REAL NUMBERS

DPP - 13 CLASS -10th TOPIC - PROVING OF IRRATIONALITY

- **Q.1** Show that $2 \sqrt{3}$ is an irrational number.
- **Q.2** Show that $3 + \sqrt{2}$ is an irrational number.
- **Q.3** Prove that $4 5\sqrt{2}$ is an irrational number.
- **Q.4** Show that $5 2\sqrt{3}$ is an irrational number.
- **Q.5** Prove that $2\sqrt{3} 1$ is an irrational number.
- **Q.6** Prove that $2 3\sqrt{5}$ is an irrational number.
- **Q.7** Prove that $\sqrt{5} + \sqrt{3}$ is irrational.
- **Q.8** Prove that $\sqrt{2} + \sqrt{3}$ is irrational.
- **Q.9** Prove that for any prime positive integer p, \sqrt{p} is an irrational number.
- **Q.10** If p and q are prime positive integers, prove that $\sqrt{p} + \sqrt{q}$ is an irrational number.

DPP - 13 CLASS -10th

TOPIC - PROVING OF IRRATIONALITY

SOL.1 Let's assume, on the contrary, that $2-\sqrt{3}$ is a rational number. Then, there exist coprime positive integers a and b such that

$$2 - \sqrt{3} = a/b$$

$$\Rightarrow \sqrt{3} = 2 - a/b$$

$$\Rightarrow \sqrt{3} = (2b - a)/b$$

 $\Rightarrow \sqrt{3}$ is rational [: a and b are integers : (2b - a)/b is a rational number]

This contradicts the fact that $\sqrt{3}$ is irrational. So, our assumption is incorrect.

Hence, $2 - \sqrt{3}$ is an irrational number.

SOL.2 Let's assume, on the contrary, that $3 + \sqrt{2}$ is a rational number. Then, there exist coprime positive integers a and b such that

$$3 + \sqrt{2} = a/b$$

$$\Rightarrow \sqrt{2} = a/b - 3$$

$$\Rightarrow \sqrt{2} = (a - 3b)/b$$

 $\Rightarrow \sqrt{2}$ is rational [: a and b are integers : (a - 3b)/b is a rational number]

This contradicts the fact that $\sqrt{2}$ is irrational. So, our assumption is incorrect.

Hence, $3 + \sqrt{2}$ is an irrational number.

SOL.3 Let's assume, on the contrary, that $4 - 5\sqrt{2}$ is a rational number. Then, there exist coprime positive integers a and b such that

$$4 - 5\sqrt{2} = a/b$$

$$\Rightarrow 5\sqrt{2} = 4 - a/b$$

$$\Rightarrow \sqrt{2} = (4b - a)/(5b)$$

 $\Rightarrow \sqrt{2}$ is rational [:: 5, a and b are integers :: (4b - a)/5b is a rational number]

This contradicts the fact that $\sqrt{2}$ is irrational. So, our assumption is incorrect.

Hence, $4 - 5\sqrt{2}$ is an irrational number.

SOL.4 Let's assume, on the contrary, that $5 - 2\sqrt{3}$ is a rational number. Then, there exist coprime positive integers a and b such that

$$5 - 2\sqrt{3} = a/b$$

$$\Rightarrow 2\sqrt{3} = 5 - a/b$$

$$\Rightarrow \sqrt{3} = (5b - a)/(2b)$$

 $\Rightarrow \sqrt{3}$ is rational [: 2, a and b are integers : (5b - a)/2b is a rational number]

This contradicts the fact that $\sqrt{3}$ is irrational. So, our assumption is incorrect.

Hence, $5 - 2\sqrt{3}$ is an irrational number.

SOL.5 Let's assume, on the contrary, that $2\sqrt{3} - 1$ is a rational number. Then, there exist coprime positive integers a and b such that

$$2\sqrt{3} - 1 = a/b$$

$$\Rightarrow 2\sqrt{3} = a/b + 1$$

$$\Rightarrow \sqrt{3} = (a + b)/(2b)$$

 $\Rightarrow \sqrt{3}$ is rational [:: 2, a and b are integers :: (a + b)/2b is a rational number]

This contradicts the fact that $\sqrt{3}$ is irrational. So, our assumption is incorrect.

Hence, $2\sqrt{3} - 1$ is an irrational number.

