NURTURE COURSE BINOMIAL THEOREM

CONTENTS

BINOMIAL THEOREM	
THEORY & ILLUSTRATIONS	Page – 01
EXERCISE (O-1)	Page – 16
EXERCISE (O-2)	Page – 17
EXERCISE (S-1)	Page – 19
EXERCISE (S-2)	Page – 21
EXERCISE (JM)	Page – 22
EXERCISE (JA)	Page – 23
ANSWER KEY	Page – 24

JEE (Main) Syllabus:

Binomial theorem for a positive integral index, general term and middle term, properties of Binomial coefficients and simple applications.

JEE (Advanced) Syllabus:

Binomial theorem for a positive integral index, properties of binomial coefficients.

BINOMIAL THEOREM

1. BINOMIAL EXPRESSION:

Any algebraic expression which contains two dissimilar terms is called binomial expression.

For example :
$$x - y$$
, $xy + \frac{1}{x}$, $\frac{1}{z} - 1$, $\frac{1}{(x - y)^{1/3}} + 3$ etc.

2. **BINOMIAL THEOREM:**

The formula by which any positive integral power of a binomial expression can be expanded in the form of a series is known as **BINOMIAL THEOREM.**

If $x, y \in R$ and $n \in N$, then:

$$(x+y)^n = {^nC_0}x^n + {^nC_1}x^{n-1}y + {^nC_2}x^{n-2}y^2 + \dots + {^nC_r}x^{n-r}y^r + \dots + {^nC_n}y^n = \sum_{r=0}^n {^nC_r}x^{n-r}y^r$$

This theorem can be proved by induction.

Observations:

- (a) The number of terms in the expansion is (n+1) i.e. one more than the index.
- (b) The sum of the indices of x & y in each term is n.
- (c) The binomial coefficients of the terms (${}^{n}C_{0}$, ${}^{n}C_{1}$) equidistant from the beginning and the end are equal. i.e. ${}^{n}C_{r} = {}^{n}C_{r-1}$
- (d) Symbol ${}^{n}C_{r}$ can also be denoted by $\binom{n}{r}$, C(n, r) or A_{r}^{n} .

Some important expansions:

(i)
$$(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n$$
.

(ii)
$$(1 - x)^n = {}^nC_0 - {}^nC_1x + {}^nC_2x^2 + \dots + (-1)^n \cdot {}^nC_nx^n$$
.

Note: The coefficient of x^r in $(1 + x)^n = {}^nC_r$ & that in $(1-x)^n = (-1)^r$ nC_r

Illustration 1: Expand: $(y + 2)^6$.

Solution:
$${}^{6}C_{0}y^{6} + {}^{6}C_{1}y^{5}.2 + {}^{6}C_{2}y^{4}.2^{2} + {}^{6}C_{3}y^{3}.2^{3} + {}^{6}C_{4}y^{2}.2^{4} + {}^{6}C_{5}y^{1}.2^{5} + {}^{6}C_{6}.2^{6}.$$

= $y^{6} + 12y^{5} + 60y^{4} + 160y^{3} + 240y^{2} + 192y + 64.$

Illustration 2: Write first 4 terms of
$$\left(1 - \frac{2y^2}{5}\right)^7$$

Solution:
$${}^{7}C_{0}, {}^{7}C_{1}\left(-\frac{2y^{2}}{5}\right), {}^{7}C_{2}\left(-\frac{2y^{2}}{5}\right)^{2}, {}^{7}C_{3}\left(-\frac{2y^{2}}{5}\right)^{3}$$

Illustration 3: If in the expansion of $(1+x)^m (1-x)^n$, the coefficients of x and x^2 are 3 and -6 respectively then m is -

Solution:
$$(1+x)^m (1-x)^n = \left[1 + mx + \frac{(m)(m-1).x^2}{2} + \dots \right] \left[1 - nx + \frac{n(n-1)}{2}x^2 + \dots \right]$$

JEE-Mathematics

Coefficient of
$$x = m - n = 3$$
(i)

Coefficient of
$$x^2 = -mn + \frac{n(n+1)}{2} + \frac{m(m-1)}{2} = -6$$
(ii)

Solving (i) and (ii), we get m = 12 and n = 9.

Do yourself - 1:

(i) Expand
$$\left(3x^2 - \frac{x}{2}\right)^5$$

(ii) Expand
$$(y + x)^n$$

Pascal's triangle:

Pascal's triangle

- (i) **Pascal's triangle -** A triangular arrangement of numbers as shown. The numbers give the binomial coefficients for the expansion of $(x + y)^n$. The first row is for n = 0, the second for n = 1, etc. Each row has 1 as its first and last number. Other numbers are generated by adding the two numbers immediately to the left and right in the row above.
- (ii) Pascal triangle is formed by binomial coefficient.
- (iii) The number of terms in the expansion of $(x+y)^n$ is (n + 1) i.e. one more than the index.
- (iv) The sum of the indices of x & y in each term is n.
- (v) Power of first variable (x) decreases while of second variable (y) increases.
- (vi) Binomial coefficients are also called combinatorial coefficients.
- (vii) Binomial coefficients of the terms equidistant from the begining and end are equal.
- (viii) r^{th} term from the beginning in the expansion of $(x + y)^n$ is same as r^{th} term from end in the expansion of $(y + x)^n$.
- (ix) r^{th} term from the end in $(x + y)^n$ is $(n r + 2)^{th}$ term from the beginning.

3. IMPORTANT TERMS IN THE BINOMIAL EXPANSION:

(a) General term: The general term or the $(r+1)^{th}$ term in the expansion of $(x+y)^n$ is given by $T_{r+1} = {}^nC_r x^{n-r} y^r$

Illustration 4: Find: (a) The coefficient of x^7 in the expansion of $\left(ax^2 + \frac{1}{bx}\right)^{11}$

(b) The coefficient of x^{-7} in the expansion of $\left(ax^2 + \frac{1}{bx}\right)^{11}$

Also, find the relation between a and b, so that these coefficients are equal.

In the expansion of $\left(ax^2 + \frac{1}{hv}\right)^{11}$, the general term is: (a) **Solution:**

$$T_{r+1} = {}^{11}C_r(ax^2)^{11-r} \left(\frac{1}{bx}\right)^r = {}^{11}C_r.\frac{a^{11-r}}{b^r}.x^{22-3r}$$

putting
$$22 - 3r = 7$$

putting
$$22 - 3r = 7$$

 $\therefore 3r = 15 \implies r = 5$

$$T_6 = {}^{11}C_5 \frac{a^6}{b^5} \cdot x^7$$

Hence the coefficient of x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ is ${}^{11}C_5a^6b^{-5}$. Ans.

Note that binomial coefficient of sixth term is ${}^{11}C_5$.

In the expansion of $\left(ax - \frac{1}{bx^2}\right)^{11}$, general term is: (b)

$$T_{r+1} = {}^{11}C_r(ax)^{11-r} \left(\frac{-1}{bx^2}\right)^r = (-1)^{r+1}C_r \frac{a^{11-r}}{b^r}.x^{11-3r}$$

putting
$$11 - 3r = -7$$

$$\therefore 3r = 18 \implies r = 6$$

$$T_7 = (-1)^6 \cdot {}^{11}C_6 \frac{a^5}{b^6} \cdot x^{-7}$$

Hence the coefficient of x^{-7} in $\left(ax - \frac{1}{bx^2}\right)^{11}$ is ${}^{11}C_6a^5b^{-6}$. Ans.

Also given:

Coefficient of x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ = coefficient of x^{-7} in $\left(ax - \frac{1}{bx^2}\right)^{11}$

$$\Rightarrow {}^{11}C_5 a^6 b^{-5} = {}^{11}C_6 a^5 b^{-6}$$

$$\Rightarrow {}^{11}C_5 a^6 b^{-5} = {}^{11}C_6 a^5 b^{-6}$$

\Rightarrow ab = 1 (:: ${}^{11}C_5 = {}^{11}C_6$)

which is the required relation between a and b.

Ans.

Find the number of rational terms in the expansion of $(9^{1/4} + 8^{1/6})^{1000}$. Illustration 5: The general term in the expansion of $(9^{1/4} + 8^{1/6})^{1000}$ is **Solution:**

$$T_{r+1} = {}^{1000}C_r \left({}_{Q} {}^{\frac{1}{4}} \right)^{1000-r} \left({}_{R} {}^{\frac{1}{6}} \right)^r = {}^{1000}C_r 3^{\frac{1000-r}{2}} 2^{\frac{r}{2}}$$

The above term will be rational if exponents of 3 and 2 are integers

It means $\frac{1000-r}{2}$ and $\frac{r}{2}$ must be integers

The possible set of values of r is $\{0, 2, 4, \dots, 1000\}$

Hence, number of rational terms is 501

Ans.

(b) Middle term:

The middle term(s) in the expansion of $(x + y)^n$ is (are):

- If n is even, there is only one middle term which is given by $T_{(n+2)/2} = {}^{n}C_{n/2}$. $x^{n/2}$. $y^{n/2}$ **(i)**
- If n is odd, there are two middle terms which are $T_{(n+1)/2}$ & $T_{[(n+1)/2]+1}$ (ii)

JEE-Mathematics

Important Note:

Middle term has greatest binomial coefficient and if there are 2 middle terms their coefficients will be equal.

