Chapter 4

Inverse Trigonometric Functions

Ex 4.1

Question 1. Find all the values of x such that (i) $-10\pi \le x \le 10\pi$ and $\sin x = 0$ (ii) $-8\pi \le x \le 8\pi$ and $\sin x = -1$ Solution: (i) $-10\pi \le x \le 10\pi$ and $\sin x = 0$ $\sin x = 0$, $\sin \theta = \sin \alpha$ $\sin x = \sin 0$, $\theta = n\pi + (-1)^n a$, $n \in \mathbb{R}$ $x = n\pi + (-1)^n (0)$ $x = n\pi$, $n = 0, \pm 1, \pm 2, \dots, \pm 10$ $n = \pm 1, \pm 2, \dots \pm 10$ (ii) $-3\pi \le x \le 3\pi$ and $\sin x = -1$. $\sin x = -1$ $\sin x = -\sin \frac{\pi}{2} = \sin(-\frac{\pi}{2})$ $x = (4n - 1)\frac{\pi}{2}$, $n = 0, \pm 1$

Question 2.

(i) $y = \sin 7x$ (ii) $y = -\sin(\frac{1}{3}x)$ (iii) $y = 4\sin(-2x)$ Solution: (i) $y = \sin 7x$ Period of the function $\sin x$ is 2π Period of the function $\sin 7x$ is $\frac{2\pi}{7}$ The amplitude of $\sin 7x$ is 1. (ii) $y = -\sin \frac{1}{3}x$ Period of $\sin x$ is 2π So, period of $\sin \frac{1}{3}x$ is 6π and the amplitude is 1. (iii) $y = 4 \sin(-2x) = -4 \sin 2x$ Period of sin x is 2π π Period of sin 2x is π and the amplitude is 4.

Question 3.

Sketch the graph of $y = sin(\frac{1}{3}x)$ for $0 \le x < 6\pi$.

Solution:

The period of sin($\frac{1}{3}x$) is 6π and the amplitude is 1.

x	0	π	2π	3π	4π	5π	6π
$\frac{1}{3}$	¢ 0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π

The graph is

Question 4.

Find the value of

(i)
$$\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$$

(ii) $\sin^{-1}\left(\sin\left(\frac{5\pi}{4}\right)\right)$

(i)
$$\sin \frac{2\pi}{3} = \sin \left(\pi - \frac{\pi}{3} \right) = \sin \left(\frac{\pi}{3} \right)$$

 $\therefore \qquad \sin^{-1} \left(\sin \frac{2\pi}{3} \right) = \sin^{-1} \left(\sin \frac{\pi}{3} \right) = \frac{\pi}{3}$
(ii) $\sin \left(\frac{5\pi}{4} \right) = \sin \left(\pi + \frac{\pi}{4} \right) = -\sin \frac{\pi}{4} = \sin \left(-\frac{\pi}{4} \right)$
 $\therefore \qquad \sin^{-1} \left(\sin \frac{5\pi}{4} \right) = \sin^{-1} \left(\sin \left(\frac{-\pi}{4} \right) \right) = \frac{-\pi}{4}$

Question 5.

For that value of x does sin $x = \sin^{-1} x$? **Solution:** Let $y = \sin^{-1} x$ When $y = 0 \Rightarrow 0 = \sin^{-1} x$ sin $0 = \sin [\sin^{-1}(x)]$ sin 0 = x $\therefore x = 0$ Only when x = 0, then sin $x = \sin^{-1}(x)$

Question 6.

Find the domain of the following

(i)
$$f(x) = \sin^{-1}\left(\frac{x^2+1}{2x}\right)$$

(ii) $g(x) = 2\sin^{-1}(2x-1) - \frac{\pi}{4}$
Solution:
(i) $f(x) = \sin^{-1}\left(\frac{x^2+1}{2x}\right)$
The range of sin-1 x is -1 to 1
 $-1 \le \frac{x^2+1}{2x} \le 1$
 $\Rightarrow \frac{x^2+1}{2x} \ge -1$ or $\frac{x^2+1}{2x} \le 1$
 $\Rightarrow x^2 + 1 \ge -2x$ or $x^2 + 1 \le 2x$
 $\Rightarrow x^2 + 1 + 2x \ge 0$ or $x^2 + 1 - 2x \le 0$
 $\Rightarrow (x+1)^2 \ge 0$ or $(x-1)^2 \le 0$ which is not possible
 $\Rightarrow -1 \le x \le 1$ or
(ii) $g(x) = 2\sin^{-1}(2x-1) - \frac{\pi}{4}$
 $-1 \le (2x-1) \le 1$
 $0 \le 2x \le 2$
 $0 \le x \le 1$
 $x \in [0, 1]$

Question 7.

Find the value of $\sin^{-1}\left(\sin\frac{5\pi}{9}\cos\frac{\pi}{9} + \cos\frac{5\pi}{9}\sin\frac{\pi}{9}\right)$

$$\sin\frac{5\pi}{9}\cos\frac{\pi}{9} + \cos\frac{5\pi}{9}\sin\frac{\pi}{9} = \sin\left(\frac{5\pi}{9} + \frac{\pi}{9}\right) = \sin\frac{6\pi}{9} = \sin\frac{2\pi}{3}$$
$$= \sin\left(\pi - \frac{\pi}{3}\right) = \sin\frac{\pi}{3}$$
$$\sin^{-1}\left[\sin\frac{\pi}{3}\right] = \frac{\pi}{3}$$

Ex 4.2

Question 1. Find all the values of x such that (i) $-6\pi \le x \le 6\pi$ and $\cos x = 0$ (ii) $-5\pi \le x \le 5\pi$ and $\cos x = 1$

Solution:

(i) $\cos x = 0$ $\Rightarrow x = (2n + 1) \pm \frac{\pi}{2}$ $n = 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5$ (ii) $\cos x = 1 = \cos 0$ $\Rightarrow x = 2n\pi \pm 0$ $n = 0, \pm 1, \pm 2$

Question 2.

State the reason for $\cos -1[\cos(-\frac{\pi}{6})] \neq -\frac{\pi}{6}$

Solution:

We know $\cos(-\pi) = \cos \pi$

$$\cos^{-1}\left[\cos\left(-\frac{\pi}{6}\right)\right] = \cos^{-1}\left[\cos\frac{\pi}{6}\right] = \frac{\pi}{6} \neq -\frac{\pi}{6}$$

SO

Question 3. Is $\cos^{-1}(-x) = \pi - \cos^{-1} x$ true? Justify your answer.

Solution:

 $\begin{array}{l} \cos^{-1}\left(-x\right) = \pi - \cos^{-1}x\\ \text{Take } x = \cos\theta \Rightarrow \theta = \cos^{-1}x\\ \cos^{-1}\left(-x\right) = \pi - \theta\\ \cos(\pi - \theta) = -\cos\theta = -x \in [-1, 1]\\ \pi - \cos^{-1}x = \pi - \theta\\ \pi - \cos^{-1}x = \cos^{-1}\left(-x\right) \text{ is true} \end{array}$

Question 4.

