NEET UG (2024) Chemistry Quiz-16

SECTION-A

51. At a given temperature, total vapour pressure in torr of a mixture of volatile components A and B is given by

 $P = 120 - 75 X_{B}$

hence, vapour pressure of pure A and B respectively (in torr) are:

- (1) 120, 75 (2) 120, 195
- (3) 120, 45 (4) 75, 45
- **52.** Relative lowering in vapour pressure of a solution containing 1 mole K_2SO_4 in 54 g H_2O is:

(K₂SO₄ is 100% ionised)

(1)	$\frac{1}{55}$	(2)	$\frac{3}{55}$
(3)	$\frac{3}{4}$	(4)	$\frac{1}{2}$

53. A 0.2 molar aqueous solution of a weak acid (HX) is 20% ionised. The freezing point of the solution is:

 $(K_f \text{ of } H_2O = 1.86 \text{ kg mol}^{-1} \text{ K})$ (1) -0.45°C (2) 0.90°C

- (3) -0.31° C (4) -0.53° C
- **54.** Which one of the following pairs of solution can we expect to be isotonic at the same temperature?
 - (1) 0.1 M urea and 0.1 M NaCl
 - (2) $0.1 \text{ M} \text{urea and } 0.1 \text{ M} \text{MgCl}_2$
 - $(3) \quad 0.1\ M-Na_2SO_4\ and\ 0.1\ M-NaCl$
 - (4) $0.1 \text{ M} \text{Na}_2\text{SO}_4 \text{ and } 0.1 \text{ M} \text{Ca}(\text{NO}_3)_2$

- **55.** Which pair from the following will not form an ideal solution:
 - (1) $CCl_4 + SiCl_4$
 - (2) $H_2O + C_4H_9OH$
 - (3) $C_2H_5Br + C_2H_5I$
 - (4) $C_6H_{14} + C_7H_{16}$
- **56.** The osmotic pressure of decimolar solution of urea at 27°C is:
 - (1) 3.40 atm (2) 1.25 atm
 - (3) 2.46 atm (4) 5.0 atm
- **57.** Which of the following solution will have least vapour pressure?
 - (1) 0.1 M BaCl_2 (2) 0.1 M urea
 - (3) 0.1 M Na₂SO₄ (4) 0.1 M Na₃PO₄
- **58.** The molarity of H_2SO_4 solution, which has a density 1.84 g/cc at 35°C and contains 98% by weight is:

(1)	1.84 M	(2)	18.4 M
(3)	20.6 M	(4)	24.5 M

- **59.** Significant figures in 0.00051 are
- **60.** If an element Z exist in two isotopic form 50 Z and 52 Z. The average atomic mass of Z is 51.7. Calculate the abundance of each isotopic forms.
 - (1) ${}^{50}Z(15\%), {}^{52}Z(85\%)$
 - (2) ${}^{50}Z(85\%), {}^{52}Z(15\%)$
 - $(3) \quad {}^{50}Z(5\%), {}^{52}Z(95\%)$
 - (4) ${}^{50}Z(95\%), {}^{52}Z(5\%)$

- 61. The number of oxygen atoms in 24.9 g of CuSO₄.5H₂O is (molar mass of Cu = 63 g mol⁻¹) (1) 2.41 × 10²⁴ (2) 3.01 × 10²⁴ (3) 5.42 × 10²³ (4) 5.42 × 10²⁴
- 62. What percentage of oxygen is present in the compound CaCO₃.3Ca₃(PO₄)₂?
 (1) 23.3% (2) 45.36%
 (3) 41.94% (4) 17.08%
- **63.** $2 g \text{ of } O_2$ at NTP occupies the volume
 - (1) 1.4 L (2) 2.8 L
 - (3) 11.4 L (4) 3.2 L
- **64.** The number of electrons in 3.1 mg NO_3^- is:-
 - (1) 32 (2) 1.6×10^{-3}
 - (3) 9.6×10^{20} (4) 9.6×10^{23}
- **65.** The number of hydrogen atoms present in 25.6 g of sucrose $(C_{12}H_{22}O_{11})$ which has a molar mass of 342.3 g/mol, is:
 - (1) 22×10^{23} (2) 9.91×10^{23}
 - (3) 11×10^{23} (4) 44×10^{23}
- **66.** 1 mol of CH_4 contains
 - (1) 6.02×10^{23} atoms of H
 - (2) 4 g atom of hydrogen
 - (3) 1.81×10^{23} molecules of CH₄
 - (4) 3.0 g of carbon
- 67. Calculate number of neutrons present in 20×10^{25} atoms of oxygen $\binom{17}{8}$ O:

