22

THE *d*-AND *f*-BLOCK ELEMENTS

MCQs with One Correct Answer

- 1. What would happen when a solution of potassium chromate is treated with an excess of dilute nitric acid?
 - (a) $Cr_2O_7^{2-}$ and H_2O are formed
 - (b) CrO_4^{2-} is reduced to +3 state of Cr
 - (c) CrO_4^{2-} is oxidized to +7 state of Cr
 - (d) Cr^{3+} and $Cr_2O_7^{2-}$ are formed
- 2. The correct order of ionic radii of Y³⁺, La³⁺, Eu³⁺ and Lu³⁺ is
 - (a) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$
 - (b) $Y^{3+} < La^{3+} < Eu^{3+} < Iu^{3+}$
 - (c) $Y^{3+} < Iu^{3+} < Eu^{3+} < Ia^{3+}$
 - (d) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ (Atomic nos. Y=39, La=57, Eu=63, Lu=71)
- **3.** Which of the following oxides of manganese is amphoteric?
 - (a) MnO_2 (b) Mn_2O_3
 - (c) Mn_2O_7 (d) MnO
- 4. Which of the following compound is called Turnbull's blue?
 - (a) Ferricyanide (b) Ferrous ferricyanide
 - (c) Ferrous cyanide (d) Ferri-ferrocyanide

- 5. A compound of a metal ion $M^{x+}(Z = 24)$ has a spin only magnetic moment of $\sqrt{15}$ Bohr Magnetons. The number of unpaired electrons in the compound are
 - (a) 2 (b) 4
 - (c) 5 (d) 3
- 6. In which of the following compounds manganese has oxidation number equal to that of iodine in KIO_4 ?
 - (a) Potassium manganate
 - (b) Potassium permanganate
 - (c) Manganous chloride
 - (d) Manganese chloride
- 7. When MnO_2 is fused with KOH, a coloured compound is formed, the product and its colour is:
 - (a) K_2MnO_4 , purple green
 - (b) $KMnO_4$, purple
 - (c) Mn_2O_3 , brown
 - (d) Mn_3O_4 , black
- **8.** If an aqueous solution of KCN is added to a solution of ferrous salt then the complex formed is represented by
 - (a) $\left[\text{Fe}(\text{CN})_6 \right]^{4-}$ (b) $\left[\text{Fe}(\text{CN})_6 \right]^{3-}$
 - (c) $\left[Fe(H_2O)_6 \right]^{3+}$ (d) $\left[Fe(H_2O)_6 \right]^{2+}$

- **9.** For the four successive transition elements (Cr, Mn, Fe and Co), the stability of +2 oxidation state will be there in which of the following order?
 - (a) Mn > Fe > Cr > Co (b) Fe > Mn > Co > Cr
 - (c) Co>Mn>Fe>Cr (d) Cr>Mn>Co>Fe
- 10. In neutral or faintly alkaline medium, thiosulphate is quantitatively oxidized by $KMnO_4$ to
 - (a) SO_3^{2-} (b) SO_4^{2-}
 - (c) SO_2 (d) SO_5^{2-}
- 11. An excess of $Na_2S_2O_3$ reacts with aqueous $CuSO_4$ to give
 - (a) CuS_2O_3 (b) $Cu_2S_2O_3$
 - (c) $Na_2[Cu(S_2O_3)_2]$ (d) $Na_4[Cu_6(S_2O_3)_5]$
- **12.** Which of the following oxides of Cr is amphoteric
 - (a) CrO_2 (b) $\operatorname{Cr}_2\operatorname{O}_3$
 - (c) CrO_5 (d) CrO_3
- **13.** The roasting of HgS in air produces
 - (a) HgO (b) HgSO₃
 - (c) HgSO₄ (d) Hg
- 14. Mercury (I) chloride sublimes, when this compound is heated and the vapours it gives off are cooled the substance collected consists of
 - (a) Mercury (II) chloride
 - (b) Mercury (I) and Mercury (II), chlorides

- (c) Mercury (II) chloride and mercury
- (d) Mercury
- **15.** Consider the following statements
 - (I) $La(OH)_3$ is the least basic among hydroxides of lanthanoids.
 - (II) Zr⁴⁺ and Hf⁴⁺ posses almost the same ionic radii.
 - (III) Ce^{4+} can as an oxidizing agent.

Which of the above is/are true ?

- (a) (I) and (III) (b) (II) and (III)
- (c) (II) only (d) (I) and (II)

Numeric Value Answer

- **16.** The number of water molecule(s) directly bonded to the metal centre in CuSO₄.5H₂O is
- The oxidation number of Mn in the product of alkaline oxidative fusion of MnO₂ is
- 18. What is the oxidation states of Cr in butterfly structure.
- Out of the following, how many oxides are acidic. MnO, Mn₂O₃, MnO₂, MnO₃, Mn₂O₇
- **20.** A light blue coloured compound (A) on heating gives a block compound (B) which reacts with glucose to give a red compound (C). After the completion of reaction, how many metal oxides are formed?