Find the principal value of $\cos^{-1}\left(\frac{1}{2}\right)$ Solution: Let $\cos^{-1}\left(\frac{1}{2}\right) = \pi$ $\Rightarrow \cos \pi = \frac{1}{2} = \cos \frac{\pi}{3}$ $\Rightarrow \pi = \frac{\pi}{3}$ $\Rightarrow \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$

Question 5.

Find the value of

(i)
$$2\cos^{-1}\left(\frac{1}{2}\right) + \sin^{-1}\left(\frac{1}{2}\right)$$

(ii) $\cos^{-1}\left(\frac{1}{2}\right) + \sin^{-1}(-1)$
(iii) $\cos^{-1}\left(\cos\frac{\pi}{7}\cos\frac{\pi}{17} - \sin\frac{\pi}{7}\sin\frac{\pi}{17}\right)$
Solution:

 $\cos^{-1}\frac{1}{2} = \frac{\pi}{3}$ (i) ¹ $\sin^{-1}\frac{1}{2} = \frac{\pi}{6}$ $2\cos^{-1}\left(\frac{1}{2}\right) + \sin^{-1}\left(\frac{1}{2}\right) = 2\left(\frac{\pi}{3}\right) + \frac{\pi}{6} = \frac{2\pi}{3} + \frac{\pi}{6} = \frac{4\pi + \pi}{6} = \frac{5\pi}{6}$ So

II Method:

We know
$$\cos^{-1} x + \sin^{-1} x = \frac{\pi}{2}$$

So $2\cos^{-1}\left(\frac{1}{2}\right) + \sin^{-1}\left(\frac{1}{2}\right) = \cos^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2} + \sin^{-1}\frac{1}{2}$
 $= \cos^{-1}\left(\frac{1}{2}\right) + \frac{\pi}{2} = \frac{\pi}{3} + \frac{\pi}{2} = \frac{2\pi + 3\pi}{6} = \frac{5\pi}{6}$

(ii)
$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{\pi}{3}$$

 $\sin^{-1}(-1) = -\frac{\pi}{2}$
So $\cos^{-1}\left(\frac{1}{2}\right) + \sin^{-1}(-1) = \frac{\pi}{3} + \left(-\frac{\pi}{2}\right) = \frac{\pi}{3} - \frac{\pi}{2} = \frac{2\pi - 3\pi}{6} = -\frac{\pi}{6}$
(iii) Let $\frac{\pi}{7} = A$ and $\frac{\pi}{17} = B$
Now $\cos A \cos B - \sin A \sin B = \cos(A + B)$
 $\pi - \pi - \pi(17 + 7) = 24\pi$

$$A + B = \frac{\pi}{7} + \frac{\pi}{17} = \frac{\pi(17+7)}{119} = \frac{24\pi}{119}$$

So $\cos^{-1}\left[\cos\frac{\pi}{7}\cos\frac{\pi}{17} - \sin\frac{\pi}{7}\sin\frac{\pi}{17}\right] = \cos^{-1}\left[\cos\left(\frac{24\pi}{119}\right)\right] = \frac{24\pi}{119}$

Question 6.

Find the domain of (i) $f(x) = \sin -1(|x|-23) + \cos -1(1-|x|4)$ (ii) $g(x) = \sin -1 x + \cos -1 x$ Solution: (i) $f(x) = \sin^{-1}\left(\frac{|x|-2}{3}\right) + \cos^{-1}\left(\frac{1-|x|}{4}\right)$ (ii) $g(x) = \sin^{-1} x + \cos^{-1} x$ Solution: (i) $f(x) = \sin^{-1}\left(rac{|x|-2}{3}
ight) + \cos^{-1}\left(rac{1-|x|}{4}
ight)$ = U(x) + V(x) say U(x): $-1 < rac{|x|-2}{3} < 1$ -3 < |x| - 2 < 3 $-1 < |x| \le 5$ V(x): $-1 \leq rac{1-|x|}{4} \leq 1$ $-4 \le 1 - |x| \le 4$ $-5 \le -|x| \le 3$ $-3 \leq |\mathbf{x}| \leq 5$ from U(x) and V(x) $\Rightarrow |\mathbf{x}| \le 5$ $\Rightarrow -5 \le |\mathbf{x}| \le 5$ (ii) $g(x) = \sin^{-1} x + \cos^{-1} x$ $-1 \le x \le 1$

Question 7.

For what value of x, the inequality $\frac{\pi}{2} < \cos^{-1}(3x - 1) < \pi$ holds?

$$\frac{\pi}{2} < \cos^{-1} (3x - 1) < \pi$$

$$\Rightarrow \cos \frac{\pi}{2} < 3x - 1 < \cos \pi$$

$$\Rightarrow 0 < 3x - 1 < -1$$

$$\Rightarrow 1 < 3x < 0$$

$$\Rightarrow \frac{1}{3} < x < 0$$
This inequality holds only if x < 0 or x > $\frac{1}{3}$

Question 8.

Find the value of

(i)
$$\cos\left(\cos^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{4}{5}\right)\right)$$

(ii) $\cos^{-1}\left(\cos\left(\frac{4\pi}{3}\right)\right) + \cos^{-1}\left(\cos\left(\frac{5\pi}{4}\right)\right)$

(i) We know
$$\cos^{-1} x + \sin^{-1} x = \frac{\pi}{2}$$

$$\therefore \quad \cos^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{4}{5}\right) = \frac{\pi}{2}$$

$$\Rightarrow \cos\left[\cos^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{4}{5}\right)\right] = \cos\frac{\pi}{2} = 0$$
(ii) $\cos\frac{4\pi}{3} = \cos\left(\pi + \frac{\pi}{3}\right) = -\cos\frac{\pi}{3}$

$$\cos^{-1}\cos\frac{4\pi}{3} = -\frac{\pi}{3}$$
and $\cos\frac{5\pi}{4} = \cos\left(\pi + \frac{\pi}{4}\right) = -\cos\frac{\pi}{4}$

$$\therefore \quad \cos^{-1}\cos\frac{5\pi}{4} = -\frac{\pi}{4}$$
so $\cos^{-1}\left(\cos\frac{4\pi}{3}\right) + \cos^{-1}\cos\left(\frac{5\pi}{4}\right)$

$$= -\frac{\pi}{4} - \frac{\pi}{4} = -\frac{7\pi}{4}$$

$$-\frac{1}{3}-\frac{1}{4}=-\frac{1}{12}$$

Ex 4.3

Question 1.