Given : $N_A = 6 \times 10^{23}$

- (1) 180×10^{25} (2) 1600
- $(3) \quad 1800 \ N_A \qquad (4) \quad 3200 \ N_A$
- **68.** The mass of oxygen in 3.6 mol of water is (1) 115.2 g (2) 57.6 g
 - (3) 28.8 g (4) 18.4 g
- 69. A compound contains 11.99% N, 13.70% O, 9.25% B and 65.06% F. Its empirical formula (molar mass of B is 10.8 g mol⁻¹) is:
 - (1) $NOBF_2$ (2) $NOBF_4$
 - (3) N_2OF_2 (4) NO_2F_2
- 70. Haemoglobin contains 0.33% of iron by weight. The molecular weight of haemoglobin is approximately 67200. The number of iron atoms (at. wt. of Fe = 56) present in one molecule of haemoglobin is

(1)	6	(2)	1
(3)	2	(4)	4

- 71. 5 mol of VO and 6 mol of Fe₂O₃ are allowed to react completely according to the reaction, $VO + Fe_2O_3 \rightarrow FeO + V_2O_5$ The number of moles of V₂O₅ formed is : (1) 6 (2) 2 (3) 3 (4) 5
- 72. Number of Ca^{2+} and Cl^{-} ions in 111 g of anhydrous $CaCl_2$ are-[molar mass of: $Cl_2 = 71$ g/mol; Ca = 40 g/mol] (1) N_A , $2N_A$ (2) $2N_A$, N_A (3) N_A , N_A (4) None of these
- **73.** Dissolving 120 g of urea (mol. wt. 60) in 1000 g of water gave a solution of density 1.15 g/mL. The molarity of the solution is
 - (1) 1.78 M (2) 2.00 M (3) 2.05 M (4) 2.22 M
- 74.For the reaction,
 $7A + 13B + 15C \rightarrow 17P$ If 15 moles of A , 26 moles of B and 30.5 moles
of C are taken initially, then limiting reactant is(1) A(2) B(3) C(4) none of these
- 75. Which of the following is a temperature independent concentration term?
 (1) Molality (2) Mole fraction
 (3) Both (1) and (2) (4) Molarity
- 76. The weight of lime obtained by heating 200 kg of 95% pure lime stone is:(1) 98.4 kg(2) 106.4 kg
 - (3) 112.8 kg (4) 122.6 kg
- **77.** The molality of a solution of urea in acetic acid, if mole fraction of urea in the solution is 0.5, is:

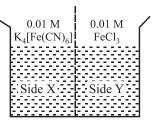
(1)	$\frac{100}{3}$ m	(2)	$\frac{50}{3}$ m
(3)	$\frac{40}{3}$ m	(4)	$\frac{25}{3}$ m

- **78.** The crystalline salt Na₂SO₄.xH₂O on heating loses 55.9% of its weight. The formula of the crystalline salt is
 - (1) $Na_2SO_4.5H_2O$ (2) $Na_2SO_4.7H_2O$ (3) $Na_2SO_4.2H_2O$ (4) $Na_2SO_4.10H_2O$
- **79.** Calculate the molarity of NaOH in the solution prepared by dissolving its 4 g in enough water to form 500 mL of the solution.
 - (1) 0.2 M
 - (2) 0.4 M
 - (3) 0.02 M
 - (4) 0.04 M