- $\Rightarrow \quad {^{n}C_{r}} \text{ will be maximum} \qquad \qquad When } \\ r = \frac{n}{2} \text{ if n is even} \\ When } \\ r = \frac{n-1}{2} \text{ or } \\ \frac{n+1}{2} \text{ if n is odd} \\$
- \Rightarrow The term containing greatest binomial coefficient will be middle term in the expansion of $(1 + x)^n$

Illustration 6: Find the middle term in the expansion of $\left(3x - \frac{x^3}{6}\right)^9$

Solution: The number of terms in the expansion of $\left(3x - \frac{x^3}{6}\right)^9$ is 10 (even). So there are two middle terms

i.e. $\left(\frac{9+1}{2}\right)^{th}$ and $\left(\frac{9+3}{2}\right)^{th}$ are two middle terms. They are given by T_5 and T_6

$$T_5 = T_{4+1} = {}^{9}C_{4}(3x)^{5} \left(-\frac{x^{3}}{6}\right)^{4} = {}^{9}C_{4}3^{5}x^{5}. \quad \frac{x^{12}}{6^{4}} = \frac{9 \cdot 8 \cdot 7 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 4} \cdot \frac{3^{5}}{2^{4} \cdot 3^{4}} x^{17} = \frac{189}{8} x^{17}$$

and $T_6 = T_{5+1} = {}^9C_5(3x)^4 \left(-\frac{x^3}{6}\right)^5 = -{}^9C_43^4 \cdot x^4 \cdot \frac{x^{15}}{6^5} = \frac{-9.8.7.6}{1.2.3.4} \cdot \frac{3^4}{2^5.3^5} x^{19} = -\frac{21}{16} x^{19}$ Ans.

(c) Term independent of x:

Term independent of x does not contain x; Hence find the value of r for which the exponent of x is zero.

Illustration 7: The term independent of x in $\left[\sqrt{\frac{x}{3}} + \sqrt{\left(\frac{3}{2x^2}\right)}\right]^{10}$ is -

(A) 1

(B) $\frac{5}{12}$

(C) ¹⁰C₁

(D) none of these

Solution: General term in the expansion is

$${}^{10}C_{r}\left(\frac{x}{3}\right)^{\frac{r}{2}}\left(\frac{3}{2x^{2}}\right)^{\frac{10-r}{2}} = {}^{10}C_{r}x^{\frac{3r}{2}-10} \cdot \frac{3^{5-r}}{2^{\frac{10-r}{2}}} \quad \text{For constant term, } \frac{3r}{2} = 10 \Rightarrow r = \frac{20}{3}$$

which is not an integer. Therefore, there will be no constant term.

Ans. (D)

Do yourself - 2:

- (i) Find the 7th term of $\left(3x^2 \frac{1}{3}\right)^{10}$
- (ii) Find the term independent of x in the expansion : $\left(2x^2 \frac{3}{x^3}\right)^{25}$
- (iii) Find the middle term in the expansion of: (a) $\left(\frac{2x}{3} \frac{3}{2x}\right)^6$ (b) $\left(2x^2 \frac{1}{x}\right)^7$

E

(d) Numerically greatest term:

Let numerically greatest term in the expansion of $(a + b)^n$ be T_{r+1} .

$$\Rightarrow \begin{cases} |T_{r+1}| \ge |T_r| \\ |T_{r+1}| \ge |T_{r+2}| \end{cases} \text{ where } T_{r+1} = {}^{n}C_r a^{n-r} b^r$$

Solving above inequalities we get $\frac{n+1}{1+\left|\frac{a}{b}\right|}-1 \le r \le \frac{n+1}{1+\left|\frac{a}{b}\right|}$

Case I: When $\frac{n+1}{1+\left|\frac{a}{b}\right|}$ is an integer equal to m, then T_m and T_{m+1} will be numerically greatest term

Case II: When $\frac{n+1}{1+\left|\frac{a}{b}\right|}$ is not an integer and its integral part is m, then T_{m+1} will be the numerically greatest term.

Illustration 8: Find numerically greatest term in the expansion of $(3 - 5x)^{11}$ when $x = \frac{1}{5}$

Using
$$\frac{n+1}{1+\left|\frac{a}{b}\right|}-1 \le r \le \frac{n+1}{1+\left|\frac{a}{b}\right|}$$

$$\frac{11+1}{1+\left|\frac{3}{-5x}\right|} - 1 \le r \le \frac{11+1}{1+\left|\frac{3}{-5x}\right|}$$

solving we get $2 \le r \le 3$

$$\therefore$$
 r = 2, 3

so, the greatest terms are T_{2+1} and T_{3+1} .

$$\therefore$$
 Greatest term (when $r = 2$)

$$T_3 = {}^{11}C_2.3^9 (-5x)^2 = 55.3^9 = T_4$$

From above we say that the value of both greatest terms are equal.

Illustration 9: Given T_3 in the expansion of $(1-3x)^6$ has maximum numerical value. Find the range of 'x'.

Using
$$\frac{n+1}{1+\left|\frac{a}{b}\right|}-1 \le r \le \frac{n+1}{1+\left|\frac{a}{b}\right|}$$

$$\frac{6+1}{1+\left|\frac{1}{-3x}\right|} - 1 \le 2 \le \frac{7}{1+\left|\frac{1}{-3x}\right|}$$

Ans.

Let
$$|x| = t$$

 $\frac{21t}{3t+1} - 1 \le 2 \le \frac{21t}{3t+1}$

$$\begin{cases}
\frac{21t}{3t+1} \le 3 \\
\frac{21t}{3t+1} \ge 2
\end{cases} \Rightarrow
\begin{cases}
\frac{4t-1}{3t+1} \le 0 \Rightarrow t \in \left[-\frac{1}{3}, \frac{1}{4}\right] \\
\frac{15t-2}{3t+1} \ge 0 \Rightarrow t \in \left(-\infty, -\frac{1}{3}\right] \cup \left[\frac{2}{15}, \infty\right)
\end{cases}$$

Common solution $t \in \left[\frac{2}{15}, \frac{1}{4}\right] \implies x \in \left[-\frac{1}{4}, -\frac{2}{15}\right] \cup \left[\frac{2}{15}, \frac{1}{4}\right]$

Do yourself -3:

- (i) Find the numerically greatest term in the expansion of $(3 2x)^9$, when x = 1.
- (ii) In the expansion of $\left(\frac{1}{2} + \frac{2x}{3}\right)^n$ when $x = -\frac{1}{2}$, it is known that 3^{rd} term is the greatest term. Find the possible integral values of n.

4. PROPERTIES OF BINOMIAL COEFFICIENTS:

$$(1+x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + C_{3}x^{3} + \dots + C_{n}x^{n} = \sum_{r=0}^{n} {}^{n}C_{r}r^{r}; n \in \mathbb{N}$$
(i)

where $C_0, C_1, C_2, \dots, C_n$ are called combinatorial (binomial) coefficients.

(a) The sum of all the binomial coefficients is 2^n .

Put x = 1, in (i) we get

$$C_0 + C_1 + C_2 + \dots + C_n = 2^n \implies \sum_{r=0}^{n} {}^{n}C_r = 0$$
(ii)

(b) Put x=-1 in (i) we get

$$C_0 - C_1 + C_2 - C_3 - \cdots + C_n = 0 \Rightarrow \sum_{r=0}^{n} (-1)^r {^nC_r} = 0$$
 ...(iii)

(c) The sum of the binomial coefficients at odd position is equal to the sum of the binomial coefficients at even position and each is equal to 2^{n-1} .

From (ii) & (iii),
$$C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$

(**d**)
$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

(e)
$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$$

(f)
$${}^{n}C_{r} = \frac{n}{r} {}^{n-1}C_{r-1} = \frac{n}{r} \cdot \frac{n-1}{r-1} {}^{n-2}C_{r-2} = \dots = \frac{n(n-1)(n-2).....(n-r+1)}{r(r-1)(r-2)......1}$$

(g)
$${}^{n}C_{r} = \frac{r+1}{n+1} \cdot {}^{n+1}C_{r+1}$$

Illustration 10: Prove that :
$${}^{25}C_{10} + {}^{24}C_{10} + \dots + {}^{10}C_{10} = {}^{26}C_{11}$$

Solution: LHS = ${}^{10}C_{10} + {}^{11}C_{10} + {}^{12}C_{10} + \dots + {}^{25}C_{10}$

LHS =
$${}^{10}C_{10} + {}^{11}C_{10} + {}^{12}C_{10} + \dots + {}^{25}C_{10}$$

 $\Rightarrow {}^{11}C_{11} + {}^{11}C_{10} + {}^{12}C_{10} + \dots + {}^{25}C_{10}$
 $\Rightarrow {}^{12}C_{11} + {}^{12}C_{10} + \dots + {}^{25}C_{10}$
 $\Rightarrow {}^{13}C_{11} + {}^{13}C_{10} + \dots + {}^{25}C_{10}$
and so on. \therefore LHS = ${}^{26}C_{11}$

$$\Rightarrow {}^{13}C_{11} + {}^{13}C_{10} + \dots {}^{25}C_{10}$$

LHS = coefficient of x^{10} in $\{(1+x)^{10} + (1+x)^{11} + \dots (1+x)^{25}\}$

$$\Rightarrow \quad \text{coefficient of } x^{10} \text{ in } \left[(1+x)^{10} \frac{\{1+x\}^{16} - 1}{1+x-1} \right]$$

$$\Rightarrow$$
 coefficient of x^{10} in $\frac{\left[(1+x)^{26}-(1+x)^{10}\right]}{x}$

$$\Rightarrow$$
 coefficient of x^{11} in $\left[(1+x)^{26} - (1+x)^{10} \right] = {}^{26}C_{11} - 0 = {}^{26}C_{11}$

A student is allowed to select at most n books from a collection of (2n + 1) books. If the Illustration 11: total number of ways in which he can select books is 63, find the value of n.