(i) $\tan^{-1}(\sqrt{9-x^2})$ (ii) $\frac{1}{2}\tan^{-1}(1-x^2) - \frac{\pi}{4}$ Solution: (i) $\tan^{-1}(\sqrt{9-x^2})$ $9-x^2 \ge 0 \Rightarrow 9 \ge x^2$ $x^2 \le 9 \Rightarrow x \le \pm 3$ Domain [-3, 3]

Since tan x is an odd function and symmetric about the origin, tan⁻¹ x should be an increasing function in its domain.

 \therefore Domain is $(2n + 1)\frac{\pi}{2}$

(*ii*) We know
$$\frac{1}{2} \tan^{-1} x = \tan^{-1} \left(\frac{1-x}{1+x} \right)$$

So $\frac{1}{2} \tan^{-1} (1-x^2) = \tan^{-1} \left[\frac{1-(1-x^2)}{1+(x-x^2)} \right] = \tan^{-1} \frac{x^2}{2-x^2}$
So $\frac{1}{2} \tan^{-1} (1-x^2) - \frac{\pi}{4} = \tan^{-1} \frac{x^2}{2-x^2} - \tan^{-1} 1 = \tan^{-1} \left[\frac{\frac{x^2}{2-x^2} - 1}{1+\left(\frac{x^2}{2-x^2}\right)(1)} \right]$
 $= \tan^{-1} (x^2 - 1) = y \text{ (say)}$

The domain of y is $(-\infty, \infty)$ {x | x \in -1} and range is $[-1, \infty)$ {y | y \ge -1} The domain for tan-1(x² - 1) is (2n + 1) π . Since tan x is an odd function.

Question 2.

Find the value of

(i)
$$\tan^{-1}\left(\tan\frac{5\pi}{4}\right)$$

(ii) $\tan^{-1}\left(\tan\left(-\frac{\pi}{6}\right)\right)$

Solution:

(i)
$$\tan\frac{5\pi}{4} = \tan\left(\pi + \frac{\pi}{4}\right) = \tan\frac{\pi}{4}$$

So $\tan^{-1}\left(\tan\frac{5\pi}{4}\right) = \tan^{-1}\left(\tan\frac{\pi}{4}\right) = \frac{\pi}{4}$

(*ii*)
$$\tan\left(-\frac{\pi}{6}\right) = \tan\left(\pi - \frac{\pi}{6}\right) = \tan\frac{5\pi}{6}$$

So
$$\tan^{-1}\left(\tan\left(-\frac{\pi}{6}\right)\right) = \tan^{-1}\left(\tan\frac{5\pi}{6}\right) = \frac{5\pi}{6}$$

Question 3.

- Find the value of (i) $\tan(\tan^{-1}\frac{7\pi}{4})$ (ii) $\tan(\tan^{-1}(1947))$ (iii) $\tan(\tan^{-1}(-0.2021))$ Solution: we know that $\tan(\tan^{-1}(x)) = x$ (i) $\tan(\tan^{-1}(\frac{7\pi}{4})) = \frac{7\pi}{4}$ (ii) $\tan(\tan^{-1}(1947)) = 1947$
- (iii) $\tan(\tan^{-1}(-0.2021)) = -0.2021$

Question 4.

Find the value of

(i)
$$\tan\left(\cos^{-1}\left(\frac{1}{2}\right) - \sin^{-1}\left(-\frac{1}{2}\right)\right)$$

(ii) $\sin\left(\tan^{-1}\left(\frac{1}{2}\right) - \cos^{-1}\left(\frac{4}{5}\right)\right)$
(iii) $\cos\left(\sin^{-1}\left(\frac{4}{5}\right) - \tan^{-1}\left(\frac{3}{4}\right)\right)$

(i)
$$\cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

 $\sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$

So
$$\cos^{-1}\left(\frac{1}{2}\right) - \sin^{-1}\left(-\frac{1}{2}\right) = \frac{\pi}{3} - \left(\frac{-\pi}{6}\right) = \frac{\pi}{3} + \frac{\pi}{6} = \frac{2\pi + \pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2}$$

and $\tan\left(\frac{\pi}{2}\right) = \infty$

and
$$\tan\left(\frac{-1}{2}\right) = \infty$$

(ii) $\sin\left(\tan^{-1}\left(\frac{1}{2}\right) - \cos^{-1}\left(\frac{4}{5}\right)\right)$
Let $\tan^{-1}\frac{1}{2} = \theta_1 \implies \tan\theta_1 = \frac{1}{2}$

Now
$$\left(\tan^{-1}\frac{1}{2} - \cos^{-1}\frac{4}{5}\right) = \tan^{-1}\frac{1}{2} - \tan^{-1}\frac{3}{4}$$

$$= \tan^{-1}\left\{\frac{\frac{1}{2} - \frac{3}{4}}{1 + \left(\frac{1}{2}\right)\left(\frac{3}{4}\right)}\right\} = \tan^{-1}\left(\frac{\frac{2-3}{4}}{1 + \frac{3}{8}}\right) = \tan^{-1}\left(\frac{-1}{4} \times \frac{8}{11}\right)$$
$$= \tan^{-1}\left(\frac{-2}{11}\right)$$

Let
$$\tan^{-1}\left(-\frac{2}{11}\right) = \theta_3$$
 $\Rightarrow \tan \theta_3 = \frac{2}{11}$
 $\Rightarrow \qquad \sin \theta_3 = -\frac{2}{\sqrt{125}} \Rightarrow \theta_3 = \sin^{-1}\left(\frac{-2}{\sqrt{125}}\right) \qquad 2$
So $\sin\left(\tan^{-1}\left(\frac{1}{2}\right) - \cos^{-1}\left(\frac{4}{5}\right)\right) = \sin\left[\sin^{-1}\left(-\frac{2}{\sqrt{125}}\right)\right] = \frac{-2}{\sqrt{125}}$
 $= \frac{-2}{5\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{-2\sqrt{5}}{25}$

Ex 4.4

Question 1. Find the principal value of

(i) $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$ (ii) $\cot^{-1}(\sqrt{3})$ (iii) $\csc^{-1}(-\sqrt{2})$ Solution: (i) $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = \theta$ $\sec \theta = \frac{2}{\sqrt{3}} = \sec \frac{\pi}{6}$ $\theta = \frac{\pi}{6}$ (ii) Let $\cot^{-1}(\sqrt{3}) = \theta$ $\Rightarrow \cot \theta = \sqrt{3}$ $\Rightarrow \tan \theta = \frac{1}{\sqrt{3}} = \tan \frac{\pi}{6}$ $\Rightarrow \theta = \frac{\pi}{6}$ (iii) Let $\csc^{-1}(-\sqrt{2}) = \theta$ $\Rightarrow \csc \theta = -\sqrt{2}$ $\Rightarrow \sin \theta = -\frac{1}{\sqrt{2}}$ $\Rightarrow \theta = -\frac{\pi}{4}$

Question 2.

