Steats with conc.} \\ \mbox{acids} \\ \mbox{Hcl} \rightarrow \mbox{Chlorides} & \mbox{Steats with conc.} \\ \mbox{acids} \\ \mbox{Hcl} \rightarrow \mbox{Chlorides} & \mbox{Steats with conc.} \\ \mbox{acids} \\ \mbox{Hcl} \rightarrow \mbox{Chlorides} & \mbox{Steats with conc.} \\ \mbox{acids} \\ \mbox{Hcl} \rightarrow \mbox{Chlorides} & \mbox{Steats with conc.} \\ \mbox{acids} \\ \mbox{Hcl} \rightarrow \mbox{Chlorides} & \mbox{Steats with conc.} \\ \mbox{acids} \\ \mb$		· · · ·		
$\begin{tabular}{ c c c } \hline $\mathbf{properties}$ & \mathbf{k} & $$		-		
NatureElectropositive $[M \rightarrow M^+ + e^-];$ $(M^+M^{2+}M^{3+})$ Electronegative $X + e^- \rightarrow X; [X^-, X^{2-}, X^{3-}]$ Reaction with O2 $O + 2e^- \rightarrow O^{2-}$ [Element + Oxygen $\rightarrow Oxide]$ Metal oxides; Basic (Na2O, MgO etc.), Amphoteric (Al_2O_3, ZnO) IonicNon-metal oxides; Acidic $(CO_2, SO_2, NO_2 etc)$ Reaction with waterMetal + H_2O \rightarrow Metal oxide / hydroxide + H2 \uparrow Al and Fe reacts with steam to form metal oxide e.g. Al_2O_3, Fe_3O_4 Non-metals + H2O \rightarrow No reaction [S reacts with conc. acids]Reaction with diluted acidsMetal + Acid \rightarrow Metal $Basit + H_2$ with $H_2SO_4 \rightarrow$ sulphates $HCl \rightarrow$ ChloridesNo reaction $S+2H_2SO_4 \rightarrow 2H_2O+2SO_2$		Metais	Non-metals	
$ \begin{array}{c c} [M \rightarrow M^+ + e^-]; & X + e^- \rightarrow X; [X^-, X^{2^-}, X^{3^-}] \\ \hline & [M \rightarrow M^+ + e^-]; & X + e^- \rightarrow X; [X^-, X^{2^-}, X^{3^-}] \\ \hline & (M^+ M^{2^+} M^{3^+}) & Non-metal oxides; \\ \hline & O + 2e^- \rightarrow O^{2^-} & Basic (Na_2O, MgO \\ \hline & Ec.), & Acidic & (CO_2, SO_2, NO_2 etc) \\ \hline & Amphoteric & Neutral \\ \hline & (Al_2O_3, ZnO) Ionic & (H_2O, CO etc) Covalent \\ \hline & Non-metals + H_2O \rightarrow Metal \\ \hline & oxide/ hydroxide + H_2 \\ \hline & \uparrow Al and Fe reacts with \\ steam to form metal \\ oxide e.g. & Al_2O_3/Fe_3O_4 \\ \hline & Reaction with \\ \hline & Metal + Acid \rightarrow Metal \\ \hline & Al_2O_4, Fe_3O_4 \\ \hline & Reaction \\ \hline & HCl \rightarrow Chlorides \\ \hline & HCl \rightarrow Chlori$		Electropositive	Electronegative	
$ \begin{array}{c c} [M \rightarrow M + e_{1}, \\ (M^{+}M^{2+}M^{3+}) \end{array} & \\ \hline \\$	ivature	-	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$[M \rightarrow M' + e];$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$(M^+M^{2+}M^{3+})$		
$\begin{array}{c c c c c c } \mathbf{O} + 2e^- \rightarrow \mathbf{O}^{2-} & \mathbf{Basic} (\operatorname{Na_2O}, \operatorname{MgO} & \mathbf{Acidic} & (\operatorname{CO_2}, \operatorname{SO_2}, \operatorname{NO_2} \operatorname{etc}) \\ \hline & \text{etc.}, & \mathbf{Neutral} & (\operatorname{CO_2}, \operatorname{SO_2}, \operatorname{NO_2} \operatorname{etc}) \\ \hline & \mathbf{Amphoteric} & \mathbf{Neutral} & (\operatorname{H_2O}, \operatorname{CO} \operatorname{etc}) \operatorname{Covalent} \\ \hline & (\operatorname{Al_2O_3}, \operatorname{ZnO}) \operatorname{Ionic} & (\operatorname{H_2O}, \operatorname{CO} \operatorname{etc}) \operatorname{Covalent} \\ \hline & \text{water} & \operatorname{Metal} + \operatorname{H_2O} \rightarrow \operatorname{Metal} & \operatorname{Non-metals} + \operatorname{H_2O} \rightarrow \\ & \text{oxide} / \operatorname{hydroxide} + \operatorname{H_2} & \operatorname{No} \operatorname{reaction} & \\ & \uparrow \operatorname{Al} \operatorname{and} \operatorname{Fe} \operatorname{reacts} \operatorname{with} & \\ & \operatorname{steam} \operatorname{to} \operatorname{form} \operatorname{metal} & \\ & \operatorname{oxide} \operatorname{e.g.} & \\ & \operatorname{Al_2O_3}, \operatorname{Fe_3O_4} & \\ \hline & & & \\ \end{array} \\ \hline \\ \hline$	Reaction with O	· · · · · · · · · · · · · · · · · · ·	Non-metal oxides:	
$ \begin{array}{c c} \mbox{[Element + Oxygen]} \\ \hline \mbox{[Element + Oxygen]} \\ \rightarrow \mbox{Oxide]} \end{array} \qquad \begin{array}{c c} \mbox{etc.}, & (CO_2, SO_2, NO_2 \mbox{etc}) \\ \hline \mbox{Amphoteric} & (H_2O, CO \mbox{etc}) \mbox{Covalent} \\ \hline \mbox{Neutral} & (H_2O, CO \mbox{etc}) \mbox{Covalent} \\ \hline \mbox{Netarler} & (H_2O, CO \mbox{etc}) \mbox{Covalent} \\ \hline \mbox{water} & oxide/ \mbox{hydroxide + H}_2 & No \mbox{neatles + H}_2O \mbox{-} \\ \hline \mbox{oxide/ hydroxide + H}_2 & No \mbox{neatles + H}_2O \mbox{-} \\ \hline \mbox{Al and Fe reacts with} \\ steam to form \mbox{metal} & oxide \mbox{e.g.} & \\ \hline \mbox{Al}_2O_3, Fe_3O_4 & \\ \hline \mbox{Reaction with} & Metal + Acid \mbox{-} Metal \\ \mbox{diluted acids} & salt + H_2 \mbox{with} & [S \mbox{reaction} \\ \mbox{H}_2SO_4 \mbox{-} \mbox{sulphates} & acids] \\ \hline \mbox{H}_1 \mbox{-} \mbox{Chlorides} & S+2H_2SO_4 \mbox{-} \mbox{2}H_2O+2SO_2 \\ \mbox{H}_1 \mbox{-} \mbox{Chlorides} & S+2H_2SO_4 \mbox{-} \mbox{2}H_2O+2SO_2 \\ \hline \mbox{H}_2 \mbox{-} \mbox{N}_1 \mbox{-} \mbox{-} \mbox{2}H_2O+2SO_2 \\ \mbox{H}_1 \mbox{-} \mbox{Chlorides} & S+2H_2SO_4 \mbox{-} \mbox{2}H_2O+2SO_2 \\ \hline \mbox{H}_2 \mbox{-} \mbox{N}_1 \mbox{-} \mbox{2}H_2O+2SO_2 \\ \mbox{H}_2 \mbox{-} \mbox{2}H_2 \mbox{2}H_2 \mbox{2}H_2 \mbox{-} \mbox{2}H_2 \m$	-	· ·		