Solution: Given student selects at most n books from a collection of (2n + 1) books. It means that he selects one book or two books or three books or or n books. Hence, by the

$${\overset{\circ}{2}}_{n+1}C_1 + {\overset{\circ}{2}}_{n+1}C_2 + {\overset{\circ}{2}}_{n+1}C_3 + \dots + {\overset{\circ}{2}}_{n+1}C_n = 63$$
 ...(i)

$${}^{2n+1}C_0 + {}^{2n+1}C_1 + {}^{2n+1}C_2 + {}^{2n+1}C_3 + \dots + {}^{2n+1}C_{2n+1} = 2^{2n+1}$$
 ...(ii)

Since
$${}^{2n+1}C_0 + {}^{2n+1}C_1 + {}^{2n+1}C_2 + {}^{2n+1}C_3 + \dots + {}^{2n+1}C_{2n+1} = 2^{2n+1}$$
 . Since ${}^{2n+1}C_0 = {}^{2n+1}C_{2n+1} = 1$, equation (ii) can also be written as $2 + ({}^{2n+1}C_1 + {}^{2n+1}C_2 + {}^{2n+1}C_3 + \dots + {}^{2n+1}C_n) + ({}^{2n+1}C_{n+1} + {}^{2n+1}C_{n+2} + {}^{2n+1}C_{n+3} + \dots + {}^{2n+1}C_{2n-1} + {}^{2n+1}C_{2n}) = 2^{2n+1}$ $\Rightarrow 2 + ({}^{2n+1}C_1 + {}^{2n+1}C_2 + {}^{2n+1}C_3 + \dots + {}^{2n+1}C_n) + ({}^{2n+1}C_1 + {}^{2n+1}C_1 + {}^{2n+1}C_1 + {}^{2n+1}C_1 + {}^{2n+1}C_1) = 2^{2n+1}$

$$(: ^{2n+1}C_r = ^{2n+1}C_{2n+1-r})$$

$$\Rightarrow 2 + 2 (^{2n+1}C_1 + ^{2n+1}C_2 + ^{2n+1}C_3 + \dots + ^{2n+1}C_n) = 2^{2n+1}$$

$$\Rightarrow 2 + 2.63 = 2^{2n+1}$$

$$\Rightarrow 1 + 63 = 2^{2n}$$
[from (i)]

$$\Rightarrow 2 + 2.63 = 2^{2n+1} \Rightarrow 1 + 63 = 2^{2n}$$

\(\to 64 = 2^{2n} \to 2^6 = 2^{2n}\)

Hence, n = 3. Ans.

 $\therefore 2n = 6$

Illustration 12: Prove that :

(i)
$$C_1 + 2C_2 + 3C_3 + \dots + nC_n = n \cdot 2^{n-1}$$

(ii)
$$C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1}$$

(i) L.H.S. = $\sum_{r=0}^{n} r \cdot {^{n}C_{r}} = \sum_{r=0}^{n} r \cdot \frac{n}{r} \cdot {^{n-1}C_{r-1}}$ **Solution:**

$$= n \sum_{r=1}^{n} {}^{n-1}C_{r-1} = n \cdot \left[{}^{n-1}C_0 + {}^{n-1}C_1 + \dots + {}^{n-1}C_{n-1} \right]$$

= n \cdot 2^{n-1}

Aliter: (Using method of differentiation)

$$(1+x)^n = {}^{n}C_0 + {}^{n}C_1x + {}^{n}C_2x^2 + \dots + {}^{n}C_nx^n \qquad \dots (A)$$

Differentiating (A), we get

$$n(1+x)^{n-1} = C_1 + 2C_2x + 3C_3x^2 + \dots + n.C_nx^{n-1}$$

Put x = 1,

$$C_1 + 2C_2 + 3C_3 + \dots + n.C_n = n.2^{n-1}$$

(ii) L.H.S.
$$= \sum_{r=0}^{n} \frac{C_r}{r+1} = \frac{1}{n+1} \sum_{r=0}^{n} \frac{n+1}{r+1} {}^{n}C_r$$

$$= \frac{1}{n+1} \sum_{r=0}^{n} {}^{n+1}C_{r+1} = \frac{1}{n+1} \left[{}^{n+1}C_1 + {}^{n+1}C_2 + \dots + {}^{n+1}C_{n+1} \right] = \frac{1}{n+1} \left[2^{n+1} - 1 \right]$$

Aliter: (Using method of integration)

Integrating (A), we get

$$\frac{(1+x)^{n+1}}{n+1} + C = C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{3} + \dots + \frac{C_n x^{n+1}}{n+1}$$
 (where C is a constant)

Put x = 0, we get,
$$C = -\frac{1}{n+1}$$

$$\therefore \frac{(1+x)^{n+1}-1}{n+1} = C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{3} + \dots + \frac{C_n x^{n+1}}{n+1}$$

Put
$$x = 1$$
, we get $C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1} - 1}{n+1}$

Put x = -1, we get
$$C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \dots = \frac{1}{n+1}$$

Illustration 13: If $(1+x)^n = \sum_{r=0}^n {^nC_r}x^r$, then prove that $C_1^2 + 2.C_2^2 + 3.C_3^2 + \dots + n.C_n^2 = \frac{(2n-1)!}{((n-1)!)^2}$

Solution: $(1+x)^n = C_0 + C_1 x + C_2 x^2 + C_2 x^3 + \dots + C_n x^n$

Differentiating both the sides, w.r.t. x, we get

$$n(1 + x)^{n-1} = C_1 + 2C_2x + 3C_2x^2 + \dots + n.C_nx^{n-1}$$
 (ii)

also, we have

$$(x+1)^n = C_0 x^n + C_1 x^{n-1} + C_2 x^{n-2} + \dots + C_n$$
 (iii)

Multiplying (ii) & (iii), we get

$$(C_1 + 2C_2x + 3C_3x^2 + \dots + C_nx^{n-1})(C_0x^n + C_1x^{n-1} + C_2x^{n-2} + \dots + C_n) = n(1+x)^{2n-1}$$

Equating the coefficients of x^{n-1} , we get

$$C_1^2 + 2C_2^2 + 3C_3^2 + \dots + n.C_n^2 = n.^{2n-1}C_{n-1} = \frac{(2n-1)!}{((n-1)!)^2}$$
 Ans.

Illustration 14: Prove that: $C_0 - 3C_1 + 5C_2 - \dots (-1)^n (2n + 1)C_n = 0$

Solution: $T_r = (-1)^r (2r + 1)^n C_r = 2(-1)^r r \cdot {}^n C_r + (-1)^r {}^n C_r$

$$\Sigma T_r = 2\sum_{r=1}^n (-1)^r.r.\frac{n}{r}.^{n-1}C_{r-1} + \sum_{r=0}^n (-1)^{r-n}C_r = 2\sum_{r=1}^n (-1)^r.^{n-1}C_{r-1} + \sum_{r=0}^n (-1)^r.^{n}C_r = 2\sum_{r=1}^n (-1)^r.^{n-1}C_r = 2\sum_{r=$$

$$=2\lceil {}^{n-1}C_0 - {}^{n-1}C_1 + \dots \rceil + \lceil {}^{n}C_0 - {}^{n}C_1 + \dots \rceil = 0$$

E

Illustration 15: Prove that
$$\binom{2n}{0}^2 - \binom{2n}{1}^2 + \binom{2n}{0}^2 - \dots + (-1)^n \binom{2n}{0}^2 = (-1)^n$$
. $\binom{2n}{0}^2 - \binom{2n}{0}^2 = (-1)^n$.

Solution:
$$(1-x)^{2n} = {}^{2n}C_0 - {}^{2n}C_1x + {}^{2n}C_2x^2 - \dots + (-1)^n {}^{2n}C_{2n}x^{2n}$$
(i)

and
$$(x + 1)^{2n} = {}^{2n}C_0x^{2n} + {}^{2n}C_1x^{2n-1} + {}^{2n}C_2x^{2n-2} + ... + {}^{2n}C_{2n}$$
(ii)

Multiplying (i) and (ii), we get

$$(x^2 - 1)^{2n} = (^{2n}C_0 - ^{2n}C_1x + + (-1)^{n} {^{2n}C_{2n}}x^{2n}) \times (^{2n}C_0x^{2n} + ^{2n}C_1x^{2n-1} + + ^{2n}C_{2n}) \quad(iii)$$

Now, coefficient of x²ⁿ in R.H.S.

$$= {\binom{2n}{C_0}}^2 - {\binom{2n}{C_1}}^2 + {\binom{2n}{C_2}}^2 - \dots + {(-1)}^n {\binom{2n}{C_{2n}}}^2$$

$$\therefore$$
 General term in L.H.S., $T_{r+1} = {}^{2n}C_r(x^2)^{2n-r}(-1)^r$

Putting 2(2n - r) = 2n

$$\therefore$$
 r = n

$$T_{n+1} = {^{2n}C_n}x^{2n}(-1)^n$$

Hence coefficient of x^{2n} in L.H.S. = $(-1)^n$. 2n C_n

But (iii) is an identity, therefore coefficient of x^{2n} in R.H.S. = coefficient of x^{2n} in L.H.S.

$$\Rightarrow (^{2n}C_0)^2 - (^{2n}C_1)^2 + (^{2n}C_2)^2 - \dots + (-1)^n (^{2n}C_{2n})^2 = (-1)^n. ^{2n}C_n$$

Illustration 16: Prove that : ${}^{n}C_{0}$. ${}^{2n}C_{n} - {}^{n}C_{1}$. ${}^{2n-2}Cn_{n} + {}^{n}C_{2}$. ${}^{2n-4}Cn_{n} + = 2^{n}$

Solution: L.H.S. = Coefficient of x^n in $[{}^nC_0(1+x)^{2n} - {}^nC_1(1+x)^{2n-2}]$

= Coefficient of x^n in $[(1 + x)^2 - 1]^n$

= Coefficient of x^n in $x^n(x + 2)^n = 2^n$

Illustration 17: If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$ then show that the sum of the products of

the C_i 's taken two at a time represented by : $\sum_{0 \le i < j \le n} C_i C_j$ is equal to $2^{2n-1} - \frac{2n!}{2 \cdot n! \cdot n!}$

Solution: Since
$$(C_0 + C_1 + C_2 + + C_{n-1} + C_n)^2$$

$$= C_0^2 + C_1^2 + C_2^2 + \dots + C_{n-1}^2 + C_n^2 + 2(C_0C_1 + C_0C_2 + C_0C_3 + \dots + C_0C_n + C_1C_2 + C_1C_3 + \dots + C_0C_n + C_0C_n + C_0C_1 + \dots + C_0C_n + C_0C_1 + \dots + C_0C_n + C_0C_1 + \dots + C_0C_n +$$

$$+ C_1C_n + C_2C_3 + C_2C_4 + ... + C_2C_n + + C_{n-1}C_n$$

$$(2^n)^2 = {^{2n}C}_n + 2\sum_{0 \le i < j \le n} C_i C_j$$

Hence
$$\sum_{0 \le i < j \le n} C_i C_j = 2^{2n-1} - \frac{2n!}{2 \cdot n! \, n!}$$

Ans.