Find the value of (i) $\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2)$ (ii) $\sin^{-1}(-1) + \cos^{-1}(\frac{1}{2}) + \cot^{-1}(2)$ (iii) $\cot^{-1}(1) + \sin^{-1}(-\frac{\sqrt{3}}{2}) - \sec^{-1}(-\sqrt{2})$ Solution:

(i) Let
$$\tan^{-1}\sqrt{3} = \frac{\pi}{3}$$

 $\sec^{-1}(-2) = \theta \implies \sec \theta = -2$
 $\Rightarrow \cos \theta = \frac{-1}{2} \implies \theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$
 $\therefore \tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) = \frac{\pi}{3} - (\frac{2\pi}{3}) = -\frac{\pi}{3}$
(ii) $\sin^{-1}(-1) = -\frac{\pi}{2}$
 $\cos^{-1}(\frac{1}{2}) = \frac{\pi}{3}$
 $\therefore \sin^{-1}(-1) + \cos^{-1}(\frac{1}{2}) + \cot^{-1}(2) = -\frac{\pi}{2} + \frac{\pi}{3} + \cot^{-1}(2) = -\frac{\pi}{6} + \cot^{-1}(2)$
(iii) $\cot^{-1}(1) = \frac{\pi}{4}$

$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}$$
$$\sec^{-1}\left(-\sqrt{2}\right) = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$
So $\cot^{-1}(1) + \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) - \sec^{-1}\left(-\sqrt{2}\right) = \frac{\pi}{4} - \frac{\pi}{3} - \frac{3\pi}{4} = \frac{-5\pi}{6}$

Ex 4.5

Question 1.

(i) sin⁻¹(cos π) (ii) $\tan^{-1}\left(\sin\left(-\frac{5\pi}{2}\right)\right)$ (iii) sin⁻¹[sin 5] Solution: (i) $\sin^{-1}(\cos \pi) = \sin^{-1}(-1) = -\frac{\pi}{2}$ (ii) $\tan^{-1}\left(\sin\frac{5\pi}{2}\right) = \tan^{-1}\left(-\sin\frac{\pi}{2}\right) = \tan^{-1}(-1) = -\frac{\pi}{4}$ (iii) $\sin^{-1}(\sin 5) = \sin^{-1}[\sin (5 - 2\pi)] = 5 - 2\pi$ **Question 2.** (i) $sin(cos^{-1}(1 - x))$ (ii) $\cos(\tan^{-1}(3x - 1))$ (iii) $\tan\left(\sin^{-1}\left(x+\frac{1}{2}\right)\right)$ Solution: (i) Let $\cos^{-1}(1 - x) = \theta$ $1 - x = \cos \theta$ We know $\sin^2 \theta = 1 - \cos^2 \theta$ $\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - (1 - x)^2} = \sqrt{1 - (1 + x^2 - 2x)}$ ⇒ $=\sqrt{2x-x^2}$ $\sin[\cos^{-1}(1-x)] = \sin\theta = \sqrt{2x-x^2}$ ⇒ (*ii*) Let $\tan^{-1}(3x-1) = \theta$ \Rightarrow 3x - 1 = tan θ So $\tan^2 \theta = (3x - 1)^2 = 9x^2 - 6x + 1$ $1 + \tan^2 \theta = \sec^2 \theta = \frac{1}{\cos^2 \theta}$ We know $\frac{1}{\cos^2 \theta} = 9x^2 - 6x + 1 + 1 = 9x^2 - 6x + 2$ ⇒ So $\cos^2 \theta = \frac{1}{9x^2 - 6x + 2} \implies \cos \theta = \frac{1}{\sqrt{9x^2 - 6x + 2}}$:. $\cos[\tan^{-1}(3x-1)] = \frac{1}{\sqrt{9r^2-6r+2}}$

(*iii*) Let
$$\sin^{-1}\left(x+\frac{1}{2}\right) = \theta$$
 $\Rightarrow x+\frac{1}{2} = \sin\theta$
 $\Rightarrow 2x+1 = 2\sin\theta$ $\Rightarrow \sin\theta = \frac{2x+1}{2}$
 $\cos\theta = \sqrt{1-\sin^2\theta} = \sqrt{1-\left(\frac{2x+1}{2}\right)^2}$
 $= \sqrt{1-\frac{\left(4x^2+4x+1\right)}{4}} = \frac{1}{2}\sqrt{3-4x-4x^2}$
Now $\tan(\theta) = \frac{\sin\theta}{\cos\theta} = \frac{\frac{2x+1}{2}}{\frac{1}{2}\sqrt{3-4x-4x^2}} = \frac{2x+1}{\sqrt{3-4x-4x^2}}$

Question 3.

Find the value of
(i)
$$\sin^{-1}\left(\cos\left(\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)\right)$$

(ii) $\cot\left(\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{4}{5}\right)$
(iii) $\tan\left(\sin^{-1}\frac{3}{5} + \cot^{-1}\frac{3}{2}\right)$
Solution:
(i) $\sin^{-1}\frac{\sqrt{3}}{2} = \frac{\pi}{3}$ and $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$ and
so $\sin^{-1}\left[\cos\left\{\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)\right\}\right] = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$
(ii) Let $\sin^{-1}\frac{4}{5} = \theta$
 $\Rightarrow \qquad \sin\theta = \frac{4}{5}$
 $\Rightarrow \qquad \cos\theta = \frac{3}{5} \qquad \Rightarrow \qquad \theta = \cos^{-1}\frac{3}{5}$
 $\therefore \qquad \cot\left[\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{4}{5}\right] = \cot\left[\sin^{-1}\frac{3}{5} + \cos^{-1}\frac{3}{5}\right] = \cot\left(\frac{\pi}{2}\right) = 0$

(*iii*) Let
$$\sin^{-1}\frac{3}{5} = \theta$$

$$\Rightarrow \qquad \sin \theta = \frac{3}{5}$$
$$\Rightarrow \qquad \tan \theta = \frac{3}{4}$$
so
$$\theta = \tan^{-1} \frac{3}{4}$$

so

$$\theta = \tan^{-1} \frac{3}{4}$$
Now let $\cot^{-1} \frac{3}{2} = \theta \implies \cot \theta = \frac{3}{2}$

$$\Rightarrow \qquad \tan \theta = \frac{2}{3} \implies \theta = \tan^{-1} \frac{2}{3}$$
Now $\sin^{-1} \frac{3}{5} + \cot^{-1} \frac{3}{2} = \tan^{-1} \frac{3}{4} + \tan^{-1} \frac{2}{3} = \tan^{-1} \left(\frac{\frac{3}{4} + \frac{2}{3}}{1 - \frac{3}{4} \times \frac{2}{3}}\right)$

$$= \tan^{-1} \left(\frac{\frac{9+8}{12}}{1 - \frac{6}{12}}\right) = \tan^{-1} \left(\frac{17}{6}\right)$$
so $\tan \left[\tan^{-1} \left(\frac{17}{6}\right)\right] = \frac{17}{6}$

Question 4.