$ \begin{array}{c c} \rightarrow \text{Oxide} \end{bmatrix} & \textbf{Amphoteric} & \textbf{Neutral} \\ \hline & (\text{Al}_2\text{O}_3, Zn\text{O}) \text{ Ionic} & (\text{H}_2\text{O}, \text{CO etc}) \text{ Covalent} \\ \hline & \textbf{Reaction with} & \text{Metal} + \text{H}_2\text{O} \rightarrow \text{Metal} & \text{Non-metals} + \text{H}_2\text{O} \rightarrow \\ \hline & \textbf{water} & \textbf{oxide} / \text{hydroxide} + \text{H}_2 & \text{No reaction} \\ & \uparrow \text{Al and Fe reacts with} & \text{steam to form metal} & \text{oxide e.g.} & \\ & \textbf{Al}_2\text{O}_3/\text{Fe}_3\text{O}_4 & & \\ \hline & \textbf{Reaction with} & \text{Metal} + \text{Acid} \rightarrow \text{Metal} & \text{No reaction} \\ \hline & \textbf{diluted acids} & \text{salt} + \text{H}_2 \text{ with} & [S reacts with conc.} \\ & \text{H}_2\text{SO}_4 \rightarrow \text{sulphates} & \text{acids}] \\ & \text{HCl} \rightarrow \text{Chlorides} & \text{S+2H}_2\text{SO}_4 \rightarrow 2\text{H}_2\text{O} + 2\text{SO}_2 \\ & \text{With reaction} & \\ \hline & \text{HCl} \rightarrow \text{Chlorides} & \\ \hline & \text{S+2H}_2\text{SO}_4 \rightarrow 2\text{H}_2\text{O} + 2\text{SO}_2 \\ \hline & \text{With reaction} & \\ \hline & \text{With reactind with reaction}$	/ -		$(CO_2, SO_2, NO_2 \text{ etc})$	
A solutionInterpretent (Al_2O_3,ZnO) Ionic(H_2O,CO etc) CovalentReaction with waterMetal + H_2O \rightarrow Metal oxide/ hydroxide + H2 \uparrow Al and Fe reacts with steam to form metal oxide e.g. Al_2O_3,Fe_3O_4Non-metals + H2O \rightarrow No reactionReaction with diluted acidsMetal + Acid \rightarrow Metal tal + Acid \rightarrow Metal salt + H2 with H2 SO4No reactionReaction with diluted acidsMetal + Acid \rightarrow Metal tal + Acid \rightarrow Metal SolutionNo reaction (S reacts with conc. acids]Reaction with diluted acidsMetal + Acid \rightarrow Metal salt + H2 with H2 SO4 \rightarrow Sulphates HC1 \rightarrow ChloridesNo reaction S+2H2SO4 \rightarrow 2H2O+2SO2 UNIC \rightarrow No SH2H2SO4 \rightarrow 2H2O+2SO2		cic.),		
Reaction with waterMetal + $H_2O \rightarrow$ Metal oxide/ hydroxide + H_2 \uparrow Al and Fe reacts with steam to form metal oxide e.g. Al_2O_3/Fe_3O_4 Non-metals + $H_2O \rightarrow$ No reactionReaction with diluted acidsMetal + Acid \rightarrow Metal salt + H_2 with $H_2SO_4 \rightarrow$ sulphates HCl \rightarrow ChloridesNo reaction (S reacts with conc. acids]	Ovidal	Amphoteric	Neutral	
wateroxide/ hydroxide + H2 \uparrow Al and Fe reacts with steam to form metal oxide e.g. Al_2O_3/Fe_3O_4No reactionReaction with diluted acidsMetal + Acid \rightarrow Metal Salt + H2 with H2SO_4 \rightarrow sulphates HC1 \rightarrow ChloridesNo reaction (S reacts with conc. acids]	\rightarrow Oxide]	-		
No reaction \uparrow Al and Fe reacts with steam to form metal oxide e.g. Al ₂ O ₃ , Fe ₃ O ₄ Reaction with diluted acidsMetal + Acid \rightarrow Metal salt + H 2 with H2 SO4 \rightarrow sulphates HCl \rightarrow ChloridesNo reaction (S reacts with conc. acids]HCl \rightarrow Chlorides UNO \rightarrow Nitrates	-	(Al ₂ O ₃ ,ZnO) Ionic	$(H_2O,CO \text{ etc})$ Covalent	
$\begin{array}{c c} \textbf{is team to form metal} \\ \textbf{oxide e.g.} \\ Al_2O_3, Fe_3O_4 \end{array} \\ \hline \textbf{Reaction with} \\ \textbf{diluted acids} \\ \textbf{Metal} + Acid \rightarrow Metal \\ \textbf{salt} + H_2 \text{ with} \\ H_2SO_4 \rightarrow \text{sulphates} \\ HCl \rightarrow Chlorides \\ HCl \rightarrow Chlorides \\ \textbf{S} + 2H_2SO_4 \rightarrow 2H_2O + 2SO_2 \\ \textbf{WO} \rightarrow \textbf{Witrates} \end{array}$	Reaction with	(Al ₂ O ₃ ,ZnO) Ionic Metal + H ₂ O \rightarrow Metal	$(H_2O,CO \text{ etc})$ Covalent Non-metals + $H_2O \rightarrow$	