80. The molarity of aqueous NaCl solution which contains 5.85 g of NaCl in 500 mL solution is:

(1)	$\frac{1}{2}$ M	(2)	$\frac{1}{5}$ M
(3)	$\frac{2}{5}$ M	(4)	$\frac{3}{5}$ M

- **81.** Equal volume of N_2 and H_2 react to form ammonia under suitable conditions, then the limiting reagent is:
 - (1) N_2 (2) H_2
 - (3) NH_3 (4) Both (1) and (2)
- **82.** The unit of molality is:
 - (1) mole/litre (2) g/mol
 - (3) It is unitless (4) mole/kg
- **83.** 20 g NaOH is dissolved in 400 g of water to prepare a solution. The molality of the solution is:
 - (1) $1.25 \times 10^{-3} \, m$ (2) $2.5 \times 10^{-3} \, m$
 - (3) 1.25 m (4) 2.5 m
- **84.** Solubility of a substance is its maximum amount that can be dissolved in a specified amount of solvent. It depends upon
 - (i) nature of solute (ii) nature of solvent
 - (iii) temperature (iv) pressure
 - (1) Only (i), (ii) and (iii)
 - (2) Only (i), (iii) and (iv)
 - (3) Only (i) and (iv)
 - (4) (i), (ii), (iii) and (iv)
- **85.** The boiling point of 0.1 m KCl solution in water having ebullioscopic constant (K_b) of 0.51 K kg mol⁻¹ is:
 - (1) $100.102^{\circ}C$ (2) $99.49^{\circ}C$
 - (3) 100.051°C (4) 99.949°C


SECTION-B

- 86. The value of Henry's law constant for some gases at 293 K is given below. Arrange the gases in the increasing order of their solubility. He : 144.97 kbar, H₂ : 69.16 kbar,
 - N₂ : 76.48 kbar, O₂ : 34.86 kbar
 - (1) $\text{He} < N_2 < H_2 < O_2$
 - (2) $O_2 < H_2 < N_2 < He$
 - (3) $H_2 < N_2 < O_2 < He$
 - (4) $He < O_2 < N_2 < H_2$
- **87.** Mole fraction of $C_3H_5(OH)_3$ in a solution of 36 g of water and 46 g of glycerine is:
 - (1) 0.46 (2) 0.36
 - (3) 0.20 (4) 0.40

- **88.** A complex containing K^+ , Pt (IV) and Cl⁻ is 100% ionised giving i = 3. Thus, complex is (1) K₂[PtCl₄] (2) K₂[PtCl₆]
 - (3) $K_3[PtCl_5]$ (4) $K[PtCl_3]$
- **89.** The vapour pressure of water depends upon:
 - (1) Surface area of container
 - (2) Volume of container
 - (3) Temperature
 - (4) All of these

90. Which of the following has least mass

- (1) 2g atom of nitrogen
- (2) 3×10^{23} atoms of C
- (3) 1 mole of S
- (4) 7.0 g of Ag
- **91.** For each of the following dilute solutions, van't Hoff factor is equal of 3, except:
 - (1) Na_2SO_4 (2) CaF_2
 - (3) K_3PO_4 (4) $(NH_4)_2CO_3$
- **92.** FeCl₃ on reaction with $K_4[Fe(CN)_6]$ in aqueous solution gives blue colour. These are separated by a semipermeable membrane AB as shown. Due to osmosis there is:

- (1) Blue colour formation in side X.
- (2) Blue colour formation in side Y.
- (3) Blue colour formation in both of the sides X and Y
- (4) No blue colour formation.
- **93.** Elevation in boiling point for 1 molal solution of glucose is 2K. The depression in the freezing point for 2 molal solution of glucose in the same solvent is 2K. The relation between K_b and K_f is;
 - (1) $K_b = 1.5 K_f$ (2) $K_b = K_f$
 - (3) $K_b = 0.5 K_f$ (4) $K_b = 2K_f$
- **94.** Two open beakers one containing a solvent and the other containing a mixture of that solvent with a non-volatile solute are together sealed in a container. Over time:
 - (1) the volume of the solution decreases and the volume of the solvent increases
 - (2) the volume of the solution and the solvent does not change
 - (3) the volume of the solution increases and the volume of the solvent decreases
 - (4) the volume of the solution does not change and the volume of the solvent decreases

95. 1 g of non-volatile non-electrolyte solute is dissolved in 100 g of two different solvents A and B whose ebullioscopic constants are in the ratio of 1 : 5. The ratio of the elevation in their $\Delta T_{\rm b}(A)$.

boıl	ing points,	$\frac{b(r)}{\Delta T_b(B)}$ 1s:	
(1)	5:1	(2)	10:1
(3)	1:5	(4)	1:0.2

- **96.** Which of the following colligative properties is not associated with molality?
 - (1) Lowering of vapour pressure
 - (2) Osmotic pressure
 - (3) Depression in freezing point
 - (4) Elevation in boiling point
- 97. The volume occupied by 4.4 g of CO₂ at STP is___L