Prove that

(i)
$$\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24} = \tan^{-1} \frac{1}{2}$$

(ii) $\sin^{-1} \frac{3}{5} - \cos^{-1} \frac{12}{13} = \sin^{-1} \frac{16}{65}$

(i)
$$\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\left[\frac{\left(\frac{2}{11}\right) + \left(\frac{7}{24}\right)}{1 - \frac{2}{11} \times \frac{7}{24}}\right] = \tan^{-1}\left[\frac{\frac{48 + 77}{11 \times 24}}{1 - \frac{14}{11 \times 24}}\right]$$
$$= \tan^{-1}\left[\frac{\frac{125}{264}}{\frac{250}{264}}\right] = \tan^{-1}\left(\frac{125}{250}\right) = \tan^{-1}\left(\frac{1}{2}\right)$$

(*ii*) Let
$$\cos^{-1}\frac{12}{13} = \theta \implies \cos\theta = \frac{12}{13}$$

so $\sin\theta = \sqrt{1 - \cos^2\theta} = \sqrt{1 - \frac{144}{144}} = \sqrt{\frac{25}{1444}} = \frac{5}{1444}$

so
$$\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{1}{169}} = \sqrt{\frac{1}{169}} = \frac{1}{13}$$

$$\Rightarrow \qquad \theta = \sin^{-1} \frac{5}{13}$$

Now to find
$$\sin^{-1}\frac{3}{5} - \sin^{-1}\frac{5}{13}$$

We know
$$\sin^{-1} x - \sin^{-1} y = \sin^{-1} \left[x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right]$$

LHS: $\sin^{-1} \frac{3}{5} - \sin^{-1} \frac{5}{13} = \sin^{-1} \left[\frac{3}{5} \sqrt{1 - \frac{25}{169}} - \frac{5}{13} \sqrt{1 - \frac{9}{25}} \right] = \sin^{-1} \left[\frac{3}{5} \times \frac{12}{13} - \frac{5}{13} \times \frac{4}{5} \right]$
 $= \sin^{-1} \left(\frac{36}{65} - \frac{20}{65} \right) = \sin^{-1} \frac{16}{65} = \text{RHS}.$

Question 5.

Prove that $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1} \left[\frac{x+y+z-xyz}{1-xy-yz-zx} \right]$

Solution:

$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right) = \tan^{-1} (A)$$

Here $A = \frac{x+y}{1-xy}$

So LHS: $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1} (A) + \tan^{-1} z$

$$\tan^{-1}\left(\frac{A+z}{1-Az}\right) = \tan^{-1}\left[\frac{\frac{x+y}{1-xy}+z}{1-\frac{x+y}{1-xy}(z)}\right] = \tan^{-1}\left[\frac{\frac{x+y+z(1-xy)}{1-xy}}{\frac{1-xy-(x+y)z}{1-xy}}\right]$$
$$= \tan^{-1}\left(\frac{x+y+z-xyz}{1-xy-xz-yz}\right) = \text{RHS}$$

Question 6.

If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$, show that x + y + z = xyz. Solution:

Given $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$

$$\Rightarrow \tan^{-1}\left(\frac{x+y+z-xyz}{1-xy-yz-zx}\right) = \pi$$

$$\Rightarrow \qquad \frac{x+y+z-xyz}{1-xy-yz-zx} = \tan \pi = 0$$

$$\Rightarrow \qquad x+y+z-xyz = 0 \qquad \Rightarrow x+y+z=xyz$$

Question 7.

Prove that
$$an^{-1}x + an^{-1}rac{2x}{1-x^2} = an^{-1}rac{3x-x^3}{1-3x^2}, |x| < rac{1}{\sqrt{3}}$$

Solution:

LHS:
$$\tan^{-1} x + \tan^{-1} \frac{2x}{1-x^2} = \tan^{-1} \left[\frac{x + \frac{2x}{1-x^2}}{1-x\left(\frac{2x}{1-x^2}\right)} \right] = \tan^{-1} \left[\frac{\frac{x(1-x^2) + 2x}{1-x^2}}{1-\frac{x^2}{1-x^2}} \right]$$
$$= \tan^{-1} \left[\frac{\frac{x-x^3+2x}{1-x^2}}{\frac{1-x^2}{1-x^2}} \right] = \tan^{-1} \frac{3x-x^3}{1-3x^2}$$
$$= RHS$$

Question 8.

Simplify:
$$an^{-1} rac{x}{y} - an^{-1} rac{x-y}{x+y}$$

$$\tan^{-1}\frac{x}{y} - \tan^{-1}\frac{x-y}{x+y} = \tan^{-1}\left[\frac{\frac{x}{y} - \frac{x-y}{x+y}}{1 + \left(\frac{x}{y}\right)\left(\frac{x-y}{x+y}\right)}\right] = \tan^{-1}\left[\frac{\frac{x(x+y) - y(x-y)}{y(x+y)}}{1 + \frac{x(x-y)}{y(x+y)}}\right]$$

$$= \tan^{-1} \left[\frac{\frac{x^2 + xy - xy + y^2}{y(x+y)}}{\frac{y(x+y) + x(x-y)}{y(x+y)}} \right] = \tan^{-1} \left(\frac{x^2 + y^2}{xy + y^2 + x^2 - xy} \right)$$
$$= \tan^{-1} \left(\frac{x^2 + y^2}{x^2 + y^2} \right) = \tan^{-1} (1) = \frac{\pi}{4}$$

Question 9.

Find the value of

(i)
$$\sin^{-1} \frac{5}{x} + \sin^{-1} \frac{12}{x} = \frac{\pi}{2}$$

(ii) $2 \tan^{-1} x = \cos^{-1} \frac{1-a^2}{1+a^2} - \cos^{-1} \frac{1-b^2}{1+b^2}$, $a > 0, b > 0$
(iii) $2 \tan^{-1}(\cos x) = \tan^{-1}(2 \csc x)$
(iv) $\cot^{-1} x - \cot^{-1}(x+2) = \frac{\pi}{12}, x > 0$

Solution:

(i) Given $\sin^{-1}\frac{5}{x} + \sin^{-1}\frac{12}{x} = \frac{\pi}{2}$ $\Rightarrow \qquad \sin^{-1}\frac{5}{x} = \frac{\pi}{2} - \sin^{-1}\frac{12}{x} = \cos^{-1}\frac{12}{x} \qquad \left(\because \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}\right)$ so now $\sin^{-1}\frac{5}{x} = \cos^{-1}\frac{12}{x}$ Let $\sin^{-1}\frac{5}{x} = \theta$ $\Rightarrow \qquad \left| \text{Let } \cos^{-1}\frac{12}{x} = \theta$ $\Rightarrow \qquad \sin\theta = \frac{5}{x} \qquad \left| \text{Let } \cos^{-1}\frac{12}{x} = 0 \right|$ But we know $\sin^{2}\theta + \cos^{2}\theta = 1$ $\Rightarrow \qquad \left(\frac{5}{x}\right)^{2} + \left(\frac{12}{x}\right)^{2} = 1$ *i.e.* $\frac{25}{x^{2}} + \frac{144}{x^{2}} = 1$ $\Rightarrow x^{2} = 169$ a x = 13