$\begin{array}{c c} \text{oxide e.g.} \\ Al_2O_3,Fe_3O_4 \end{array} \\ \hline \\ \hline \\ \textbf{Reaction with} \\ \textbf{diluted acids} \end{array} \begin{array}{c} \text{Metal} + \text{Acid} \rightarrow \text{Metal} \\ \text{salt} + H_2 \text{ with} \\ H_2SO_4 \rightarrow \text{sulphates} \\ HCl \rightarrow \text{Chlorides} \\ HCl \rightarrow \text{Chlorides} \\ HVO = Nitrates \end{array} \begin{array}{c} \text{S} + 2H_2SO_4 \rightarrow 2H_2O + 2SO_2 \\ \text{Without solution} \end{array}$	Reaction with	(Al ₂ O ₃ ,ZnO) Ionic Metal + H ₂ O \rightarrow Metal oxide/ hydroxide + H ₂	$(H_2O,CO \text{ etc})$ Covalent Non-metals + $H_2O \rightarrow$	
$\begin{array}{c c} Al_2O_3/Fe_3O_4 \\ \hline \textbf{Reaction with} \\ \textbf{diluted acids} \\ H_2SO_4 \rightarrow Metal & No reaction \\ salt + H_2 with & [S reacts with conc. \\ H_2SO_4 \rightarrow sulphates \\ HCl \rightarrow Chlorides \\ HCl \rightarrow Chlorides \\ HVO \rightarrow Witrates \\ \hline \textbf{H}_2O_4 \rightarrow 2H_2O_4 + 2SO_2 \\ \hline \textbf{H}_2O_4 + 2SO_2 + 2SO_2 \\ \hline \textbf{H}_2O$	Reaction with	(Al_2O_3, ZnO) Ionic Metal + H ₂ O \rightarrow Metal oxide/ hydroxide + H ₂ \uparrow Al and Fe reacts with	$(H_2O,CO \text{ etc})$ Covalent Non-metals + $H_2O \rightarrow$	
Reaction with diluted acidsMetal + Acid \rightarrow Metal salt + Acid \rightarrow Metal salt + H2 with H2SO4 \rightarrow sulphates HCl \rightarrow ChloridesNo reaction [S reacts with conc. acids] S+2H2SO4 \rightarrow 2H2O+2SO2 UNIO \rightarrow Witrates	Reaction with	(Al_2O_3, ZnO) Ionic Metal + H ₂ O \rightarrow Metal oxide/ hydroxide + H ₂ \uparrow Al and Fe reacts with steam to form metal	$(H_2O,CO \text{ etc})$ Covalent Non-metals + $H_2O \rightarrow$	
$ \begin{array}{c} \mbox{diluted acids} \\ \mbox{diluted acids} \\ \mbox{H}_2 SO_4 \rightarrow sulphates \\ \mbox{HCl} \rightarrow Chlorides \\ \mbox{IVIO} \rightarrow Niirrates \\ \end{array} \begin{array}{c} [S \mbox{ reacts with conc.} \\ \mbox{acids}] \\ \mbox{S+2H}_2 SO_4 \rightarrow 2H_2 O + 2SO_2 \\ \mbox{S+2H}_2 SO_4 \rightarrow 2H_2 O + 2SO_2 \\ \mbox{IVIO} \rightarrow Niirrates \\ \mbox{IVIO} \rightarrow$	Reaction with	(Al_2O_3, ZnO) Ionic Metal + H ₂ O \rightarrow Metal oxide/ hydroxide + H ₂ \uparrow Al and Fe reacts with steam to form metal oxide e.g.	$(H_2O,CO \text{ etc})$ Covalent Non-metals + $H_2O \rightarrow$	
$\begin{array}{c} H_2SO_4 \rightarrow sulphates \\ HCl \rightarrow Chlorides \\ HNO \rightarrow Nitrates \\ \end{array} \qquad \begin{array}{c} acids \\ S+2H_2SO_4 \rightarrow 2H_2O+2SO_2 \\ \end{array}$	Reaction with water	(Al_2O_3, ZnO) Ionic Metal + H ₂ O \rightarrow Metal oxide/ hydroxide + H ₂ \uparrow Al and Fe reacts with steam to form metal oxide e.g. Al_2O_3, Fe_3O_4	$(H_2O,CO \text{ etc})$ Covalent Non-metals + $H_2O \rightarrow$ No reaction	
$\begin{array}{c} H_{2}SO_{4} \rightarrow Supratos \\ HCl \rightarrow Chlorides \\ HNO \rightarrow Nitratos \\ S+2H_{2}SO_{4} \rightarrow 2H_{2}O+2SO_{2} \end{array}$	Reaction with water Reaction with	(Al_2O_3, ZnO) Ionic $Metal + H_2O \rightarrow Metal$ $oxide/ hydroxide + H_2$ $\uparrow Al and Fe reacts with steam to form metal oxide e.g.Al_2O_3, Fe_3O_4Metal + Acid \rightarrow Metal$	$(H_2O, CO \text{ etc})$ Covalent Non-metals + $H_2O \rightarrow$ No reaction No reaction	
	Reaction with water Reaction with	(Al_2O_3, ZnO) Ionic $Metal + H_2O \rightarrow Metal$ $oxide/ hydroxide + H_2$ $\uparrow Al and Fe reacts with steam to form metal oxide e.g.Al_2O_3/Fe_3O_4Metal + Acid \rightarrow Metalsalt + H_2 with$	$(H_2O,CO \text{ etc})$ Covalent Non-metals + $H_2O \rightarrow$ No reaction No reaction [S reacts with conc.	
HNO ₃ \rightarrow Nitrates S+HN ₃ - \rightarrow H ₂ SQ ₄ + 6 N ₂ + 2 H ₂ O	Reaction with water Reaction with	(Al_2O_3, ZnO) Ionic Metal + H ₂ O → Metal oxide/ hydroxide + H ₂ ↑ Al and Fe reacts with steam to form metal oxide e.g. Al_2O_3 , Fe ₃ O ₄ Metal + Acid→ Metal salt + H ₂ with H ₂ SO ₄ → sulphates	$(H_2O,CO \text{ etc})$ Covalent Non-metals + $H_2O \rightarrow$ No reaction [S reacts with conc. acids]	
5 2 4 2 2	Reaction with water Reaction with	(Al_2O_3, ZnO) Ionic Metal + H ₂ O → Metal oxide/ hydroxide + H ₂ ↑ Al and Fe reacts with steam to form metal oxide e.g. Al_2O_3 , Fe ₃ O ₄ Metal + Acid→ Metal salt + H ₂ with H ₂ SO ₄ → sulphates HCl → Chlorides	$(H_2O,CO \text{ etc})$ Covalent Non-metals + $H_2O \rightarrow$ No reaction [S reacts with conc. acids]	
	Reaction with water Reaction with	(Al_2O_3, ZnO) Ionic Metal + H ₂ O → Metal oxide/ hydroxide + H ₂ ↑ Al and Fe reacts with steam to form metal oxide e.g. Al_2O_3 , Fe ₃ O ₄ Metal + Acid→ Metal salt + H ₂ with H ₂ SO ₄ → sulphates HCl → Chlorides	$(H_2O,CO \text{ etc}) \text{ Covalent}$ Non-metals + $H_2O \rightarrow$ No reaction No reaction [S reacts with conc. acids] S+2H_2SO_4 \rightarrow 2H_2O+2SO_2	