Illustration 18: If $(1+x)^n = C_0 + C_1x + C_2x^2 + + C_nx^n$ then prove that $\sum_{0 \le i < j \le n} (C_i + C_j)^2 = (n-1)^{2n}C_n + 2^{2n}$

Solution: L.H.S.
$$\sum_{0 \le i < j \le n} (C_i + C_j)^2$$

$$= (C_0 + C_1)^2 + (C_0 + C_2)^2 + \dots + (C_0 + C_n)^2 + (C_1 + C_2)^2 + (C_1 + C_3)^2 + \dots + (C_1 + C_n)^2 + (C_2 + C_3)^2 + (C_2 + C_4)^2 + \dots + (C_2 + C_n)^2 + \dots + (C_{n-1} + C_n)^2$$

$$= n(C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2) + 2 \sum_{0 \le i < j \le n} \sum_{0 \le i < j \le n} C_i C_j$$

$$= n.^{2n}C_n + 2.\left\{2^{2n-1} - \frac{2n!}{2.n!n!}\right\}$$
 {from Illustration 17}
= $n.^{2n}C_n + 2^{2n} - {}^{2n}C_n = (n-1).^{2n}C_n + 2^{2n} = R.H.S.$

JEE-Mathematics

Do yourself - 4:

(i)
$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} =$$

(A) 2^{n-1} (B) ${}^{2n}C$ (C) 2^{n}

(ii) If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
, $n \in \mathbb{N}$. Prove that

(a)
$$3C_0 - 8C_1 + 13C_2 - 18C_3 + \dots$$
 upto $(n + 1)$ terms = 0, if $n \ge 2$.

(D) 2^{n+1}

(b)
$$2C_0 + 2^2 \frac{C_1}{2} + 2^3 \frac{C_2}{3} + 2^4 \frac{C_3}{4} + \dots + 2^{n+1} \frac{C_n}{n+1} = \frac{3^{n+1} - 1}{n+1}$$

(c)
$$C_0^2 + \frac{C_1^2}{2} + \frac{C_2^2}{3} + \dots + \frac{C_n^2}{n+1} = \frac{(2n+1)!}{((n+1)!)^2}$$

5. MULTINOMIAL THEOREM:

Using binomial theorem, we have $(x + a)^n = \sum_{r=0}^{n} {^nC_r} x^{n-r} a^r$, $n \in \mathbb{N}$

$$= \sum_{r=0}^{n} \frac{n!}{(n-r)! \, r!} \, x^{n-r} a^r = \sum_{r+s=n} \frac{n!}{r! \, s!} \, x^s a^r \; , \; \text{where} \; s+r = n$$

This result can be generalized in the following form.

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{r_1 + r_2 + \dots + r_k = n} \frac{n!}{r_1! r_2! \dots r_k!} x_1^{r_1} x_2^{r_2} \dots x_k^{r_k}$$

The general term in the above expansion $\frac{n!}{r_1!r_2!r_3!....r_k!}.x_1^{r_1}x_2^{r_2}x_3^{r_3}.....x_k^{r_k}$

The number of terms in the above expansion is equal to the number of non-negative integral solution of the equation $r_1 + r_2 + \dots + r_k = n$ because each solution of this equation gives a term in the above expansion. The number of such solutions is ${}^{n+k-1}C_{k-1}$

Particular cases:

(i)
$$(x + y + z)^n = \sum_{r+s+t=n} \frac{n!}{r! s! t!} x^r y^s z^t$$

The above expansion has ${}^{n+3-1}C_{3-1} = {}^{n+2}C_2$ terms

(ii)
$$(x + y + z + u)^n = \sum_{p+q+r+s=n} \frac{n!}{p!q!r!s!} x^p y^q z^r u^s$$

There are $^{n+4-1}C_{4-1} = ^{n+3}C_3$ terms in the above expansion.

Illustration 19: Find the coefficient of $x^2 y^3 z^4 w$ in the expansion of $(x - y - z + w)^{10}$

Solution:
$$(x-y-z+w)^{10} = \sum_{p+q+r+s=10} \frac{n!}{p!q!r!s!} (x)^p (-y)^q (-z)^r (w)^s$$

We want to get $x^2y^3z^4w$ this implies that p = 2, q = 3, r = 4, s = 1

$$\therefore$$
 Coefficient of $x^2y^3z^4w$ is $\frac{10!}{2! \ 3! \ 4! \ 1!}(-1)^3(-1)^4 = -12600$ Ans

Illustration 20: Find the total number of terms in the expansion of $(1 + x + y)^{10}$ and coefficient of x^2y^3 .

Solution: Total number of terms = ${}^{10+3-1}C_{3-1} = {}^{12}C_2 = 66$

Coefficient of
$$x^2y^3 = \frac{10!}{2! \times 3! \times 5!} = 2520$$
 Ans.

Illustration 21: Find the coefficient of x^5 in the expansion of $(2 - x + 3x^2)^6$.

Solution: The general term in the expansion of
$$(2 - x + 3x^2)^6 = \frac{6!}{r!s!t!} 2^r (-x)^s (3x^2)^t$$
,

where r + s + t = 6.

$$= \frac{6!}{r!s!t!} 2^{r} \times (-1)^{s} \times (3)^{t} \times x^{s+2t}$$

For the coefficient of x^5 , we must have s + 2t = 5.

But,
$$r + s + t = 6$$
,

$$\therefore \quad s = 5 - 2t \text{ and } r = 1 + t, \text{ where } 0 \le r, s, t \le 6.$$

Now
$$t = 0 \implies r = 1$$
, $s = 5$.

$$t=1 \Rightarrow r=2, s=3.$$

$$t=2 \Rightarrow r=3, s=1.$$

Thus, there are three terms containing x⁵ and coefficient of x⁵

$$= \frac{6!}{1! \ 5! \ 0!} \times 2^{1} \times (-1)^{5} \times 3^{0} + \frac{6!}{2! \ 3! \ 1!} \times 2^{2} \times (-1)^{3} \times 3^{1} + \frac{6!}{3! \ 1! \ 2!} \times 2^{3} \times (-1)^{1} \times 3^{2}$$
$$= -12 - 720 - 4320 = -5052.$$

Illustration 22: If $(1+x+x^2)^n = \sum_{r=0}^{2n} a_r x^r$, then prove that (a) $a_r = a_{2n-r}$ (b) $\sum_{r=0}^{n-1} a_r = \frac{1}{2}(3^n - a_n)$

Solution: (a) We have

$$(1+x+x^2)^n = \sum_{r=0}^{2n} a_r x^r$$
(A)

Replace x by $\frac{1}{x}$

$$\therefore \qquad \left(1 + \frac{1}{x} + \frac{1}{x^2}\right)^n = \sum_{r=0}^{2n} a_r \left(\frac{1}{x}\right)^r$$

$$\Rightarrow$$
 $(x^2 + x + 1)^n = \sum_{r=0}^{2n} a_r x^{2n-r}$

$$\Rightarrow \sum_{r=0}^{2n} a_r x^r = \sum_{r=0}^{2n} a_r x^{2n-r}$$
 {Using (A)}

Equating the coefficient of x^{2n-r} on both sides, we get

$$a_{2n-r}=a_r \text{ for } 0 \leq r \leq 2n.$$

Hence $a_r = a_{2n-r}$.

Ans.

(b) Putting x=1 in given series, then

$$a_0 + a_1 + a_2 + \dots + a_{2n} = (1+1+1)^n$$

 $a_0 + a_1 + a_2 + \dots + a_{2n} = 3^n$ (1)

But $a_r = a_{2n-r}$ for $0 \le r \le 2n$

:. series (1) reduces to

$$2(a_0 + a_1 + a_2 + \dots + a_{n-1}) + a_n = 3^n$$
.

$$\therefore a_0 + a_1 + a_2 + \dots + a_{n-1} = \frac{1}{2} (3^n - a_n)$$

Do yourself - 5:

(i) Find the coefficient of x^2y^5 in the expansion of $(3 + 2x - y)^{10}$.

6. APPLICATION OF BINOMIAL THEOREM:

Illustration 23: If $(6\sqrt{6} + 14)^{2n+1} = [N] + F$ and F = N - [N]; where [.] denotes greatest integer function, then NF is equal to

(A)
$$20^{2n+1}$$

(D)
$$40^{2n+1}$$

Solution:

Since
$$(6\sqrt{6}+14)^{2n+1} = [N] + F$$

Let us assume that $f = (6\sqrt{6} - 14)^{2n+1}$; where $0 \le f < 1$.