(1)	22.4	(2)	2.24
(3)	0.224	(4)	0.1

- **98.** Which of the following solutions will have highest boiling point?
 - (1) 0.1 M FeCl_3
 - (2) 0.1 M BaCl₂
 - (3) 0.1 M NaCl
 - (4) 0.1 M urea (NH₂CONH₂)
- **99.** Which one of the following is correct for an ideal solution?
 - (1) It must obey Raoult's law
 - (2) $\Delta S_{\text{mix}} = 0$
 - (3) $\Delta H = \Delta V \neq 0$
 - (4) ΔG is always positive
- **100.** The molecular weight of a gas is 45. Its density at STP is

(1)	22.4	(2)	11.2
(3)	5.7	(4)	2

Solution

51. (3)From Raoult's law; $P_{total} = P_A + P_B$ $= P^{O}_{\Delta} \gamma_{\Delta} + P^{O}_{B} \gamma_{B}$ $= P_{\Delta}^{0} (1-\chi_{B}) + P_{B}^{0} \chi_{B}$ $= P_A^O - P_A^O \chi_B + P_B^O \chi_B$ $= P^{O}_{A} + P^{O}_{B} \gamma_{B} - P^{O}_{A} \gamma_{B}$ $P_{\text{total}} = P_A^0 + \chi_B (P_B^0 - P_A^0)$ or $P_{total} = P_A^o - (P_A^o - P_B^o)\chi_B$ (ii) $P = 120 - 75 \chi_B \dots (i)$ [given] Comparing equation (i) and (ii) $P_A^o = 120 \text{ torr}$ and $P_A^o - P_B^o = 75$ torr $\therefore -P_{\rm B}^{\rm o} = 75 \text{ torr } - P_{\rm A}^{\rm o}$ $-P_{B}^{o} = 75 \text{ torr } - 120 \text{ torr}$ $-P_{\rm B}^{\rm o} = -45$ torr $P_{\rm B}^{\rm o} = 45 \text{ torr}$

52. (4) $\frac{i n_{solute}}{i n_{solute} + n_{solvent}}$ $=\frac{3\times 1}{2\times 1+2}=\frac{3}{6}=\frac{1}{2}$ 53. (1) For dissociation; $\alpha = \frac{i-1}{n-1}$ $\therefore 0.2 = \frac{i-1}{2-1}$ 0.2 = i - 1i = 1.2 Hence, $\Delta T_f = i K_f m$ $= 1.2 \times 1.86 \times 0.2$ $= 0.4464^{\circ}C = 0.45^{\circ}C$ Thus, Freezing point = $0^{\circ}C - (\Delta T_{f})$ $= 0^{\circ}C (0.45^{\circ}C) = 0.45^{\circ}C$ 54. (4)

> For isotonic solutions, $\pi_1 = \pi_2$ $\pi \propto i \times C$ For Na₂SO₄ and Ca(NO₃)₂ van't Hoff factor (i) = 3.

55. (2)

 $H_2O + C_4H_9OH$

56. (3)

 $\pi = i C R T$ $= 1 \times \frac{1}{10} \times 0.0821 \times 300$ = 2.46 atm.

57. (4)

Vapour pressure $\propto \frac{1}{i \times C}$ $i \times C$ Solute (1) 0.1 M BaCl_2 : 0.3 (2) 0.1 M urea 0.1 : (3) $0.1 \text{ M} \text{ Na}_2 \text{SO}_4$: 0.3 (4) 0.1 M Na₃PO₄ : 0.4

58. (2)

When % w/w is given then: Molarity = $\frac{\%w/w \times 10 \times d}{GMM}$ $= \frac{98 \times 10 \times 1.84}{_{\mathbf{Q}\mathbf{R}}} \mathbf{M} = 18.4 \ \mathbf{M}$

- 59. (3)Only 2 significant figures.
- 60. (1)

Average atomic mass = $\frac{\mathbf{x} \cdot \mathbf{a} + \mathbf{y} \cdot \mathbf{b}}{100}$

61. (3)

Mole $=\frac{24.9}{249}=0.1$ Number of oxygen atom = $0.1 \times 9 \times 6.02 \times 10^{23}$

62. (3)

% of O =
$$\frac{16 \times 27}{(100 + 3 \times 310)} \times 100 = 41.94\%$$

63. (1)

Mole $=\frac{2}{32}=\frac{1}{16}$ At N.T.P.

Mole = $\frac{V(L)}{22.4}$ $\frac{1}{16} = \frac{V(L)}{22.4}$ V(L) = 1.4 L

64.