Metal + Chlorine \rightarrow

(NaCl, KCl)

Na, K, Ca with

Metal chloride [ionic]

hydrogen → Hydrides

(NaH, KH, CaH₂)

Non-metals + Chlorine

 \rightarrow Non-metal chloride

[covalent (CCl₃, PCl₃)

Non-metals +

 $H_2 \rightarrow Hydrides$

[covalent] (NH₃, H₂S)

Reaction with

Reaction with

Hydrogen

Chlorine

Properties of Ionic Compounds

- Physical nature: solid and hard due to strong force of attraction (generally brittle).
- Melting point (MP) and boiling point (BP): Have high MP and BP, as large amount of heat energy is required to break strong ionic attraction.
- **Solubility:** Soluble in water and insoluble in kerosene and petrol.
- Conduction of electricity: Ionic compounds in solid state; does not conduct electricity.

Reason: Ions cannot move due to rigid solid structure. Ionic compounds conduct electricity in molten state.

Reason: Ions can move freely since the electrostatic forces of attraction between the oppositely charged ions are overcome due to heat.

Reactivity Series: The arrangement of metals in a vertical column in the order of decreasing reactivities is called reactivity series of metals.

K – is most reactive; Gold – is least reactive

- Metals which are more reactive than hydrogen are: K, Na, Ca, Mg, Al, Zn, Fe, Sn, Pb
- Metals which are less reactive than hydrogen are: Cu, Hg, Ag, Au
- Occurrences of metals: Major source; earth crust and sea-water minerals, elements or compounds which occur naturally in the earth's crust are minerals.

Extraction of Metals:

Metallurgy: It is a branch of chemistry which deals with the extraction of metals from their ores and refining of metals.

Major steps involved in the extraction of a metal:

- Concentration of Ore (Enrichment)
- Conversion of concentrated ore into metal
- Refining of impure metal.

Concentration – (Removal of gangue from the ore)

Processes used for concentration are based on the differences between the physical or chemical properties of the gangue and the ore.

Extracting metals low in the activity series:

They are very uncreative oxides of these metals can be reduced to metals by heating alone.

 $2HgS + 3O_2 \xrightarrow{\text{Heat}} 2HgO + 2SO_2$ $2HgO \xrightarrow{\text{Heat}} 2Hg + O_2$

Extracting metals in the middle of the activity series:

These metals are moderately reactive Present as sulphides or carbonates prior to reduction, the metal sulphides and carbonates must be converted into metal oxides.

Sulphide OreCarbonate Ore \downarrow \downarrow $ZnS+3O_2 \longrightarrow 2ZnO+2SO_2$ $Zn+CO_3 \longrightarrow ZnO+CO_2$ CalciRoastinExcess of airLimited air

Metal oxides are then reduced to the corresponding metals by using suitable reducing agent such as carbon.

 $ZnO + C \rightarrow Zn + CO$

Sometimes displacement reactions can also be used in extracting metals towards the top of the activity series. They are very reactive, have more affinity for oxygen than carbon.

Minerals that contain very high percentage of a particular metal and these metals can be extracted economically on a large scale.

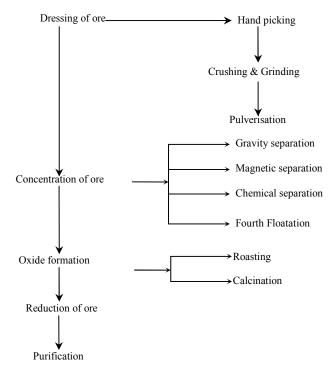
E.g.: Bauxite ore \rightarrow Aluminium;

Haematite \rightarrow Iron

Aluminum:

- Aluminum is a light metal $(\rho = 2,7g/cc)$; is easily machinable; has wide variety of surface finishes; good electrical and thermal conductivities; highly reflective to heat and light.
- Versatile metal; can be cast, rolled, stamped, drawn, spun, roll-formed, hammered, extruded and forged into many shapes.
- Aluminum can be riveted, welded, brazed, or resin bonded.
- Al is the second most widely used metal after iron. Important ores of alumininum ore is Bauxite (Al₂O₃.2H₂O) and Cryolite (Na₃AlF₆).
- Corrosion resistant; no protective coating needed, however it is often anodised to improve surface finish, appearance.
- Al and its alloys; high strength to weight ratio (high specific strength) owing to low density.

- Such materials are widely used in aerospace and automotive applications where weight savings are needed for better fuel efficiency and performance.
- Al-Li alloys are lightest among all Al alloys and find wide applications in the aerospace industry.


Iron

• It is the second most abundant metal in the earth crust. Iron is quite reactive.

 It exist in the combined state as Carbonate, FeCO₃ (Siderite), Sulphide, FeS₂ (iron pyrite), Oxide, Fe₂O₃ (Haematite), Fe₃O₄ (Magnetite).

- Haematite is the chief ore of iron.
- The ore is first washed, dried and ground to powder then treated with stream of water to remove gangue; hydraulic washing.
- After this, ore is mixed with coke and lime-stone to form a mixture known as charge, which is introduced in a big furnace called blast furnace.
- The molten iron obtained from blast furnace is allowed to solidify in moulds or casts, it is called pig iron. It can be converted into in a bessemer converter after this the carbon is added to make steel.

Metallurgical Process:

Table: 8.3 Refini	ng of Metals	
Process of	Metal to be	Process
purification	refined	
Distillation	Iron, zinc,	Heated above its boiling point in the
	mercury	absence of air. The metal vaporises,
		leaving behind the impurities.
Liquation	Lead, tin (metal	Heated above its melting point and the
	with low	metal melts, flows down the hearth
	melting point)	and is collected at the bottom.
Polling	Copper with	Molten copper is stirred with wooden
	cuprous oxide	poles which emit wood gas (CO and
	as impurity	H $_2$) which reduces copper oxide to
		copper.
Oxidation	Iron with	Oxygen blown through molten metal
	oxidisable	where the impurities get converted to
	impurities	gaseous oxide and removed.
		$C + O_2 \longrightarrow CO_2 \uparrow$
Electrolytic	Aluminium,	A block of impure is taken as the
refining	copper	anode and a thin strip of pure metal is
		taken as the cathode. On the passing
		current, the metal ions from the anode
		dissolve in the electrolyte, go towards
		the cathode and get discharged there.
		At Anode $Cu_{(impure)} \rightarrow Cu^{2+}_{(aq)} + 2e^{-}$
		At Cathode $\operatorname{Cu}_{(aq)}^{2+}+2e^{-}\rightarrow \operatorname{Cu}(S)_{Pure}$