Now, [N] + F - f =
$$(6\sqrt{6} + 14)^{2n+1} - (6\sqrt{6} - 14)^{2n+1}$$

$$=2\left[\frac{2n+1}{2n+1}C_{1}\left(6\sqrt{6}\right)^{2n}(14)+\frac{2n+1}{2n+1}C_{3}\left(6\sqrt{6}\right)^{2n-2}(14)^{3}+\dots\right]$$

 \Rightarrow [N] + F - f = even integer.

Now $0 \le F \le 1$ and $0 \le f \le 1$

so $-1 \le F - f \le 1$ and F - f is an integer so it can only be zero

Thus NF =
$$(6\sqrt{6} + 14)^{2n+1} (6\sqrt{6} - 14)^{2n+1} = 20^{2n+1}$$
.

Ans. (A,B)

Illustration 24: Find the last three digits in 11^{50} .

Solution: Expansion of $(10 + 1)^{50} = {}^{50}C_0 10^{50} + {}^{50}C_1 10^{49} + \dots + {}^{50}C_{48} 10^2 + {}^{50}C_{49} 10 + {}^{50}C_{50}$

$$=\underbrace{{}^{50}C_010^{50}+{}^{50}C_110^{49}+.....+{}^{50}C_{47}10^3}_{1000K}+49\times25\times100+500+1$$

$$\Rightarrow$$
 1000 K + 123001

 \Rightarrow Last 3 digits are 001.

Illustration 25: Prove that $2222^{5555} + 5555^{2222}$ is divisible by 7.

Solution: When 2222 is divided by 7 it leaves a remainder 3.

So adding & subtracting 3^{5555} , we get :

$$E = \underbrace{2222^{5555} - 3^{5555}}_{E_1} + \underbrace{3^{5555} + 5555^{2222}}_{E_2}$$

For E_1 : Now since 2222–3 = 2219 is divisible by 7, therefore E_1 is divisible by 7

 $(:: x^n - a^n \text{ is divisible by } x - a)$

For E_2 : 5555 when devided by 7 leaves remainder 4.

So adding and subtracting 4²²²², we get:

$$E_2 = 3^{5555} + 4^{2222} + 5555^{2222} - 4^{2222}$$
$$= (243)^{1111} + (16)^{1111} + (5555)^{2222} - 4^{2222}$$

Again $(243)^{1111} + 16^{1111}$ and $(5555)^{2222} - 4^{2222}$ are divisible by 7

(: $x^n + a^n$ is divisible by x + a when n is odd)

Hence $2222^{5555} + 5555^{2222}$ is divisible by 7.

Do yourself - 6:

- (i) Prove that $5^{25} 3^{25}$ is divisible by 2.
- (ii) Find the remainder when the number 9^{100} is divided by 8.
- (iii) Find last three digits in 19^{100} .
- (iv) Let $R = (8+3\sqrt{7})^{20}$ and [.] denotes greatest integer function, then prove that :

(b)
$$R - [R] = 1 - \frac{1}{(8 + 3\sqrt{7})^{20}}$$

(v) Find the digit at unit's place in the number $17^{1995} + 11^{1995} - 7^{1995}$.

7. BINOMIAL THEOREM FOR NEGATIVE OR FRACTIONAL INDICES:

If
$$n \in Q$$
, then $(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots \infty$ provided $|x| < 1$.

Note:

- (i) When the index n is a positive integer the number of terms in the expansion of $(1+x)^n$ is finite i.e. (n+1) & the coefficient of successive terms are : nC_0 , nC_1 , nC_2 , nC_n
- (ii) When the index is other than a positive integer such as negative integer or fraction, the number of terms in the expansion of $(1+x)^n$ is infinite and the symbol nC_r cannot be used to denote the coefficient of the general term.
- (iii) Following expansion should be remembered (|x| < 1).

(a)
$$(1+x)^{-1}=1-x+x^2-x^3+x^4-...$$

(b)
$$(1-x)^{-1}=1+x+x^2+x^3+x^4+.... \infty$$

(c)
$$(1+x)^{-2}=1-2x+3x^2-4x^3+...$$

(d)
$$(1-x)^{-2}=1+2x+3x^2+4x^3+.... \infty$$

(e)
$$(1+x)^{-3} = 1 - 3x + 6x^2 - 10x^3 + \dots + \frac{(-1)^r(r+1)(r+2)}{2!}x^r + \dots$$

(f)
$$(1-x)^{-3} = 1 + 3x + 6x^2 + 10x^3 + \dots + \frac{(r+1)(r+2)}{2!}x^r + \dots$$

(iv) The expansions in ascending powers of x are only valid if x is 'small'. If x is large i.e. |x| > 1 then we may find it convenient to expand in powers of 1/x, which then will be small.

8. **APPROXIMATIONS:**

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{1.2}x^2 + \frac{n(n-1)(n-2)}{1.2.3}x^3.....$$

If x < 1, the terms of the above expansion go on decreasing and if x be very small, a stage may be reached when we may neglect the terms containing higher powers of x in the expansion. Thus, if x be so small that its square and higher powers may be neglected then $(1 + x)^n = 1 + nx$, approximately. This is an approximate value of $(1 + x)^n$

Illustration 26: If x is so small such that its square and higher powers may be neglected then find the approximate value of $\frac{(1-3x)^{1/2} + (1-x)^{5/3}}{(4+x)^{1/2}}$

Solution:
$$\frac{(1-3x)^{1/2}+(1-x)^{5/3}}{(4+x)^{1/2}} = \frac{1-\frac{3}{2}x+1-\frac{5x}{3}}{2\left(1+\frac{x}{4}\right)^{1/2}} = \frac{1}{2}\left(2-\frac{19}{6}x\right)\left(1+\frac{x}{4}\right)^{-1/2} = \frac{1}{2}\left(2-\frac{19}{6}x\right)\left(1-\frac{x}{8}\right)$$

$$= \frac{1}{2} \left(2 - \frac{x}{4} - \frac{19}{6} x \right) = 1 - \frac{x}{8} - \frac{19}{12} x = 1 - \frac{41}{24} x$$
 Ans.

The value of cube root of 1001 upto five decimal places is –

(A) 10.03333

(B) 10.00333

(C) 10.00033

Solution:
$$(1001)^{1/3} = (1000+1)^{1/3} = 10 \left(1 + \frac{1}{1000} \right)^{1/3} = 10 \left\{ 1 + \frac{1}{3} \cdot \frac{1}{1000} + \frac{1/3(1/3-1)}{2!} \cdot \frac{1}{1000^2} + \dots \right\}$$

$$= 10 \left\{ 1 + 0.0003333 - 0.00000011 + \dots \right\} = 10.00333$$
 Ans. (B)

The sum of $1 + \frac{1}{4} + \frac{1.3}{48} + \frac{1.3.5}{4812} + \dots \infty$ is -Illustration 28:

(A)
$$\sqrt{2}$$

(B)
$$\frac{1}{\sqrt{2}}$$
 (C) $\sqrt{3}$

(C)
$$\sqrt{3}$$

Comparing with $1 + nx + \frac{n(n-1)}{2!}x^2 + \dots$ **Solution:**

$$nx = 1/4$$
(i)

and
$$\frac{n(n-1)x^2}{2!} = \frac{1.3}{4.8}$$

or
$$\frac{nx(nx-x)}{2!} = \frac{3}{32} \implies \frac{1}{4} \left(\frac{1}{4} - x\right) = \frac{3}{16}$$
 (by (i))

$$\Rightarrow \left(\frac{1}{4} - x\right) = \frac{3}{4} \Rightarrow x = \frac{1}{4} - \frac{3}{4} = -\frac{1}{2} \qquad \dots (ii)$$

putting the value of x in (i)

$$n(-1/2) = 1/4 \Rightarrow n = -1/2$$

: sum of series =
$$(1 + x)^n = (1 - 1/2)^{-1/2} = (1/2)^{-1/2} = \sqrt{2}$$
 Ans. (A)

9. **EXPONENTIAL SERIES:**

- e is an irrational number lying between 2.7 & 2.8. Its value correct upto 10 places of decimal is 2.7182818284.
- Logarithms to the base 'e' are known as the Napierian system, so named after Napier, their **(b)** inventor. They are also called **Natural Logarithm**.
- $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \infty$; where x may be any real or complex number & $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$
- $a^{x}=1+\frac{x}{1!}\ln a+\frac{x^{2}}{2!}\ln a+\frac{x^{3}}{3!}\ln a+\dots \infty$, where a>0
- (e) $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots \infty$

LOGARITHMIC SERIES: 10.