(ii) Let
$$2 \tan^{-1} x = \cos^{-1} \frac{1-a^2}{1+a^2} - \cos^{-1} \frac{1-b^2}{1+b^2}$$

Put $a = \tan \theta_1 \implies \theta_1 = \tan^{-1} a$
Now $\frac{1-a^2}{1+a^2} = \frac{1-\tan^2 \theta_1}{1+\tan^2 \theta_1} = \cos 2\theta_1$
Similarly, put $b = \tan \theta_2 \implies \theta_2 = \tan^{-1} b$
Now $\frac{1-b^2}{1+b^2} = \cos 2\theta_1$
so $\cos^{-1} \left(\frac{1-a^2}{1+a^2}\right) = \cos^{-1} (\cos 2\theta_1) = 2\theta_1 = 2 \tan^{-1} a$
and $\cos^{-1} \left(\frac{1-b^2}{1+b^2}\right) = \cos^{-1} (\cos 2\theta_2) = 2\theta_2 = 2 \tan^{-1} b$
Now $2 \tan^{-1} x = 2 \tan^{-1} a - 2 \tan^{-1} b$
 $i.e. \tan^{-1} x = \tan^{-1} a - \tan^{-1} b$
 $i.e. \tan^{-1} x = \tan^{-1} \left(\frac{a-b}{1+ab}\right) \implies x = \frac{a-b}{1+ab}$
(iii) $2 \tan^{-1} (\cos x) = \tan^{-1} (2 \csc x)$

(11)
$$2 \tan^{-1}(\cos x) = \tan^{-1}(2 \operatorname{cosec} x)$$
$$\operatorname{LHS} = 2 \tan^{-1}(\cos x) = \tan^{-1}(\cos x) + \tan^{-1}(\cos x)$$
$$= \tan^{-1}\left(\frac{\cos x + \cos x}{1 - \cos^2 x}\right) = \tan^{-1}\left(\frac{2\cos x}{\sin^2 x}\right)$$

RHS =
$$\tan^{-1}(2 \operatorname{cosec} x)$$

Now LHS = RHS
 $\tan^{-1}\left(\frac{2\cos x}{\sin^2 x}\right) = \tan^{-1}(2 \operatorname{cosec} x)$
 $\frac{2\cos x}{\sin^2 x} = 2 \operatorname{cosec} x = \frac{2}{\sin x}$
 $2 \cot x = 2$
 $\cot x = 1 \implies x = \frac{\pi}{4}$

⇒

⇒

⇒

$$(iv) \quad \tan^{-1} \frac{1}{x} - \tan^{-1} \frac{1}{x+2} = \frac{\pi}{12}$$

$$= \tan^{-1} \left[\frac{\frac{1}{x} - \frac{1}{x+2}}{1 + (\frac{1}{x})(\frac{1}{x+2})} \right] = \tan^{-1} \left[\frac{\frac{x+2-x}{x(x+2)}}{\frac{x(x+2)+1}{x(x+2)}} \right]$$

$$= \tan^{-1} \frac{2}{x^2 + 2x + 1} = \frac{\pi}{12}$$

$$\Rightarrow \quad \frac{2}{x^2 + 2x + 1} = \tan \frac{\pi}{12} = \tan 15^\circ = \tan (45^\circ - 30^\circ)$$

$$= \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ} = \frac{1 - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}}$$

$$\Rightarrow \quad \frac{2}{x^2 + 2x + 1} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{3 - 1}{(\sqrt{3} + 1)^2}$$

$$\Rightarrow \quad \frac{2}{x^2 + 2x + 1} = \frac{2}{(\sqrt{3} + 1)^2}$$

$$\Rightarrow \quad (x+1)^2 = (\sqrt{3} + 1)^2 \Rightarrow x = \sqrt{3}$$

Question 10.

Find the number of solution of the equation $\tan^{-1}(x - 1) + \tan^{-1} x + \tan^{-1} (x + 1) = \tan^{-1}(3x)$.

Solution:

 $\tan^{-1}(x-1) + \tan^{-1}x + \tan^{-1}(x+1) = \tan^{-1}(3x)$ $\tan^{-1}(x-1) + \tan^{-1}(x+1) = \tan^{-1}3x - \tan^{-1}x$ LHS: $\tan^{-1}\frac{(x-1) + (x+1)}{1 - (x-1)(x+1)} = \tan^{-1}\frac{2x}{1 - (x^2 - 1)} = \tan^{-1}\frac{2x}{2 - x^2} \quad \dots \dots \quad (1)$ RHS: $\tan^{-1}3x - \tan^{-1}x = \tan^{-1}\frac{3x - x}{1 - (x^2 - 1)} = \tan^{-1}\frac{2x}{2 - x^2} \quad \dots \dots \quad (1)$

RHS:
$$\tan^{-1} 3x - \tan^{-1} x = \tan^{-1} \frac{3x - x}{1 + (3x)(x)} = \tan^{-1} \frac{2x}{1 + 3x^2}$$
(2)

LHS = RHS

$$\Rightarrow \tan^{-1} \frac{2x}{2-x^2} = \tan^{-1} \frac{2x}{1+3x^2}$$
$$\Rightarrow \frac{2x}{2-x^2} = \frac{2x}{1+3x^2}$$
$$\Rightarrow 2 - x^2 = 1 + 3x^2$$
$$\Rightarrow 4x^2 = 1$$
$$\Rightarrow x^2 = \frac{1}{4}$$
$$\Rightarrow x = \pm \frac{1}{2}$$

So, the equation has 2 solutions.

Ex 4.6

Choose the correct or the most suitable answer from the given four alternatives. Question 1.

The value of sin⁻¹(cos x), $0 \le x \le \pi$ is

(a)
$$\pi - x$$

(b) $x - \frac{\pi}{2}$
(c) $\frac{\pi}{2} - x$

(d) π – x

Solution:

 $(c)\frac{\pi}{2} - x$ Hint:

We know
$$\cos x = \sin\left(\frac{\pi}{2} - x\right)$$

So $\sin^{-1}(\cos x) = \sin^{-1}\left[\sin\left(\frac{\pi}{2} - x\right)\right] = \frac{\pi}{2} - x$

Question 2.