The impurities settle down at the bottom of the anode are called **anode mud.** Van Arkel method is used for the purification of **titanium** and **zirconium** by converting them into their volatile iodides which decomposes to give pure metal. **Corrosion** is a slow oxidation of metal to its oxide or hydrated oxide, corrosion in case of iron is called rusting (Fe₂O₃×H₂O). For rusting two necessary conditions are presence of water and oxygen. The rusting of iron speeds up in the presence of acidc oxides in air or salts in water. Rusting can be prevented by using:

- Paints and polish
- Greasing/oiling
- Coating with plastics
- Galvanisation (coating iron with zinc)
- Alloy formation

Alloy is a homogenous mixture of two or more metals or nonmetals. It is prepared by dissolving a metal or non-metal in the molten metal. Alloying of metal changes its physical properties and decreases its chemical reactivity. Alloy of any metal with mercury is called an amalgam.

- Pure iron is soft and streches on heating. It becomes hard and strong when it is mixed with carbon.
- Pure gold (24 carat) is very soft and hence, it is not suitable for making jewellery. It is mixed with silver or copper to increase its tensile strength.

Major	Alloy	Composition	Uses
components			
Copper	Brass	Cu(60-80%)	For making shells of
(Cu)		Zn (20-40%)	ammunition utensils,
			electrical switches,
			statues, cooling pipe, etc
	Bronze	Cu; 80%, Zn;	For making shells,
		10%, Sn; 10%	staues, coins and
			utensils.
	Gun metal	Cu;88%,	For making barrels of
		Sn;10%,	guns, gears and bearings
		Zn;1%, Pb;1%	
	German	Cu (30–60%)	For making imitation
	silver	Zn (20–30%)	silver jewellery, utensils
		Ni (15–20%)	etc.
	Bell metal	Cu; 80%,	For making bells.
		Sn; 20%	C
Iron (Fe)	Stainless	Fe; 83%,	For making utensils and
	steel	C; 1%,	surgical instruments.
		Cr; 15%;	5
		Ni; 1%	
	Mangnese	Fe; 84%,	For making safes, armour
	steel	Mn; 15%,	and rock cutters.
		C; 1%	
	Tungsten	Fe (79–84%)	For making high speed
	steel	W (15–20%)	tools.
		C (1%)	
	Alnico	Fe; 50%, Al;	For making powerful
		20%, Ni; 20%;	magnets.
		Co; 10%	
Aluminium	Duralumin	Al; 95%, Cu;	For making aircraft
(Al)		4%, Mn;0.5%,	frames, rockets, speed
		Mg; 0.5%	boats, automobiles.
	Magnalium	Al; 95%,	For making aeroplane
	-	Mg; 5%	parts, home appliances,
		Ċ,	mirrors and scientific
			instruments.
Nickel (Ni)	Monel	Cu; 28%, Ni;	For making sinks, doors
	metal	67%, Fe; 5%	and window screws.
Tin (Sn)	Solder	Sn (50-60%)	Soldering purpose.
		Pb (50-40%)	
Lead (Pb)	Type metal	Pb; 75%,	For making moulds.
		Sn; 5%,	
		Sb; 20%	

• Steels: Alloys of iron-carbon; May contain other alloying elements. Several grades are available.

- Low Alloy (< 10 wt%) Low Carbon (< 0.25 wt% C) Medium Carbon (0.25 to 0.60 wt%) High Carbon (0.6 to 1.4 wt%)
- High Alloy Stainless Steel (> 11 wt% Cr) Tool Steel
- **Quenching** is the process hard steel can be further hardened by heating it to red hot and then cooling by pluning it into the cold water.

- **Tempering** is the process quenched steel is reheated and allowed to cool slowly, it becomes *elastic* and much less brittle.
- Annealing is the process steel is heated to bright red hot, and is then cooled slowly. Annealed steel is soft.

Cement (CaOFe₂O₃SiO₂Al₂O₃)

Oxide	5		Sources
SiO ₂	(silicon dioxide)	-	cap rock
CaO	(calcium oxide)	_	limestone
Al_2O_3	(aluminum oxide)	_	clay
Fe ₂ O ₃	(ferric oxide)		

Oxides used to calculate theoretical cementitious compounds: $C_3S_1C_2S_2C_3A$ and C_4AF

Compounds

- Tricalcium silicate (Ca₃SiO₅) hardens rapidly and is largely responsible for initial set and early strength. In general, the early strength of portland cement concrete is higher with increased percentages of C₃S.
- Dicalcium silicate (Ca₂SiO₄) hardens slowly and contributes largely to strength increases at ages beyond 7 days.
- Tricalcium Aluminate (Ca₃Al₂O₆) liberates a large amount of heat during the first few days of hardening and, together with C₃S and C₂S may somewhat increase the early strength of the hardening cement (this effect being due to the considerable heat of hydration that this compound evolves). It does affect set times.

 Tetracalcium Aluminoferrite (C₄AF) contributes very slightly to strength gain. However, acts as a flux during manufacturing. Contributes to the colour effects that makes cement gray.

When steel, rods, bars or other hard material embedded in the wet concrete. As the concrete sets, it sticks to those materials to form **RCC** (reinforced concrete cement).

Glass:

- Glass: inorganic, non-crystalline (amorphous) material.
- Range: soda-lime silicate glass for soda bottles to the extremely high purity silica glass for optical fibers.
- Widely used for windows, bottles, glasses for drinking, transfer piping and receptacles for highly corrosive liquids, optical glasses, windows for nuclear applications.
- The main constituent of glass is silica (SiO₂). The most common form of silica used in glass is sand.
- Sand fusion temp to produce glass 1700°C. Adding other chemicals to sand can considerably reduce the fusion temperature.
- Sodium carbonate (Na₂CO₃) or soda ash, (75%SiO₂ + 25%Na₂O) will reduce the fusion temperature to 800°C.
- Other chemicals like Calcia (CaO) and magnesia (MgO) are used for stability. Limestone (CaCO₃) and dolomite (MgCO₃) are used for this purpose as source of CaO and MgO.