- $\ln (1+x) = x \frac{x^2}{2} + \frac{x^3}{2} \frac{x^4}{4} + \dots \infty$, where $-1 < x \le 1$ (a)
- **(b)** $\ln (1-x) = -x \frac{x^2}{2} \frac{x^3}{3} \frac{x^4}{4} + \dots \infty$, where $-1 \le x < 1$

(i) $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ell n 2$ (ii) $e^{\ln x} = x$; for all x > 0Remember:

(iii) $\ell n2 = 0.693$

(iv) $\ell n10 = 2.303$

ANSWERS FOR DO YOURSELF

- $\left[1. \quad (i) \quad {}^{5}C_{0}x(3x^{2})^{5} + {}^{5}C_{1}(3x^{2})^{4} \left(-\frac{x}{2} \right) + {}^{5}C_{2}(3x^{2})^{3} \left(-\frac{x}{2} \right)^{2} + {}^{5}C_{3}(3x^{2})^{2} \left(-\frac{x}{2} \right)^{3} + {}^{5}C_{4}(3x^{2})^{1} \left(-\frac{x}{2} \right)^{4} + {}^{5}C_{5} \left(-\frac{x}{2} \right)^{5} \right]$
 - **(ii)** ${}^{n}C_{0}y^{n} + {}^{n}C_{1}y^{n-1}.x + {}^{n}C_{2}.y^{n-2}.x^{2} + + {}^{n}C_{n}.x^{n}$
- **2:** (i) $\frac{70}{3}$ x⁸; (ii) $\frac{25!}{10! \ 5!}$ 2¹⁵3¹⁰; (iii) (a) -20; (b) -560x⁵, 280x²
- (i) $4^{th} \& 5^{th}$ i.e. 489888 (ii) n = 4, 5, 6

- (i) C
- (i) -272160 or $-{}^{10}C_5 \times {}^5C_2 \times 108$
- **(ii)** 1
- (iii) 801
- **(v)** 1

E

(A) 4

EXERCISE (O-1)

[SINGLE CORRECT CHOICE TYPE]

1.	If the coefficients of x ⁷	& x ⁸ in the expansion of	of $\left[2 + \frac{x}{3}\right]^n$ are equal, the	en the value of n is:
	(A) 15	(B) 45	(C) 55	(D) 56

- 2. If the constant term of the binomial expansion $\left(2x \frac{1}{x}\right)^n$ is 160, then n is equal to -
- 3. The coefficient of x^{49} in the expansion of $(x-1)\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2^2}\right)...\left(x-\frac{1}{2^{49}}\right)$ is equal to -
 - (A) $-2\left(1-\frac{1}{2^{50}}\right)$ (B) +ve coefficient of x
 - (C) –ve coefficient of x (D) $-2\left(1 \frac{1}{2^{49}}\right)$
- 4. Set of value of r for which, ${}^{18}C_{r-2} + 2$. ${}^{18}C_{r-1} + {}^{18}C_r \ge {}^{20}C_{13}$ contains:

 (A) 4 element (B) 5 elements (C) 7 elements (D) 10 elements
- 5. Number of rational terms in the expansion of $(\sqrt{2} + \sqrt[4]{3})^{100}$ is:

(B) 6

- (A) 25 (B) 26 (C) 27 (D) 28
- 6. The largest real value for x such that $\sum_{k=0}^{4} \left(\frac{5^{4-k}}{(4-k)!} \right) \left(\frac{x^k}{k!} \right) = \frac{8}{3}$ is -
- (A) $2\sqrt{2}-5$ (B) $2\sqrt{2}+5$ (C) $-2\sqrt{2}-5$ (D) $-2\sqrt{2}+5$
- 7. The expression $[x + (x^3 1)^{1/2}]^5 + [x (x^3 1)^{1/2}]^5$ is a polynomial of degree

 (A) 5. (B) 6. (C) 7. (D) 8
- 8. Given $(1 2x + 5x^2 10x^3)(1 + x)^n = 1 + a_1x + a_2x^2 + \dots$ and that $a_1^2 = 2a_2$ then the value of n is-(A) 6 (B) 2 (C) 5 (D) 3
- 9. The sum of the co-efficients of all the even powers of x in the expansion of $(2x^2 3x + 1)^{11}$ is (A) 2.6^{10} (B) 3.6^{10} (C) 6^{11} (D) none
- 10. Co-efficient of α^t in the expansion of , $(\alpha+p)^{m-1}+(\alpha+p)^{m-2}(\alpha+q)+(\alpha+p)^{m-3} \ (\alpha+q)^2+.....(\alpha+q)^{m-1} \ \text{where} \ \alpha\neq -q \ \text{and} \ p\neq q \ \text{is} \ :$

(A)
$$\frac{{}^{m}C_{t}(p^{t}-q^{t})}{p-q}$$
 (B) $\frac{{}^{m}C_{t}(p^{m-t}-q^{m-t})}{p-q}$ (C) $\frac{{}^{m}C_{t}(p^{t}+q^{t})}{p-q}$ (D) $\frac{{}^{m}C_{t}(p^{m-t}+q^{m-t})}{p-q}$

11. If
$$n \in \mathbb{N}$$
 & n is even, then $\frac{1}{1.(n-1)!} + \frac{1}{3!.(n-3)!} + \frac{1}{5!.(n-5)!} + \dots + \frac{1}{(n-1)!1!} =$

- (B) $\frac{2^{n-1}}{n!}$ (C) $2^n n!$
- (D) none of these
- 12. Let $\binom{n}{k}$ represents the combination of 'n' things taken 'k' at a time, then the value of the sum

$$\binom{99}{97} + \binom{98}{96} + \binom{97}{95} + \dots + \binom{3}{1} + \binom{2}{0}$$
 equals -

- $(A) \begin{pmatrix} 99 \\ 97 \end{pmatrix} \qquad (B) \begin{pmatrix} 100 \\ 98 \end{pmatrix} \qquad (C) \begin{pmatrix} 99 \\ 98 \end{pmatrix}$
- $(D) \begin{pmatrix} 100 \\ 97 \end{pmatrix}$

[COMPREHENSION TYPE]

Paragraph for question nos. 13 to 15

If $n \in N$ and if $(1 + 4x + 4x^2)^n = \sum_{r=0}^{2n} a_r x^r$, where $a_0, a_1, a_2, \dots, a_{2n}$ are real numbers.

- The value of $2\sum_{r=0}^{n} a_{2r}$, is
 - (A) $9^n 1$
- (B) $9^n + 1$
- (C) $9^{n} 2$

- The value of $2\sum_{r=1}^{n} a_{2r-1}$, is-

- (A) $9^{n} 1$ (B) $9^{n} + 1$ The value of a_{2n-1} is -(A) 2^{2n} (B) n. 2^{2n}

- (C) $(n-1)2^{2n}$ (D) $(n+1)2^{2n}$

EXERCISE (O-2)

[SINGLE CORRECT CHOICE TYPE]

- Let $(5+2\sqrt{6})^n = p+f$ where $n,p \in N$ and 0 < f < 1 then the value of $f^2 f + pf p$ is -1. (A) a natural number (B) a negative integer (C) a prime number (D) are irrational number
- Greatest term in the binomial expansion of $(a + 2x)^9$ when $a = 1 & x = \frac{1}{3}$ is: 2.
 - (A) $3^{rd} & 4^{th}$
- (B) $4^{th} & 5^{th}$
- (C) only 4th
- (D) only 5th

- If $\sum_{r=1}^{10} r(r-1)^{-10}C_r = k. 2^9$, then k is equal to-**3.**
- (C) 90
- (D) 100
- The sum $\frac{\binom{11}{0}}{\binom{1}{1}} + \frac{\binom{11}{1}}{\binom{2}{1}} + \frac{\binom{11}{2}}{\binom{2}{1}} + \dots + \frac{\binom{11}{11}}{\binom{11}{12}}$ equals $\left(\text{where } \binom{n}{r} \text{denotes } {}^{n}C_{r}\right)$
- (B) $\frac{2^{12}}{12}$
- (C) $\frac{2^{11}-1}{12}$ (D) $\frac{2^{12}-1}{12}$

JEE-Mathematics

Statement-1: The sum of the series ${}^{n}C_{0}$. ${}^{m}C_{r} + {}^{n}C_{1}$. ${}^{m}C_{r-1} + {}^{n}C_{2}$. ${}^{m}C_{r-2} + \dots + {}^{n}C_{r}$ is equal to **5.** $^{n+m}C_r$, where nC_r 's and mC_r 's denotes the combinatorial coefficients in the expansion of $(1+x)^n$ and $(1 + x)^m$ respectively.

Statement-2: Number of ways in which r children can be selected out of (n + m) children consisting of n boys and m girls if each selection may consist of any number of boys and girls is equal to n+mC.

- (A) Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true; statement-2 is NOT a correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

[MULTIPLE CORRECT CHOICE TYPE]

In the expansion of $\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right)^{10}$, the term which does not contain x is-**6.**

(A)
$${}^{11}C_4 - {}^{10}C_3$$

(A) ${}^{11}C_4 - {}^{10}C_3$ (B) ${}^{10}C_7$ (C) ${}^{10}C_4$ (D) ${}^{11}C_5 - {}^{10}C_5$ Let $(1 + x^2)^2 (1 + x)^n = A_0 + A_1 x + A_2 x^2 + \dots$ If A_0, A_1, A_2 are in A.P. then the value of n is-(A) 2 (B) 3 (C) 5 (D) 7 7.

In the expansion of $\left(x^3 + 3.2^{-\log_{\sqrt{2}}\sqrt{x^3}}\right)^{11}$ 8.

(A) there appears a term with the power x^2

(B) there does not appear a term with the power x^2

(C) there appears a term with the power x^{-3}

(D) the ratio of the co-efficient of x^3 to that of x^{-3} is 1/3

If it is known that the third term of the binomial expansion $(x + x^{\log_{10} x})^5$ is 10^6 then x is equal to-9.

(A) 10

(B) $10^{-5/2}$

(C) 100

(D) 5

Which of the following statement(s) is/are correct? **10.**

(A)
$$1 + \frac{2}{2} + \frac{3}{2^2} + \frac{4}{2^3} + \dots + \infty = 4$$

(B) Integral part of $(9+4\sqrt{5})^n$, $n \in N$ is even.

(C)
$$({}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + + {}^{n}C_{n})^{2} = 1 + {}^{2n}C_{1} + {}^{2n}C_{2} + + {}^{2n}C_{2n}$$

(D) $\frac{1}{(3+2x)^2}$ can be expanded as infinite series in ascending powers of x only if $|x| < \frac{2}{3}$.