	ANSWER KEY																		
1	(a)	3	(a)	5	(d)	7	(a)	9	(a)	11	(d)	13	(d)	15	(b)	17	(6)	19	(3)
2	(c)	4	(b)	6	(b)	8	(a)	10	(b)	12	(a)	14	(d)	16	(4)	18	(6)	20	(2)

The *d-*and *f-*Block Elements

1. (a) When a solution of potassium chromate is treated with an excess of dilute nitric acid. Potassium dichromate and H_2O are formed. $2K_2CrO_4 + 2HNO_3 \longrightarrow K_2Cr_2O_7 + 2KNO_3 + H_2O$

CHAPTER

Hence $\operatorname{Cr}_2 \operatorname{O}_7^{2-}$ and $\operatorname{H}_2 \operatorname{O}$ are formed.

- (c) In lanthanoid series there is a regular decrease in the atomic as well as ionic radii of trivalent ions (M³⁺) as the atomic number increases. Although the atomic radii do show some irregularities but ionic radii decreases from La(103 pm) to Lu (86pm).
- 3. (a) The more the oxidation state, the more is the acid character, MnO, Mn_2O_3 are basic, MnO_2 is amphoteric and Mn_2O_7 is acidic.
- **4. (b)** Ferrous ferricyanide is known as Turbull's blue
- 5. (d) Magnetic moment $\mu = \sqrt{n(n+2)}$ where n

= number of unpaired electrons $\sqrt{15} = \sqrt{n(n+2)}$ \therefore n = 3

- 6. (b) In KIO₄ O.S of I is +7 and in KMnO₄ O.S. of Mn is +7
- (a) Stable oxidation state of Mn in alkaline medium is +6. So, MnO₂ is oxidised to K₂MnO₄ by atmospheric oxygen in KOH medium.

 $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$

- 8. (a) $Fe^{2+} + 6KCN \rightarrow [Fe(CN)_6]^{4-} + 6K^+$ 9. (a)
- 10. (b) In neutral or faintly alkaline medium thiosulphate is quantitatively oxidized by $KMnO_4$ to SO_4^{2-}

 $\begin{array}{c} 8KMnO_4 + 3Na_2S_2O_3 + H_2O \longrightarrow \\ 3K_2SO_4 + 8MnO_2 + 3Na_2SO_4 + 2KOH \end{array}$

11. (d) $CuSO_4 + Na_2S_2O_3 \longrightarrow$

$$CuS_2O_3 + Na_2SO_4 \\$$

$$2CuS_2O_3 + Na_2S_2O_3 \longrightarrow Cu_2S_2O_3 + Na_2S_4O_6$$

 $3Cu_2S_2O_3 + 2Na_2S_2O_3 \longrightarrow$

 $Na_4[Cu_6(S_2O_3)_5]$

- 12. (a) Acidic nature of oxides increases with the increase in O.S. of the metal atom e.g., Cr_2O_3 is basic. CrO_2 is acidic, CrO_5 is also acidic in nature.
- **13.** (d) $HgS + O_2 \xrightarrow{773-873K} Hg + SO_2$
- 14. (d) $Hg_2Cl_2 \xrightarrow{\Delta} Hg + HgCl_2$
- (b) As a result of lanthanoid contraction Zr⁴⁺ and Hf⁴⁺ possess almost the same ionic radii. Ce⁴⁺ is an oxidising agent. Ce⁴⁺ gains electron to acquire more stable Ce³⁺state. La(OH)₃ is the most basic among lanthanoid hydroxides.
- 16. (4) The number of water molecules directly bonded to the metal centre in $CuSO_4.5H_2O$ is 4.

17. (6) $2MnO_2 + 4KOH + O_2 \longrightarrow$

$$2K_2MnO_4 + 2H_2O$$

 $2K_2MnO_4 + 2$ Oxidation number of Mn in K_2MnO_4 is 6 K_2MnO_4 ; 2 + x - 8 = 0x = 6

18. (6) Butterfly structure (CrO_5) is:

$$-10$$
 0^{-2} 0^{-1} -10 10^{-1} 10^{-1} 10^{-1}

There are two peroxide (–O–O–) bond in CrO_5 in which O.S. of each O-atom is -1. Hence O.S. of Cr = +6.

19. (3) Lower O.S. compounds are basic and higher O.S. compounds are acidic.

$$\underbrace{\overset{+2}{\text{MnO},\text{Mn}_2\text{O}_3}}_{\text{Neutral}} \quad \underbrace{\overset{+4}{\text{MnO}_2,\text{MnO}_3,\overset{+6}{\text{Mn}_2\text{O}_7}}_{\text{Acidic}}$$

20. (2) $Cu(OH)_2 \xrightarrow{\Delta} CuO + H_2O$; light blue $2CuO + glucose \longrightarrow Cu_2O$