Glass type	Composit	tion (wt%)					Characteristics
	SiO ₂	Na ₂ O	CaO	Al ₂ O ₃	B_2O_3	Other	
Fused silica	> 99.5	-	-	-	-	-	High MP, thermal shock resistant
96% Silica	96	-	-	-	4	-	Thermal shock and chemicaly resistant laboratory ware
Borosilicate	81	3.5	-	2.5	13	-	Thermal shock and chemical oven ware
Container	74	16	5	1	-	4MgO	Low MP, formable and durable
Fiberglass	55	-	16	15	10	4MgO	Ease of drawing used in FRP
Optical flint	54	1	-	-	-	37PbO, 8K ₂ O	High density, high refractive index-optical lenses
Glass ceramic	43.5	14	-	30	5.5	6.5TiO ₂ , 0.5As ₂ O ₃	Strong, thermal shock resistant oven ware

Table: 8.5 Compositions and Characteristics of Some Common Glasses
--

- Polymers: Chain of H-C molecules. Each repeat unit of H-C is a monomer, e.g., ethylene (C₂H₄), Polyethylene (-CH₂ CH₂)_n
- **Thermosets: Thermoset plastics always remain in a** permanent solid state.
- **Thermoplasts:** It is a type of material, which becomes soft when heated and hard when cooled. Thermoplastics can be remelted.
- Plastics: Moldable into many shape and have sufficient structural rigidity. Plastics are one of the most commonly used class of materials. They are used in clothing, housing, automobiles, aircraft, packaging, electronics, signs, recreation items, and medical implants.
- **Natural plastics:** Hellac, rubber, asphalt, and cellulose.

Table: 8.5 Characteristics and Applications of Some Common Thermoplastics
--

Material	Characteristics	Applications
Polyethylene	Chemically resistant,	Flexible bottles, toys,
	tough, low friction coeff., low strength	battery parts, ice trays, film wrapping materials

Multiple Choice Questions

1.	Metals general	ly form					
	a. Basic oxides		b. Acidic ox	ides			
	c. Neutral oxide	es	d. None				
2.	Which of the fo	ollowing is a b	basic oxide?				
	a. N ₂ O	b. H_2O	c. CO ₂	d. CaO			
3.	The most abune	dant element	in the universe	is			
	a. Helium	b. Oxygen	c. Hydrogen	d. Silicon			
4.	The most abune	dant metal on	the earth is				
	a. Iron b. Gold						
	c. Copper		d. Aluminiu	m			
5.	The most abundant elemet in the sun's atmosphere is						
	a. Xenon	b. Argon	c. Oxygen	d. Hydrogen			
6.	The most abund	lant acidic gas	present in the a	atmosphere is:			
	a. CO ₂	b. SO_2	c. NO	d. NO ₂			
7.	An example	of a metal	which is a l	iquid at room			
	temperature						
	a. Zinc	b. Copper	c. Mercury	d. Bromine			
8.	A metal, which	melts on the	palm				
	a. Potassium	b. Sodium	c. Zinc	d. Gallium			
9.	Which of the fo	ollowing meta	ls exist in thei	r native state in			
	nature?						
	a. Cu and Au		b. Au and Zu	1			
	c. Au and Ag		d. Ag and Cu	ı			

Polyamide	Good strength and	Bearings, gears, cams,	
(Nylon)	toughness, abrasion	bushings and jacketing for	
	resistant, liquid absorber,	wires and cables	
	low friction coefficient		
Fluorocarbon	Chemically inert,	Anticorrosive seals,	
(Teflon)	excellent electrical	chemical pipes and valves,	
	properties, relatively	bearings, anti-adhesive	
	weak	coatings, high temp	
		electronic parts	
Polyester	Tough plastic film,	Recording tapes, clothing,	
(PET)	excellent fatigue and tear	automotive tyrecords,	
	strength, corrosion	beverage containers	
	resistant		
Vinyl	Low-cost general	Floor coverings, pipe,	
	purpose material, rigid,	electrical wire insulation,	
	can be made flexible	garden hose, phonograph	
		records	
Polystyrene	Excellent electrical prop	Wall tile, battery cases,	
	and optical clarity, good	toys, lighting panels,	
	thermal and dimensional	housing appliances	
	stability		

- 10. Sodium is a a. Silvery white and very soft metal **b.** Colourless and hard metal c. Silvery white and very hard metal d. Colourless and very soft metal 11. Gold is used in making ornaments because it is a. Lusturous **b.** Unreactive **c.** Malleable **d.** All of the above 12. Hydrogen is not found in free in the nature because hydrogen is a **b.** Non-reactive element **a.** Reactive element **c.** Electropositive element d. None of these 13. Hydrogen loses its electron to form H^+ , in this respect, it resembles a. Halogens **b.** Alkali metals **c.** Transition element d. Alkaline earth metal 14. You are given two statements (i) and (ii), select the correct inference from this: Statements (i) Metals conduct heat. Statements (ii) Diamond is the best conductor of heat. **a.** Hence diamond is a metal **b.** Statement (i) is correct c. Statements (i) and (ii) is correct
 - **d.** None of the above

15.	Metals are		27.	So
	a. Malleable and ductile			a.
	b. Non-malleable and ductile	2		c.]
	c. Brittle and ductile		28.	So
	d. Non-malleable and non-d		-0.	a.
16.	A metal which is poor condu			b.
17	a. Lead b. Zinc	c. Gold d. Iron		c. '
17.	a. Sodium	nt component of transistors? b. Copper		d.
	c. Germanium	d. Radium	•	
18.	Non-metals form	u. Radium	29.	Me
10.	a. Ionic halides	b. Covalent halides		a.
	c. Coordinate halides	d. None of these		c .
19.	The bond between two iden	ntical non-metal atoms has a	30.	Lu
	pair of elecrons			a.
	a. Unequally shared between	n the two	31.	Ph
	b. Transferred freely from an	re atom to another	51.	
	c. With identical spins			a.
•••	d. Equally shared between the	nese	32.	W
20.	A lustrous non-metals is:	h Gulahun		a.
	a. Diamondc. Phosphorus	b. Sulphurd. Iodine		c. (
	-			
21.	The correct order of decrease		33.	Irc
	a. $Cl > Si > Al > Mg > Na$	•		a.
	$\mathbf{c.} \mathrm{Al} > \mathrm{Na} > \mathrm{Si} > \mathrm{Ca} > \mathrm{Mg}$	$\mathbf{d.} \operatorname{Na} > \operatorname{Al} > \operatorname{Mg} > \operatorname{Cl} > \operatorname{Si}$	34.	W
22.	The correct order of increasi	•	•	ste
	a. $F < O < C < Be < Li$	b. $F < C < O < Be < Li$		a.
	$\mathbf{c.} \mathbf{F} < \mathbf{O} < \mathbf{B}\mathbf{e} < \mathbf{C} < \mathbf{L}\mathbf{i}$	$\mathbf{d.} \operatorname{Li} < \operatorname{Be} < \operatorname{C} < \operatorname{O} < \operatorname{F}$		b.
23.	Arrange the following metal	in the increasing order of their		c.]
	reactivity towards water: Zinc			d.
	a. Iron < magnesium < sodiu		35.	Su
	b. Iron < zinc < magnesium		55.	
	c. Magnesium < iron < sodiud. Sodium < iron < magnesiu			a.
_	_		36.	Th
24.	•	of elements is written in order		a.
	of their increasing metallic c			c. (
	a. Be, Mg, Ca c. Mg, Al, Si	b. Na, Li, K d. C, O, N	37.	Or
	-			a.
25.		tals do not react with cold as		b.
	well as hot water?	· Ma J.F.		c.
	a. Na b. Ca	c. Mg d. Fe		d.
26.		the order of their decreasing	38.	In
	activities is known as		20.	inc
	a. Periodic table	b. Reactivity series		a.
	c. Newland's law of octaves	a. All of these		