If $(9 + \sqrt{80})^n = I + f$ where I, n are integers and 0 < f < 1, then -11.

(A) I is an odd integer

(B) I is an even integer

(C) (I + f) (1 - f) = 1

(D) $1-f = (9-\sqrt{80})^n$

If for $n \in I$, n > 10; $1 + (1 + x) + (1 + x)^2 + \dots + (1 + x)^n = \sum_{k=0}^{n} a_k \cdot x^k$, $x \neq 0$ then **12.**

(A)
$$\sum_{k=0}^{n} a_k = 2^{n+1}$$

(B)
$$a_{n-2} = \frac{n(n+1)}{2}$$

(C) $a_p > a_{p-1}$ for $p < \frac{n}{2}$, $p \in N$

(D) $(a_9)^2 - (a_8)^2 = {}^{n+2}C_{10} ({}^{n+1}C_{10} - {}^{n+1}C_9)$

- Let $P(n) = \sum_{r=1}^{n} \frac{(-1)^r r}{r+1} {}^nC_r$. Now which of the following holds good? **13.**
 - (A) $|P_{10}|$ is harmonic mean of $|P_{0}|$ & $|P_{11}|$

(B)
$$\sum_{r=5}^{10} P(r)P(r-1) = -\frac{6}{55}$$

(C) $|P_{10}|$ is arithmetic mean of $|P_9| \& |P_{11}|$ (D) $\sum_{r=0}^{10} P(r)P(r-1) = \frac{6}{55}$

(D)
$$\sum_{r=5}^{10} P(r)P(r-1) = \frac{6}{55}$$

- Let $(1+x)^m = C_0 + C_1x + C_2x^2 + C_3x^3 + \dots + C_mx^m$, where $C_r = {}^mC_r$ and $A = C_1C_3 + C_2C_4 + C_3C_5$ + C_4C_6 ++ $C_{m-2}C_m$, then - (A) $A \ge {}^{2m}C_{m-2}$

(B)
$$A < {}^{2m}C_{m-2}$$

- (C) $A > C_0^2 + C_1^2 + C_2^2 + \dots + C_m^2$
- (D) $A < C_0^2 + C_1^2 + C_2^2 + \dots + C_m^2$
- Consider $E = \left(\sqrt[8]{x} + \sqrt[5]{y}\right)^z = I + f, 0 \le f < 1$ **15.**
 - (A) If x = 5, y = 2, z = 100, then number of irrational terms in expansion of E is 98
 - (B) If x = 5, y = 2, z = 100, then number of rational terms in expansion of E is 4
 - (C) If x = 16, y = 1 & z = 6, then I = 197
 - (D) If x = 16, y = 1 & z = 6, then $f = (\sqrt{2} 1)^6$

EXERCISE (S-1)

- If the coefficients of $(2r + 4)^{th}$, $(r 2)^{th}$ terms in the expansion of $(1 + x)^{18}$ are equal, find r. 1. (a)
 - If the coefficients of the r^{th} , $(r+1)^{th}$ & $(r+2)^{th}$ terms in the expansion of $(1+x)^{14}$ are in AP, find r. (b)
 - If the coefficients of 2^{nd} , 3^{rd} & 4^{th} terms in the expansion of $(1+x)^{2n}$ are in AP, show (c) that $2n^2 - 9n + 7 = 0$.
- Find the term independent of x in the expansion of (i) $\left[\sqrt{\frac{x}{3}} + \frac{\sqrt{3}}{2x^2}\right]^{10}$ (ii) $\left[\frac{1}{2}x^{1/3} + x^{-1/5}\right]^8$ 2.
- Prove that the ratio of the coefficient of x^{10} in $(1-x^2)^{10}$ & the term independent of x in $\left(x-\frac{2}{x}\right)^{10}$ is **3.** 1:32.
- Find the sum of the series $\sum_{r=0}^{n} (-1)^{r} \cdot {^{n}C_{r}} \left| \frac{1}{2^{r}} + \frac{3^{r}}{2^{2r}} + \frac{7^{r}}{2^{3r}} + \frac{15^{r}}{2^{4r}} + \dots \right|$ up to m terms 4.
- **5.** Find numerically greatest term in the expansion of
 - (i) $(2+3x)^9$ when $x=\frac{3}{2}$
- (ii) $(3-5x)^{15}$ when $x = \frac{1}{5}$
- Find the term independent of x in the expansion of $(1+x+2x^3)\left(\frac{3x^2}{2}-\frac{1}{3x}\right)^2$.
- Let $(1+x^2)^2$. $(1+x)^n = \sum_{K=0}^{n+4} a_K \cdot x^K$. If a_1 , a_2 & a_3 are in AP, find n. 7.

JEE-Mathematics

- 8. Let $f(x) = 1 x + x^2 x^3 + \dots + x^{16} x^{17} = a_0 + a_1(1+x) + a_2(1+x)^2 + \dots + a_{17}(1+x)^{17}$, find the value of a_2 .
- 9. Let $N = {}^{2000}C_1 + 2 \cdot {}^{2000}C_2 + 3 \cdot {}^{2000}C_3 + \dots + 2000 \cdot {}^{2000}C_{2000}$. Prove that N is divisible by 2^{2003} .
- 10. Find the coefficient of
 - (a) $x^2y^3z^4$ in the expansion of $(ax by + cz)^9$.
 - (b) $a^2 b^3 c^4 d$ in the expansion of $(a b c + d)^{10}$.
- 11. Find the coefficient of
 - (a) x^4 in the expansion of $(1 + x + x^2 + x^3)^{11}$
 - (b) x^4 in the expansion of $(2 x + 3x^2)^6$
- **12.** Find the coefficient of x^r in the expression:

$$(x+3)^{n-1} + (x+3)^{n-2}(x+2) + (x+3)^{n-3}(x+2)^2 + \dots + (x+2)^{n-1}$$

- 13. (a) Show that the integral part in each of the following is odd. $n \in N$
 - (A) $(5 + 2\sqrt{6})^n$ (B) $(8 + 3\sqrt{7})^n$
 - (b) Show that the integral part in each of the following is even. $n \in N$
 - (A) $\left(3\sqrt{3}+5\right)^{2n+1}$ (B) $\left(5\sqrt{5}+11\right)^{2n+1}$
- **14.** Given that $(1 + x + x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$, find the values of :
 - (i) $a_0 + a_1 + a_2 + \dots + a_{2n}$;
 - (ii) $a_0 a_1 + a_2 a_3 \dots + a_{2n}$; (iii) $a_0^2 a_1^2 + a_2^2 a_3^2 + \dots + a_{2n}^2$
- **15.** Prove the following identities using the theory of permutation where C_0 , C_1 , C_2 ,, C_n are the combinatorial coefficients in the expansion of $(1 + x)^n$, $n \in N$:
 - (a) $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = \frac{(2n)!}{n! \, n!}$
 - (b) $C_0 C_1 + C_1 C_2 + C_2 C_3 + \dots + C_{n-1} C_n = \frac{(2n)!}{(n+1)!(n-1)!}$
 - (c) $C_0C_r + C_1C_{r+1} + C_2C_{r+2} + \dots + C_{n-r} C_n = \frac{2n!}{(n-r)!(n+r)!}$
 - (d) $\sum_{r=0}^{n-2} {\binom{n}{C_r}} {\binom{n}{C_{r+2}}} = \frac{(2n)!}{(n-2)!(n+2)!}$
 - (e) $^{100}C_{10} + 5. \, ^{100}C_{11} + 10 \, . \, ^{100}C_{12} + 10 \, . \, ^{100}C_{13} + 5. \, ^{100}C_{14} + ^{100}C_{15} = ^{105}C_{90}$
- **16.** If C_0 , C_1 , C_2 ,, C_n are the combinatorial coefficients in the expansion of $(1 + x)^n$, $n \in \mathbb{N}$, then prove the following:
 - (a) $C_1 + 2C_2 + 3C_3 + \dots + n \cdot C_n = n \cdot 2^{n-1}$
 - (b) $C_0 + 2C_1 + 3C_2 + \dots + (n+1)C_n = (n+2)2^{n-1}$
 - (c) $C_0 + 3C_1 + 5C_2 + \dots + (2n+1)C_n = (n+1) 2^n$
 - (d) $(C_0 + C_1)(C_1 + C_2)(C_2 + C_3) \dots (C_{n-1} + C_n) = \frac{C_0 \cdot C_1 \cdot C_2 \cdot \dots \cdot C_{n-1} \cdot (n+1)^n}{n!}$
 - (e) $1 \cdot C_0^2 + 3 \cdot C_1^2 + 5 \cdot C_2^2 + \dots + (2n+1) \cdot C_n^2 = \frac{(n+1)(2n)!}{n! \cdot n!}$

17. Prove that

(a)
$$\frac{C_1}{C_0} + \frac{2C_2}{C_1} + \frac{3C_3}{C_2} + \dots + \frac{n.C_n}{C_{n-1}} = \frac{n(n+1)}{2}$$
 (b) $C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1}$

(c)
$$2 \cdot C_0 + \frac{2^2 \cdot C_1}{2} + \frac{2^3 \cdot C_2}{3} + \frac{2^4 \cdot C_3}{4} + \dots + \frac{2^{n+1} \cdot C_n}{n+1} = \frac{3^{n+1} - 1}{n+1}$$

(d)
$$C_o - \frac{C_1}{2} + \frac{C_2}{3} - \dots + (-1)^n \frac{C_n}{n+1} = \frac{1}{n+1}$$

EXERCISE (S-2)

- 1. If $(7+4\sqrt{3})^n = p+\beta$ where n & p are positive integers and β is a proper fraction show that $(1-\beta)(p+\beta) = 1$.
- 2. Let $P = (2 + \sqrt{3})^5$ and f = P [P], where [P] denotes the greatest integer function.

