DPP No: 04

Maximum Time 50 Min

SYLLABUS: Mole Concept

(A) 1 M

1.	500 mL of a glucose solution contains 6.02×10^{22} molecules. The concentration of the solution is									
	(A) 0.1 M	(B) 1.0 M	(C) 0.2 M	(D) 2.0 M						
2.	1000 gram aqueo	$1000~{ m gram}$ aqueous solution of CaCO $_3$ contains $10~{ m gram}$ of carbonate. Concentration of solution is								
	(A) 10ppm	(B) 100ppm	(C) 1000ppm	(D) 10,000 ppm						
3.	Equal moles of $\rm H_2O$ and NaCl are present in a solution. Hence, molality of NaCl solution is									
	(A) 0.55	(B) 55.5	(C) 1.00	(D) 0.18						
4.	Decreasing order of mass of pure NaOH in each of the aqueous solution.									
	(I) 50 g of 40% (W/W) NaOH									
	(II) 50 ml of 50% (W/V) NaOH (d _{sol} = 1.2 g/ml).									
	(III) 50 g of 15 M NaOH (d _{sol} = 1 g/ml).									
	(A) I, II, III	(B) III, II, I	(C) II, III, I	(D) III = II = I.						
5.	Mole fraction of A in H ₂ O is 0.2. The molality of A in H ₂ O is :									
	(A) 13.9	(B) 15.5	(C) 14.5	(D) 16.8						
6.	What is the molarity of H_2SO_4 solution that has a density of 1.84 g/cc and contains 98% by mass of H_2SO_4 ? (Given atomic mass of S = 32)									
	(A) 4.18 M	(B) 8.14 M	(C) 18.4 M	(D) 18 M						
7.	The molarity of the solution containing 2.8%(mass / volume) solution of KOH is : (Given atomic mass of $K=39$) is :									
	(A) 0.1 M	(B) 0.5 M	(C) 0.2 M	(D) 1 M						
8.	A solution of $FeCl_3$ is $\frac{M}{30}$ its molarity for Cl^- ion will be :									
	(A) $\frac{M}{90}$	(B) $\frac{M}{30}$	(C) $\frac{M}{10}$	(D) $\frac{M}{5}$						
9.	If 500 ml of 1 M solution will be :	If 500 ml of 1 M solution of glucose is mixed with 500 ml of 1 M solution of glucose final molarit of solution will be :								

(C) 2 M

(D) 1.5 M

(B) 0.5 M

10.	The volume of water that must be added to a mixture of 250 ml of 0.6 M HCl and 750 ml or 0.25 M solution of HCl is :									
	(A) 750 ml	(B) 100 ml	(C) 200 mℓ	(D) 300 mℓ						
11 .	What volume of a 0.8 M solution contains 100 milli moles of the solute?									
	(A) 100 mL	(B) 125 mL	(C) 500 mL	(D) 62.5 mL						
12.	The molarity of CI in will be	e molarity of ${\rm CI}^-$ in an aqueous solution which was (w/V) 2% NaCl, 4% ${\rm CaCl_2}$ and 6% ${\rm NH_4Cl}$ be								
	(A) 0.342	(B) 0.721	(C) 1.12	(D) 2.18						
13.	M of 100 ml $Na_2 SO_4$ is mixed with 3M of 100 ml NaCl solution and 1M of 200 ml $CaCl_2$ olution. Then the ratio of the concentration of cation and anion.									
	(A) 1/2	(B) 2	(C) 1.5	(D) 1						
14.	What volume (in ml) of $0.2~\mathrm{M}~\mathrm{H_2SO_4}$ solution should be mixed with the 40 ml of $0.1~\mathrm{M}~\mathrm{NaOH}$									
	solution such that the resulting solution has the concentration of H_2SO_4 as $\frac{6}{55}M$.									
	(A) 70	(B) 45	(C) 30	(D) 58						
15.		$_{3}$ must be decomposed to produce the sufficient quantity of carbon dioxide Na $_{2}$ CO $_{3}$ completely in to NaHCO $_{3}$. [Atomic mass Na = 23, Ca = 40]								
	$CaCO_3 \longrightarrow CaO + CO_2$									
	Na ₂ CO ₃ + CO ₂	+ H ₂ O → 2NaHCO	D ₃							
	(A) 100 Kg	(B) 20 Kg	(C) 120 Kg	(D) 30 Kg						
16.	NX is produced by the	ne following step of rea	actions							
$M + X_2 \longrightarrow M X_2$										
	3MX ₂ + X ₂ —									
	$M_3 X_8 + N_2 CO_3$	\longrightarrow NX + CO ₂ + M ₃	O ₄							
	How much M (metal) is consumed to produce 206 g of NX. (Take at wt of M = 56, N=23, X = 80)									
	(A) 42 g	(B) 56 g	(C) $\frac{14}{3}$ g	(D) $\frac{7}{4}$ g						
17.	The following process has been used to obtain iodine from oil-field brines in California.									
	$Nal + AgNO_3 \longrightarrow Agl + NaNO_3$; $2Agl + Fe \longrightarrow Fel_2 + 2Ag$									
	$2\text{Fel}_2 + 3\text{Cl}_2 \longrightarrow 2\text{FeCl}_3 + 2\text{I}_2$									
	How many kg of ${\rm AgNO_3}$ are required in the first step for every 254 kg I $_2$ produced in the third step.									
	(A) 340 kg	(B) 85 kg	(C) 68 kg	(D) 380 kg						

	(A) + 3	3		(B) + 2	2		(C) + 5	5		(D) - 3	3				
19.	In the reaction 4A + 2B + 3C \rightarrow A ₄ B ₂ C ₃ , what will be the number of moles of product formed, starting from one mole of A, 0.6 mole of B and 0.72 mole of C?														
	(A) 0.2	25		(B) 0.3	3		(C) 0.2	24		(D) 2.3	32				
20.		Find the Cl ⁻ concentration in solution which is obtained by mixing one mole each of BaCl ₂ , NaCl and HCl in 500 ml water.													
21.	The pressure of a gas having 2 mole in 44.8 litre vessel at 546 K is :														
	(A) 1 a	atm		(B) 2 a	ıtm		(C) 3 a	atm		(D) 4 atm					
22.	How m	nany gra	ams of	silicon is	s prese	nt in 35	gram a	itoms o	f silicon	1?					
23.	The density of liquid mercury is 13.6 g/cm³. How many moles of mercury are there in 1 litre of the metal?														
24.	Average atomic mass of Magnesium is 24.31 amu. This magnesium is composed of 79 mole $\%$ of 24 Mg and remaining 21 mole $\%$ of 25 Mg and 26 Mg. Calculate mole $\%$ of 26 Mg.														
25.	Calculate the weight of 6.022×10^{23} formula units of CaCO ₃ .														
	(0)		(5)	•	27	ANSWE			7.63	•	(0)	: 	<u></u>		
	(C)	2.	(D)	3.	(B)	4.	(B)	5.	(A)	6.	(C)	1.	(B)		
B.	(C)	9.	(A)	10 .	(C)	11.	(B)	12.	(D)	13.	(D)	14.	(A)		
15.	(B)	16.	(A)	17.	(A)	18.	(C)	19.	(C)	20.	8 M.	21.	(B)		
22.	980 g	of Si	23.	68 mo	le	24.	10	25.	100 g.						

The oxidation number of Phosphorus in Mg₂P₂O₇ is :

18.