	Sodium metal a. Alcohol c. Kerosene of Sodium is kept a. It reacts with b. Immersing is c. The reaction d. All of the ab	i immersed in n moisture in t n kerosene cu of sodium wi	b. Water d. HCl kerosene oil b he air ts off the supp	ly of air
29.	Metalloids incl a. Boron, silico c. Germanium	on	b. Arsenic, a	-
30.	Lunar caustic i a. AgS	S	c. AgCl	
31.	Philosopher's a. ZnO		c. ZnCO ₃	d. Hg ₂ Cl ₂
32.	Water gas is a a. CO and N_2 c. CO and H_2	mixture of	b. CO_2 and d. CO_2 and	-
33.	Iron burns in a a. FeO		c. Fe ₂ O ₃	d. FeO ₂
34.	What should steel? a. Nickel and c b. Cadmium an c. Nickel and c d. Chromium a	cobalt nd chromium cadmium	pure iron to	make stainless
35.	Substance used	l in glazing po	ottery is	
	a. ZnO	b. $ZnCl_2$	c. Alum	d. Calomel
36.	The process of a. Smelting c. Galvanising	protecting iro	n by coating v b. Rusting d. None of th	
37.	Ordinary glass a. Sodium silic b. Sodium silic c. Sodium silic d. None of the	ate, calcium s cate, calcium s cate and silica	ilicate	ca
38.	In the above to increasing order $D \in A \in C$	er of reactivity	,	B, C and D in $C < A$

$\mathbf{a.} \mathbf{D} < \mathbf{A} < \mathbf{C} < \mathbf{B}$	b. D < C < B <a< th=""></a<>
$\mathbf{c.} \mathbf{D} < \mathbf{C} < \mathbf{A} < \mathbf{B}$	d. C < D < A < B

39. What are the ions present in Na_2O ?

a. Na^+, O **b.** Na^{2+}, O_2 **c.** Na^{2+}, O **d.** Na^+, O_2

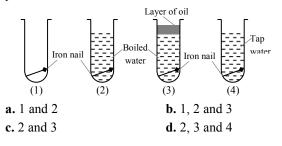
- 40. Among the following select the metal found free in nature.a. Aub. Cuc. Nad. Mg
- 41. The metal refined-electrolytically isa. Alb. Nac. Fed. Cu
- 42. Which of the following metals on reacting with sodium hydroxide solution produce hydrogen gas?(A) Cu (B) Al (C) Fe (D) Zn
 - **a.** (B) and (C) **b.** (B) and (D)
 - **c.** (A) and (D) **d.** (B) only
- 43. Match the following.

(i) Sodium	(a) On burning produces an acidic gas.
(ii) Phosphorus	(b) Reacts neither with acids nor bases.
(iii) Copper	(c) It is so soft that it can be cut with a knife.
(iv) Charcoal	(d) Burns spontaneously on exposure to air.
	(e) Acquires a dull green coating on exposure to air.

Which of the following shows the correct matching?

- **a.** (i) (c), (ii) (e), (iii) (b), (iv) (a)
- **b.** (i) (d), (ii) (a), (iii) (c), (iv) (b)
- **c.** (i) (d), (ii) (e), (iii) (c), (iv) (b)
- **d.** (i) (c), (ii) (d), (iii) (e), (iv) (a)
- 44. Oil of vitriol is

a. H_2SO_3 b. H_2SO_4 c. $H_2S_2O_7$ d. $H_2S_2O_8$


45. The formula of Oleum is

a. H_2SO_4 **b.** $H_2S_2O_7$ **c.** $H_2S_2O_3$ **d.** $H_2S_2O_6$

- 46. Which of these metals cannot be obtained by reduction using C as reducing agent?a. Copper b. Zinc c. Lead d. Potassium
- **47.** The reaction used to join railway tracks involves reducing agent
- a. Al b. Mg c. C d. CO48. Aluminium is extracted from
- a. Hematite b. Bauxite c. Calamine d. Magnetite
- 49. The colourless gas liberated in the purification of bauxite by Hall's process is: **b.** NH₃ **a.** H₂ \mathbf{c} . CO_2 **d.** SO_2 50. Metallurgy is the process of a. Extracting metals from the ore **b.** Roasting the ore c. Liquefaction of nitrogen d. Adding carbon to the ore in blast furnace **51.** In the metallurgy of iron using blast furnace the slag is a. FeSiO₃ **b.** $CaSiO_3$ **c.** $CaCO_3$ d. CaSO₃ 52. In the blast furnace/the flux is: a. Acidic **b.** Basic c. Amphoteric d. Not matter **53.** The iron obtained from blast furnace is a. Steel **b.** Cast iron c. Pig iron d. Wrought iron 54. Iron is tougher than sodium because **a.** Iron atom is smaller **b.** Iron atom are more tightly packed c. Metallic bands are stronger in iron d. None of these 55. What is the chemical name of the slag coming out of blast furnace? **a.** Calcium carbonate **b.** Calcium formate c. Calcium silicate d. Calcium acetate **56.** Smelting is done in **a.** Electric furnace **b.** Muffle furnace c. Blast furnace d. Open-hearth furnace 57. The concentration of chromite is done by a. Gravity separation **b.** Magnetic separation c. Froth floatation d. Handpicking **58.** P_2O_5 is mainly used as a. Oxidising agent **b.** Reducing agent c. Dehydrating agent d. Hydrating agent **59.** The molecular formula of rhombic sulphur is: a. S **b.** S_{γ} c. S_4 d. S_{s} **60.** Hypo is a. Na₂S₂O₃.5H₂O **b.** NaHSO₄ d. 2CaSO₄H₂O c. Na_2CO_3 61. Hypo is used in photography for a. Developing negatives **b.** Picture printing c. The colouring of picture d. The fixation of negative