Find the value of $\left(\frac{f^2}{1-f}\right)$.

- 3. For which positive values of x is the fourth term in the expansion of $(5 + 3x)^{10}$ is the greatest.
- **4.** Prove that $\sum_{K=0}^{n} {}^{n}C_{K} \sin Kx \cdot \cos(n-K)x = 2^{n-1} \sin nx$.
- 5. Let $a = (4^{1/401} 1)$ and let $b_n = {}^nC_1 + {}^nC_2$. $a + {}^nC_3$. $a^2 + \dots + {}^nC_n$. a^{n-1} . Find the value of $(b_{2006} b_{2005})$
- 6. Let a and b be the coefficient of x^3 in $(1 + x + 2x^2 + 3x^3)^4$ and $(1 + x + 2x^2 + 3x^3 + 4x^4)^4$ respectively. Find the value of (a b).
- 7. Find the sum of the roots (real or complex) of the equation $x^{2001} + \left(\frac{1}{2} x\right)^{2001} = 0$.
- **8.** Find the index n of the binomial $\left(\frac{x}{5} + \frac{2}{5}\right)^n$ if the 9th term of the expansion has numerically the greatest coefficient $(n \in N)$.
- **9.** Find the coefficient of x^{49} in the polynomial

$$\left(x - \frac{C_1}{C_0}\right) \left(x - 2^2 \cdot \frac{C_2}{C_1}\right) \left(x - 3^2 \cdot \frac{C_3}{C_2}\right) \dots \left(x - 50^2 \cdot \frac{C_{50}}{C_{49}}\right), \text{ where } C_r = {}^{50}C_r.$$

- **10.** If $\binom{n}{r}$ denotes ${}^{n}C_{r}$, then
 - (a) Evaluate: $2^{15} \binom{30}{0} \binom{30}{15} 2^{14} \binom{30}{1} \binom{29}{14} + 2^{13} \binom{30}{2} \binom{28}{13} \dots \binom{30}{15} \binom{15}{0}$
 - (b) Prove that : $\sum_{r=1}^{n} {n-1 \choose n-r} {n \choose r} = {2n-1 \choose n-1}$ (c) Prove that : ${n \choose r} {r \choose k} = {n \choose k} {n-k \choose r-k}$

(1) 7

1.

EXERCISE (JM)

[AIEEE 2009]

(4) 2

The remainder left out when $8^{2n} - (62)^{2n+1}$ is divided by 9 is :-

(2) 8

2.	Let $S_1 = \sum_{j=1}^{10} j(j-1)^{10} C_j$, S_2	$c_2 = \sum_{j=1}^{10} j^{10} C_j$ and $S_3 = \sum_{j=1}^{10} j^{2^{10}}$	${}^{0}C_{j}$.	[AIEEE-2010]		
	Statement-1: $S_3 = 55 \times 2^9$. Statement-2: $S_1 = 90 \times 2^8$ and $S_2 = 10 \times 2^8$. (1) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. (3) Statement-1 is true, Statement-2 is false.					
3.	(4) Statement–1 is false, The coefficient of x^7 in (1) – 144	the expansion of $(1 - x - (2))$	$-x^2 + x^3)^6$ is :- (3) 144	[AIEEE 2011] (4) – 132		
4.	If n is a positive integer	, then $(\sqrt{3} + 1)^{2n} - (\sqrt{3} - 1)^{2n}$	$(1)^{2n}$ is:	[AIEEE 2012]		
	(1) a rational number other than positive integers(2) an irrational number(3) an odd positive integer(4) an even positive integer					
5.	The term independent of x in expansion of $\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right)^{10}$ is: [JEE-Main 2013]					
	(1) 4	(2) 120	(3) 210	(4) 310		
6.	If the coefficients of x^3 and x^4 in the expansion of $(1 + ax + bx^2)(1 - 2x)^{18}$ in powers of x are both zero, then (a, b) is equal to :- [JEE(Main)-2014]					
	$(1)\left(16,\frac{251}{3}\right)$	$(2)\left(14,\frac{251}{3}\right)$	$(3)\left(14,\frac{272}{3}\right)$	$(4)\left(16,\frac{272}{3}\right)$		
7.	The sum of coefficien is:	its of integral powers o	f x in the binomial exp	ansion of $(1 - 2\sqrt{x})^{50}$ [JEE(Main)-2015]		
	$(1) \ \frac{1}{2} (3^{50} - 1)$	$(2) \ \frac{1}{2} \Big(2^{50} + 1 \Big)$	$(3) \frac{1}{2} (3^{50} + 1)$	$(4) \ \frac{1}{2} (3^{50})$		
8.	If the number of terms in the expansion of $\left(1-\frac{2}{x}+\frac{4}{x^2}\right)^n$, $x \ne 0$, is 28, then the sum of the coefficients of					
	all the terms in this expan			[JEE(Main)-2016]		
9.	(1) 729 The value of $(^{21} C_1 - ^{10}C_1)$ is:-	(2) 64 C_1) + (${}^{21}C_2 - {}^{10}C_2$) + (${}^{21}C_3$)	$(3) 2187 C_3 - {}^{10}C_3) + ({}^{21}C_4 - {}^{10}C_4)$	(4) 243 + + $({}^{21}C_{10} - {}^{10}C_{10})$ [JEE(Main)-2017]		
		$(2) 2^{21} - 2^{11}$	$(3) 2^{21} - 2^{10}$			
10.	The sum of the co-efficient	nts of all odd degree terms	in the expansion of $(x + \sqrt{x})$	$(x^3-1)^5 + (x-\sqrt{x^3-1})^5$		
	(x > 1) is -			[JEE(Main)-2018]		
	(1) 0	(2) 1	(3) 2	(4)-1		
22			•			

EXERCISE (JA)

- For r = 0, 1, ..., 10, let A_r , B_r and C_r denote, respectively, the coefficient of x^r in the expansions of $(1 + x)^{10}$, $(1 + x)^{20}$ and $(1 + x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r C_{10}A_r)$ is equal to -
 - (A) $B_{10} C_{10}$
- (B) $A_{10} (B_{10}^2 C_{10} A_{10})$ (C) 0
- (D) $C_{10} B_{10}$

[JEE 2010, 5]

- 2. The coefficients of three consecutive terms of $(1 + x)^{n+5}$ are in the ratio 5 : 10 : 14. Then n = [JEE (Advanced) 2013, 4M, -1M]
- 3. Coefficient of x^{11} in the expansion of $(1 + x^2)^4(1 + x^3)^7(1 + x^4)^{12}$ is -
 - (A) 1051
- (B) 1106
- (C) 1113
- (D) 1120

[JEE(Advanced)-2014, 3(-1)]

- **4.** The coefficient of x^9 in the expansion of $(1+x)(1+x^2)(1+x^3)...(1+x^{100})$ is [JEE 2015, 4M, -0M]
- 5. Let m be the smallest positive integer such that the coefficient of x^2 in the expansion of $(1+x)^2 + (1+x)^3 + \dots + (1+x)^{49} + (1+mx)^{50}$ is $(3n+1)^{51}C_3$ for some positive integer n. Then the value of n is [JEE(Advanced)-2016, 3(0)]
- 6. Let $X = {\binom{10}{10}}^2 + 2{\binom{10}{10}}^2 + 3{\binom{10}{10}}^2 + ... + 10{\binom{10}{10}}^2$, where ${\binom{10}{10}}^2$, ${\binom{10}{10}}^2$ is _____. [JEE(Advanced)-2018, 3(0)]

ANSWER KEY

EXERCISE (O-1)

- **1.** C
- **2.** B
- **3.** A
- **4.** C
- **5.** B
- **6.** A
- **7.** C

- 8.
- В 9.
- **10.** B
- **11.** B
- **12.** D
- **13.** B
- **14.** A **15.** B

EXERCISE (O-2)

1.

8.

- B **2.** B
- **3.** B **10.** A,C
 - **4.** D
- **5.** A
- **6.** A,C,D **7.** A,B
- **11.** A,C,D **12.** B,C,D **13.** A,D **14.**B,D **15.** A,C
- **EXERCISE (S-1)**
- **1.** (a) r = 6 (b) r = 5 or 9 **2.** (i) $\frac{5}{12}$ (ii) $T_6 = 7$ **4.** $\frac{(2^{mn} 1)}{(2^n 1)(2^{mn})}$

B,C,D **9.** A,B

- **5.** (i) $T_7 = \frac{7.3^{13}}{2}$ (ii) 455×3^{12} **6.** $\frac{17}{54}$ **7.** n = 2 or 3 or 4 **8.** 816

- **10.** (a) $-1260 \cdot a^2b^3c^4$; (b) -12600
- **11. (a)** 990 **(b)** 3660

12. ${}^{n}C_{r}(3^{n-r}-2^{n-r})$

14. (i) 3^n (ii) 1, (iii) a_n

EXERCISE (S-2)

- 3. $\frac{5}{8} < x < \frac{20}{21}$
- **5.** 2¹⁰
 - **6.** 0
- 7. 500

- **8.** n = 12 **9.** -22100
- **10.** (a) $\binom{30}{15}$

EXERCISE (JM)

- **1.** 4 **2.** 3
- **3.** 1

- **6.** 4

- **Bonus 9.** 1
- **10.** 3
- **4.** 2 **5.** 3

- **1.** D **2.** 6 **3.** C
- EXERCISE (JA)
- **4.** 8 **5.** 5
- **6.** 646

Important Notes			