(3) Moles of NO₃⁻ = $\frac{3.1 \times 10^{-3}}{62}$ = 0.05×10⁻³ Numbers of molecules = $0.05 \times 10^{-3} \times 6 \times 10^{23}$ $=3 \times 10^{19}$ Numbers of \overline{es} = Numbers of molecules $\times e^{-}$ in NO₃⁻ ion $= 3 \times 10^{19} \times 32$ $=96 \times 10^{19} = 9.6 \times 10^{20}$ 65. (2)Mass Number of moles of sucrose = ---Molar mass $=\frac{25.6}{342.3}$ Number of moles of hydrogen atom $= 0.075 \times 22$ Number of atoms of hydrogen $= 0.075 \times 22 \times 6.023 \times 10^{23} = 9.9 \times 10^{23}$ 66. (2)1 mole of methane contains 1 mole of C, 2 mole of H. 12 g of C (1 mole = 12 g)4 g of H (2 moles) 4 g of hydrogen atom is the answer. 67. (1) Atomic number = P = 8Atomic mass = N + P = 17N = 9Total number of neutrons = $9 \times 20 \times 10^{25}$ $= 180 \times 10^{25}$ 68. (2)1 mole = molar massmolar mass = $1 \times 2 + 16 = 18$ g/mol $1 \text{ mole} = 18 \text{ g H}_2\text{O}$ \therefore 1 mole = 16 g Oxygen \therefore 3.6 moles = 3.6 × 16 = 56.7 g 69. (2)NOBF₄ 70. (4) Fe present in 67200 u = $\frac{0.33}{100} \times 67200$ $= 222u = \frac{222}{56} = 4$ atoms

71. (2) $2VO + 3Fe_2O_3 \rightarrow 6FeO + V_2O_5$ $Fe_2O_3 \rightarrow L.R.$ By unitary method: $\therefore 3 \text{ mole } Fe_2O_3 = 1 \text{ mole } V_2O_5$ $\therefore 6 \text{ mole } Fe_2O_3 = \frac{1 \times 6}{3} \text{ mole of } V_2O_5 \text{ formed}$ $= 2 \text{ mole } V_2O_5 \text{ formed.}$

72. (1)

73. (3)

Molarity
$$=\frac{\frac{120}{60}}{\frac{1120 \times 10^{-3}}{1.15}} = 2.05$$

74. (2)

B is limiting reagant as ratio of given moles to stoichiometric coefficient is lowest for B.

75. (3)

Molality and mole fraction do not involve volume term, hence they are temperature independent concentration terms.

76. (2)

: 100 kg impure sample has pure

 $CaCO_3 = 95 \text{ kg}$

 \therefore 200 kg impure sample has pure CaCO₃

 $=(95 \times 200 / 100) = 190$ kg.

 $CaCO_3 \rightarrow CaO + CO_2$

$$\therefore$$
 100 kg CaCO₃ gives CaO = 56 kg

$$\therefore 190 \text{ kg CaCO}_3 \text{ gives CaO} = (56 \times 190/100)$$

77. (2)

Molality =
$$\frac{\chi_{\text{solute}}}{\chi_{\text{solvent}}} \times \frac{1000}{\text{Molar mass of solvent}}$$

= $\frac{0.5}{0.5} \times \frac{1000}{60} = \frac{50}{3}$ m

% of
$$H_2O = \frac{\text{No. of } H_2O \times (\text{M.wt. of } H_2O) \times 100}{\text{M.wt. of } (\text{Na}_2\text{SO}_4.\text{xH}_2O)}$$

79. (1)

Molarity =
$$\frac{n_{solute}}{V_L \text{ solution}}$$

= $\frac{4/40}{500/1000} = \frac{4}{40} \times \frac{1000}{500}$
= $\frac{1}{10} \times 2 = 0.2 \text{ M}$

80. (2)

Molarity =
$$\frac{n_{solute}}{V_L \text{ solution}}$$

= $\frac{5.85/58.5}{500/1000} = \frac{5.85}{58.5} \times \frac{1000}{500}$
= $0.1 \times 2 = 0.2 \text{ M} = \frac{1}{5} \text{ M}$

81. (2)

Balanced reaction is:

 $N_2 + 3H_2 \rightarrow 2NH_3$ From equation : 1 V 3 V 2 V Given (suppose) : 1 V 1 V ? 1 V of N₂ reacts with 3 V of H₂ but available volume of H₂ is only 1 V, hence, it will be consumed totally. Thus, limiting reagent is H₂.