62.	Sapphire and	-		
	a. Cu	b. Al	c. Zn	d. Hg
63.	Purest form of	f iron is		
	a. Cast iron		b. Pig iron	
	c. Steel		d. Wrought	iron
64.	Cinnabar is an	ore of		
	a. Pb	b. Zn	c. Hg	d. Cu
65.	Chile saltpeter	r is an ore of		
	a. Iodine		b. Sodium	
	c. Magnesium		d. Gold	
66.	Ores mined fr	om the earth	are usually co	ontaminated with
	large amount		-	soil, sand, etc
	called			
	a. Gravel	b. Gangue	c. Sand	d. Granite
67.	Which of then	n is not an ore	of silver?	
	a. Ag_2S		b. AgNO ₃	
	c. AgCl		d. None of	them
68.	Van Arkel n converting the a. Volatile sta b. Volatile un c. Non-volatile d. None of the	e metal into ble compound stable compou e stable compo	Ind	metals involves
69.	Liquation is u	sed to refine		
	a. Iron	b. Copper	c. Tin	d. Gold
70.	The slag form pyrites is: a. CaSiO ₃		-	d. Ca ₃ (PO ₄) ₂
		b , 105103		$u = c u_3 (1 + 0_4)_2$
71.	Copper is puri	fied by		
	a. Distillation	-	b. Liquation	1
	c. Carbon-red	uction	d. Electroly	tic refining
72.	An amalgam o	of metal has w	hich other ele	ment?
	a. C	b. Ag	c. Mg	d. Hg
73.	Blister copper	is		
	a. Pure copper			
	b. Ore copper			
	c. Alloy coppe	er		
	d. Copper hav		ities	
74.	Gold as alloye	d with which	metal to make	e it harder?
	a. Cu	b. Hg	c. Ag	d. C
			-	

75. In which test tubes, the rusting of iron nail will take place?

76. Match the items in Column-I with those in Column-II

Column II
1. Chemical Effect
2. Electric Discharge
3. Magnetic Effect
4. Heating Effect

Which of the following shows the correct matching?

	which of the following block	B une contect matering.
	a. A \rightarrow 3; B \rightarrow 2; C \rightarrow 1; D \rightarrow	4
	b. $A \rightarrow 2$; $B \rightarrow 1$; $C \rightarrow 3$; $D \rightarrow$. 4
	c. $A \rightarrow 4$; $B \rightarrow 3$; $C \rightarrow 2$; $D \rightarrow$	1
	d. $A \rightarrow 4$; $B \rightarrow 2$; $C \rightarrow 3$; $D \rightarrow$	1
77.	'Kajal' is the form of	
	a. Coke	b. Charcoal
	c. Carbon black	d. Asphalt
78.	The substance used to reduc	e iron ore to iron in the lower
	part of the blast furnace is:	
	a. Coke	b. Charcoal
	c. Carbon monoxide	d. Carbon black
79.	Pick the correct statement:	
	a. All ore are minerals	
	b. All minerals are ore	
	c. A mineral cannot be an or	e
	d. An ore cannot be a minera	ıl
80.	The materials listed below:	
	A. Water (distilled)	
	B. Solution of common salt	
	C. Mercury	
	D. Caustic soda solution	
	E. Glycerine	
		ting of good conductor of
	electricity is	
	a. A, B, C	b. A, D, E
	c. C, A, E	d. B, C, D
81.	Which of the following alloy	
	a. Brass	b. Solder
	c. Duralumin	d. Steel

82.	Name an alloy that used in p	•
	a. Magnalium	b. Bronze
	c. Duralumin	d. Alnico
83.	Permanent magnets can be m	hade from
	a. Ni steel	b. Cobalt steel
	c. Stainless steel	d. Wrought iron
84.	VA group elements are know	/n as
	a. Halogens	b. Normal elements
	c. Chalcogens	d. Pnictogen
85.	The carbon content in steel is	3
	a. 0.1–5.0%	b. 2.0–2.5%
	c. 0.1–1.5%	d. Less than 0.1
86.	The red or orange coating that when exposed to air and moist	ture for some time is called
	a. Galvanisation	b. Electroplating
	c. Rust	d. Reduction
87.	Rust is a mixture of	
	a. FeO & Fe(OH) ₂	b. FeO & Fe(OH) ₃
	c. Fe_2O_3 & $Fe(OH)_3$	d. $Fe_{3}O_{4}$ & $Fe(OH)_{3}$
88.	Galvanisation is a method of	f protecting iron from rusting
	by coating with a thin layer of	of
	a. Aluminium	b. Zinc
	c. Copper	d. Nickel
89.	The metal which is more har	d and corrosion resistant is

- 89. The metal which is more hard and corrosion resistant isa. Nickelb. Ironc. Platinumd. Tungsten
- 90. The composition of gun metal is
 a. Cu; 30% Ni; 67% Fe+, Mn; 3%
 b. Cu; 80% Sn; 20%
 c. Cu; 88% Sn; 10% Zn; 1% Pb; 1%
 d. Cu; 50% Zn; 25% Ni; 25%
- 91. The international standards of weight and measures are made ofa. Gold-silver alloysb. Platinum-iridium alloys
 - **c.** Copper–gold alloys **d.** Platinum–iron alloys
- 92. Which of the following compounds is used as drying agent?
 a. Gypsum
 b. Calcium oxide
 c. Calcium chloride
 d. None of these

93. Plaster of Paris is obtained by heating

a. Gypsum		b. Limestone	
a 11			

- **c.** Sodium carbonate **d.** Calcium carbonate
- 94. Gypsum is added to cement because
 - **a.** It makes the cement very hard

b. It increases the pace of setting of cement

c. It slow down the initial setting of cement when water is added

d. None of these

95. RCC is

a. The crushed cement in which more gravel is added

b. The concrete having an iron framework inside it as a support

c. Prepared by adding calcium chloride to the limestone and calcium silicate

d. None of the above

ANSWERS

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
а	d	b	d	d	а	с	b	с	а
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
d	а	b	b	а	с	с	b	d	d
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
b	d	b	а	d	b	с	d	а	d
31.	32.	33.	34.	35.	36.	37.	38.	39.	40.
а	с	с	d	а	с	а	b	d	а
41.	42.	43.	44.	45.	46.	47.	48.	49.	50.
d	b	d	b	b	d	а	b	с	а
51.	52.	53.	54.	55.	56.	57.	58.	59.	60.
b	b	с	с	с	с	b	с	d	а
61.	62.	63.	64.	65.	66.	67.	68.	69.	70.
d	b	d	с	b	b	d	а	с	b
71.	72.	73.	74.	75.	76.	77.	78.	79.	80.
d	d	d	а	а	с	а	а	а	d
81.	82.	83.	84.	85.	86.	87.	88.	89.	90.
b	d	d	d	с	с	с	b	d	с
91.	92.	93.	94.	95.					
b	b	a	c	b					