If
$$\sin^{-1} + \sin^{-1} y = \frac{2\pi}{3}$$
; then $\cos^{-1}x + \cos^{-1}y$ is equal to
(a) $\frac{2\pi}{3}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{6}$
(d) π
Solution:
(b) $\frac{\pi}{3}$
Hint:

We know $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$ and $\sin^{-1} y + \cos^{-1} y = \frac{\pi}{2}$

Adding them so $(\sin^{-1} x + \sin^{-1} y) + (\cos^{-1} x + \cos^{-1} y) = \pi$

i.e.
$$\frac{2\pi}{3} + (\cos^{-1}x + \cos^{-1}y) = \pi$$

$$\Rightarrow \qquad \cos^{-1} x + \cos^{-1} y = \pi - \frac{2\pi}{3} = \frac{\pi}{3}$$

Question 3.

 $\sin^{-1}\frac{3}{5} - \cos^{-1}\frac{12}{13} + \sec^{-1}\frac{5}{3} - \csc^{-1}\frac{13}{12} =$ (a) 2π (b) π (c) 0(d) $\tan^{-1}\frac{12}{65}$ Solution: (c) 0Hint: We know $\sin^{-1}\frac{3}{5} + \cos^{-1}\frac{3}{5} = \frac{\pi}{2}$ and $\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{12}{13} = \frac{\pi}{2}$ so $\frac{\pi}{2} - \frac{\pi}{2} = 0$

Question 4.

If $\sin^{-1}x = 2 \sin^{-1} \alpha$ has a solution, then

(a)
$$|\alpha| \le \frac{1}{\sqrt{2}}$$
 (b) $|\alpha| \ge \frac{1}{\sqrt{2}}$ (c) $|\alpha| < \frac{1}{\sqrt{2}}$ (d) $|\alpha| > \frac{1}{\sqrt{2}}$

Solution:

(a) $|\alpha| \leq \frac{1}{\sqrt{2}}$

Hint:

$$\sin^{-1} x = 2 \sin^{-1} \alpha$$
Range of $\sin^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
i.e. $-\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$
 $\Rightarrow \qquad -\frac{\pi}{2} \le 2\sin^{-1} \alpha \le \frac{\pi}{2} \qquad \Rightarrow -\frac{\pi}{4} \le \sin^{-1} \alpha \le \frac{\pi}{4}$

$$\sin^{-1}\left(-\frac{\pi}{4}\right) \le \alpha \le \sin\left(\frac{\pi}{4}\right) \qquad \implies -\frac{1}{\sqrt{2}} \le \alpha \le \frac{1}{\sqrt{2}}$$
$$|\alpha| = \frac{1}{\sqrt{2}}$$

Question 5.

⇒

⇒

 $\sin^{-1} (\cos x) = \frac{\pi}{2} - x \text{ is valid for}$ (a) $-\pi \le x \le 0$ (b) $0 \le x \le \pi$ (c) $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ (d) $-\frac{\pi}{4} \le x \le \frac{3\pi}{4}$ Solution:
(b) $0 \le x \le \pi$

Question 6.

If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$, the value of $x^{2017} + y^{2018} + z^{2019} - \frac{9}{x^{101} + y^{101} + z^{101}}$ is (a) 0 (b) 1 (c) 2 (d) 3 Solution: (a) 0 Hint: The maximum value of $\sin^{-1} x$ is $\frac{\pi}{2}$ and $\sin^{-1} 1 = \frac{\pi}{2}$ Here it is given that $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$ $\Rightarrow x = y = z = 1$ and so $1 + 1 + 1 - \frac{9}{1 + 1 + 1} = 3 - 3 = 0$

Question 7.

If
$$\cot^{-1} x = \frac{2\pi}{5}$$
 for some $x \in \mathbb{R}$, the value of $\tan^{-1} x$ is
(a) $-\frac{\pi}{10}$
(b) $\frac{\pi}{5}$
(c) $\frac{\pi}{10}$
(d) $-\frac{\pi}{5}$
Solution:
(c) $\frac{\pi}{10}$
Hint:
Given $\cot^{-1} x = \frac{2\pi}{5} \implies x = \cot \frac{2\pi}{5}$
We know $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$
so $\tan^{-1} x = \frac{\pi}{2} - \frac{2\pi}{5} = \frac{\pi}{10}$
Question 8.

The domain of the function defined by $f(x) = \sin^{-1} \sqrt{x-1}$ is

- (a) [1, 2] (b) [-1, 1] (c) [0, 1] (d) [-1, 0] Solution: (a) [1, 2] Hint: The domain for $\sin^{-1} x$ is [0, 1] So $\sqrt{x - 1} = 0 \Rightarrow x - 1 = 0 \Rightarrow x = 1$ $\sqrt{x - 1} = 1 \Rightarrow x - 1 = 0 \Rightarrow x = 2$
 - : The domain is [1, 2]

Question 9.

If $x = \frac{1}{5}$, the value of $\cos(\cos^{-1} x + 2 \sin^{-1} x)$ is

(a)
$$-\sqrt{\frac{24}{25}}$$
 (b) $\sqrt{\frac{24}{25}}$ (c) $\frac{1}{5}$ (d) $-\frac{1}{5}$
Solution:
(d) $-\frac{1}{5}$
Hint:
Now $\cos\left[\cos^{-1}\frac{1}{5}+2\sin^{-1}\frac{1}{5}\right] = \cos\left[\cos^{-1}\frac{1}{5}+\sin^{-1}\frac{1}{5}+\sin^{-1}\frac{1}{5}\right]$
 $= \cos\left[\frac{\pi}{2}+\sin^{-1}\frac{1}{5}\right] = \cos\left[\frac{\pi}{2}+\frac{\pi}{2}-\cos^{-1}\frac{1}{5}\right]$
 $= \cos\left[\frac{\pi}{2}-\cos^{-1}\frac{1}{5}\right] = \cos\left[\frac{\pi}{2}+\frac{\pi}{2}-\cos^{-1}\frac{1}{5}\right]$

 $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$ is equal to

(a)
$$\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$$
 (b) $\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$ (c) $\frac{1}{2}\tan^{-1}\left(\frac{3}{5}\right)$ (d) $\tan^{-1}\left(\frac{1}{2}\right)$

Solution:

(d) $tan^{-1}\frac{1}{2}$

Hint:

$$\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \tan^{-1}\left(\frac{\frac{1}{4} + \frac{2}{9}}{1 - \frac{1}{4} \times \frac{2}{9}}\right) = \tan^{-1}\left(\frac{\frac{9+8}{36}}{1 - \frac{2}{36}}\right)$$
$$= \tan^{-1}\left(\frac{17}{34}\right) = \tan^{-1}\left(\frac{1}{2}\right)$$

Question 11.