82. (4)

Molality =
$$\frac{\text{Number of moles of solute}}{\text{Mass of solvent in kg}}$$

$$=\frac{\text{Mole}}{kg}$$

Hence unit of molality is mole/kg

83. (3)

Molality =
$$\frac{n_{solute}}{W_{kg} \text{ solvent}}$$

= $\frac{20/40}{400/1000} = \frac{20}{40} \times \frac{1000}{400} = 1.25 \text{ m}$

84. (4)

Conceptual

85. (1) $\Delta T_{b} = i K_{b} m$ $= 2 \times 0.51 \times 0.1 = 0.102^{\circ} C$ Hence, boiling point = $100^{\circ}C + \Delta T_{b}$ $= 100^{\circ}C + 0.102^{\circ}C$ $= 100.102^{\circ}C$

86. (1)

Higher the value of $K_{\rm H}$, lower is the solubility of gas in liquid.

87. (3)

Molar mass of glycerine, $C_3H_5(OH)_3 = 92 \text{ g/mol}$

$$\chi_{glycerine} = \frac{n_{glycerine}}{n_{glycerine} + n_{H_2O}}$$
$$= \frac{46/92}{46/92 + 36/18}$$
$$= \frac{\frac{1}{2}}{\frac{1}{2} + 2} = \frac{\frac{1}{2}}{\frac{5}{2}} = \frac{1}{2} \times \frac{2}{5} = 0.2$$

88. (2)

 $\mathrm{K}_{2}[\mathrm{PtCl}_{6}] \rightarrow 2\mathrm{K}^{+} + [\mathrm{PtCl}_{6}]^{2-}$

For $K_2[PtCl_4]$, i = 3 but oxidation number of Pt = +2

89. (3)

Vapour pressure of liquid depends only upon temperature. Vapour pressure ∞ Temperature

90. (2)

(1) 2 g atom of nitrogen = 28 g

(2) 6×10^{23} atoms of C has mass = 12 g 3×10^{23} atoms of C has mass

$$= \frac{12 \times 3 \times 10^{23}}{6 \times 10^{23}} = 6 \text{ g}$$

(3) 1 mole of S has mass = 32 g(4) 7.0 g of Ag So, lowest mass = 6 g of C

91. (3)

Salt	(i)
Na_2SO_4	3
CaF ₂	3
K_3PO_4	4
$(NH_4)_2CO_3$	3

92. (4)

There is no formation of blue colour because only solvent particles can pass through SPM hence Fe^{3+} and $[Fe(CN)_6]^{4-}$ ions cannot interact with each other.

93. (4)

(I)
$$\Delta T_b = i K_b m$$

 $2 = 1 \times K_b \times 1$
 $2 = K_b$
(II) $\Delta T_f = i K_f m$
 $2 = 1 \times K_f \times 2$
 $1 = K_f$
 $\therefore K_b = 2 K_f$

94. (3)

The pure solvent will try to maintain higher vapour pressure in the sealed container and in return the solvent vapour molecules will condense in the solution of non-volatile solute as it maintains an equilibrium with lower vapour pressure. (Lowering of vapour pressure is observed when a non-volatile solute is mixed in a volatile solvent).

$P_{solvent}^{o} > P_{solution}$

This will lead to increase in the volume of solution container and decrease in the volume of solvent container.

95. (3)

$$\frac{\Delta T_{b}(A)}{\Delta T_{b}(B)} = \frac{K_{b(A)} \times m}{K_{b(B)} \times m}$$
$$= \frac{K_{b(A)} \times \frac{1 \times 1000}{m.m._{(solute)} \times 100}}{K_{b(B)} \times \frac{1 \times 1000}{m.m._{(solute)} \times 100}}$$
$$= \frac{K_{b(A)}}{K_{b(B)}} = \frac{1}{5}$$

96. (2)

The formula of osmotic pressure is; $\pi = i C R T$

Hence, there is no involvement of molality in the osmotic pressure.

97. (2)

:: 44 g CO₂ occupies 22.4 L at STP

:. 4.4 g CO₂ occupies =
$$\frac{22.4}{44} \times 4.4 = 2.24$$
 L

98. (1)

Elevation in boiling point is a colligative property, i.e., depends only on number of particles of ions.

0.1 M FeCl₃ gives maximum number of ions, thus has highest boiling point.

99. (1)

For an ideal solution, $\Delta H = 0$, $\Delta V = 0$

100. (4)

The density of gas =
$$\frac{\text{molecular wt.}}{\text{volume}}$$

= $\frac{45}{22.4}$ = 2 g litre⁻¹.