SOL.6 Let's assume, on the contrary, that $2 - 3\sqrt{5}$ is a rational number. Then, there exist co-prime positive integers a and b such that

$$2 - 3\sqrt{5} = a/b$$

$$\Rightarrow 3\sqrt{5} = 2 - a/b$$

$$\Rightarrow \sqrt{5} = (2b - a)/(3b)$$

 $\Rightarrow \sqrt{5}$ is rational [: 3, a and b are integers : (2b - a)/3b is a rational number]

This contradicts the fact that $\sqrt{5}$ is irrational. So, our assumption is incorrect.

Hence, $2 - 3\sqrt{5}$ is an irrational number.

SOL.7 Let's assume, on the contrary, that $\sqrt{5} + \sqrt{3}$ is a rational number. Then, there exist coprime positive integers a and b such that

$$\sqrt{5} + \sqrt{3} = a/b$$

$$\Rightarrow \sqrt{5} = (a/b) - \sqrt{3}$$

$$\Rightarrow (\sqrt{5})^2 = ((a/b) - \sqrt{3})^2$$
 [Squaring on both sides]

$$\Rightarrow$$
 5 = (a²/b²) + 3 - (2 $\sqrt{3}$ a/b)

$$\Rightarrow (a^2/b^2) - 2 = (2\sqrt{3}a/b)$$

$$\Rightarrow$$
 (a/b) - (2b/a) = $2\sqrt{3}$

$$\Rightarrow$$
 (a² - 2b²)/2ab = $\sqrt{3}$

 $\Rightarrow \sqrt{3}$ is rational [: a and b are integers : $(a^2 - 2b^2)/2ab$ is rational]

This contradicts the fact that $\sqrt{3}$ is irrational. So, our assumption is incorrect.

Hence, $\sqrt{5} + \sqrt{3}$ is an irrational number.

SOL.8 Let's assume, on the contrary, that $\sqrt{2} + \sqrt{3}$ is a rational number. Then, there exist coprime positive integers a and b such that

$$\sqrt{2} + \sqrt{3} = a/b$$

$$\Rightarrow \sqrt{2} = (a/b) - \sqrt{3}$$

$$\Rightarrow (\sqrt{2})^2 = ((a/b) - \sqrt{3})^2$$
 [Squaring on both sides]

$$\Rightarrow 2 = (a^2/b^2) + 3 - (2\sqrt{3}a/b)$$

$$\Rightarrow$$
 (a²/b²) + 1 = (2 $\sqrt{3}$ a/b)

$$\Rightarrow$$
 (a/b) + (b/a) = $2\sqrt{3}$

$$\Rightarrow$$
 (a² + b²)/2ab = $\sqrt{3}$

$$\Rightarrow \sqrt{3}$$
 is rational [: a and b are integers : $(a^2 + 2b^2)/2ab$ is rational]

This contradicts the fact that $\sqrt{3}$ is irrational. So, our assumption is incorrect.

Hence, $\sqrt{2} + \sqrt{3}$ is an irrational number.

SOL.9 Consider \sqrt{p} as a rational number

Assume $\sqrt{p} = a/b$ where a and b are integers and b $\neq 0$

By squaring on both sides

$$p = a^2/b^2$$

$$pb = a^2/b$$

p and b are integers pb= a²/b will also be an integer

But we know that a²/b is a rational number, so our supposition is wrong

Therefore, \sqrt{p} is an irrational number.

SOL.10 Let's assume, on the contrary, that $\sqrt{p} + \sqrt{q}$ is a rational number. Then, there exist coprime positive integers a and b such that

$$\sqrt{p} + \sqrt{q} = a/b$$

$$\Rightarrow \sqrt{p} = (a/b) - \sqrt{q}$$

$$\Rightarrow (\sqrt{p})^2 = ((a/b) - \sqrt{q})^2$$
 [Squaring on both sides]

$$\Rightarrow$$
 p = (a²/b²) + q - (2 \sqrt{q} a/b)

$$\Rightarrow (a^2/b^2) - (p+q) = (2\sqrt{q} a/b)$$

$$\Rightarrow$$
 (a/b) - ((p+q)b/a) = $2\sqrt{q}$

$$\Rightarrow$$
 (a² - b²(p+q))/2ab = \sqrt{q}

$$\Rightarrow \sqrt{q}$$
 is rational [: a and b are integers : $(a^2 - b^2(p+q))/2ab$ is rational]

This contradicts the fact that \sqrt{q} is irrational. So, our assumption is incorrect.

Hence, $\sqrt{p} + \sqrt{q}$ is an irrational number.