If the function $f(x) = \sin^{-1}(x^2 - 3)$, then x belongs to

- (a) [1, -1]
- (b) $[\sqrt{2}, 2]$
- (c) $[-2,-\sqrt{2}]\cup [\sqrt{2},2]$
- (d) $[-2,-\sqrt{2}]\cap [\sqrt{2},2]$

Solution:

(c)
$$[-2, -\sqrt{2}] \cup [\sqrt{2}, 2]$$

Hint:
f(x) = sin⁻¹(x² - 3)
Domain of sin⁻¹ (x) is [-1, 1]
 $\Rightarrow -1 \le x^2 - 3 \le 1 \Rightarrow 2 \le x^2 \le 4$
 $\Rightarrow \sqrt{2} \le x \le 2 \Rightarrow \sqrt{2} \le |x| \le 2$
 $x \in [-2, -\sqrt{2}] \cup [\sqrt{2}, 2]$

Question 12.

If cot⁻¹ 2 and cot⁻¹ 3 are two angles of a triangle, then the third angle is

(a) $\frac{\pi}{4}$ (b) $\frac{3\pi}{4}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{3}$ Solution: (b) $\frac{3\pi}{4}$ Hint: Let $\cot^{-1} 2 = \theta_1$ $\Rightarrow \cot \theta_1 = 2 \operatorname{so}$ $\tan \theta_1 = \frac{1}{2}$ Let $\cot^{-1} 3 = \theta_2$ $\Rightarrow \cot \theta_2 = 3 \operatorname{so}$ $\tan \theta_2 = \frac{1}{3}$

Let
$$\cot \cdot 3 = \theta_2$$
 $\Rightarrow \cot \theta_2 = 350$ $\tan \theta_2$

$$\tan(\theta_1 + \theta_2) = \frac{\tan \theta_1 + \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2} = \frac{2}{1 - \frac{1}{2} \times \frac{1}{3}}$$

$$\Rightarrow \qquad \tan(\theta_1 + \theta_2) = \frac{\frac{3+2}{6}}{1-\frac{1}{6}} = \frac{\frac{5}{6}}{\frac{5}{6}} = 1 \qquad \Rightarrow \theta_1 + \theta_2 = \frac{\pi}{4}$$

Let θ_3 be the third angle

Question 13.

 $\sin^{-1}\left(\tan\frac{\pi}{4}\right) - \sin^{-1}\left(\sqrt{\frac{3}{x}}\right) = \frac{\pi}{6}.$ Then x is a root of the equation (a) $x^2 - x - 6 = 0$ (b) $x^2 - x - 12 = 0$ (c) $x^2 + x - 12 = 0$ (d) $x^2 + x - 6 = 0$ Solution: (b) $x^2 - x - 12 = 0$ Hint:

$$\sin^{-1}(1) - \sin^{-1}\left(\frac{\sqrt{3}}{\sqrt{x}}\right) = \frac{\pi}{6}$$

$$\Rightarrow \qquad \frac{\pi}{2} - \sin^{-1}\frac{\sqrt{3}}{\sqrt{x}} = \frac{\pi}{6} \qquad \Rightarrow \sin^{-1}\frac{\sqrt{3}}{\sqrt{x}} = \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3}$$

$$\Rightarrow \qquad \frac{\sqrt{3}}{\sqrt{x}} = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2} \qquad \Rightarrow \sqrt{x} = \frac{2\sqrt{3}}{\sqrt{3}} = 2 \qquad \Rightarrow x = 4$$

Question 14.

$$\sin^{-1}(2\cos^2 x - 1) + \cos^{-1}(1 - 2\sin^2 x) = \dots$$
(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{6}$

Solution:

(a) $\frac{\pi}{2}$ Hint: 2 $\cos 2x - 1 = \cos 2x$ 1 - 2 $\sin 2x = \cos 2x$ $\therefore \sin^{-1} x(\cos 2x) + \cos^{-1}(\cos 2x) = \frac{\pi}{2} (\because \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2})$

Question 15.

If $\cot -1(\sin\alpha - - - \sqrt{}) + \tan -1(\sin\alpha - - - \sqrt{}) = u$, then $\cos 2u$ is equal to (a) $\tan^2 \alpha$ (b) 0 (c) -1 (d) $\tan 2\alpha$ Solution: (c) -1 Hint: $\cot^{-1} x + \tan^{-1} x = \frac{\pi}{2} \Rightarrow u = \frac{\pi}{2}$ so $2u = \pi$ $\therefore \cos 2u = \cos \pi = -1$

Question 16.

If $|\mathbf{x}| \leq 1$, then $2\tan^{-1} \mathbf{x} - \sin^{-1} \frac{2x}{1+x^2}$ is equal to (a) $\tan^{-1} \mathbf{x}$ (b) $\sin^{-1} \mathbf{x}$ (c) 0 (d) π Solution: (c) 0 Hint: Let $\mathbf{x} = \tan \theta$ so $\frac{2x}{1+x^2} = \sin 2\theta$. Now $2 \tan^{-1}(\tan \theta) - \sin^{-1}(\sin 2\theta) = 2\theta - 2\theta = 0$

Question 17.

The equation $\tan^{-1} x - \cot^{-1} x = \tan^{-1} \left(\frac{1}{\sqrt{3}}\right)$ has

(a) no solution
(b) unique solution
(c) two solutions
(d) infinite number of solutions
Solution:
(b) unique solution
Hint:

$$\tan^{-1} x - \cot^{-1} x = \tan^{-1} \frac{1}{\sqrt{3}}$$

$$\Rightarrow \quad \tan^{-1} x - \left(\frac{\pi}{2} - \tan^{-1} x\right) = \frac{\pi}{6},$$

$$\tan^{-1} x + \tan^{-1} x = \frac{\pi}{2} + \frac{\pi}{6}$$

$$2 \tan^{-1} x = \frac{2\pi}{3} \qquad \Rightarrow x = \tan \frac{\pi}{3} = \sqrt{3}$$

 \Rightarrow It has a unique Solution

Question 18.

If sin⁻¹ x + cot⁻¹ $\left(\frac{1}{2}\right) = \frac{\pi}{2}$, then x is equal to

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{\sqrt{5}}$ (c) $\frac{2}{\sqrt{5}}$ (d) $\frac{\sqrt{3}}{2}$

(b) $\frac{1}{\sqrt{5}}$ Hint: $\sin^{-1} x + \cot^{-1} \left(\frac{1}{2}\right) = \frac{\pi}{2}$ $\Rightarrow \qquad \sin^{-1} x = \frac{\pi}{2} - \cot^{-1} \frac{1}{2} = \tan^{-1} \frac{1}{2}$ $\sin^{-1} x = \sin^{-1} \left(\frac{\frac{1}{2}}{\sqrt{1 + \left(\frac{1}{2}\right)^2}}\right)$ $\Rightarrow \qquad \sin^{-1} x = \sin^{-1} \left(\frac{\frac{1}{2}}{\frac{\sqrt{5}}{2}}\right) = \frac{1}{\sqrt{5}} \sin^{-1} \left(\frac{1}{\sqrt{5}}\right)$ $\Rightarrow \qquad x = \frac{1}{\sqrt{5}}$

Question 19.

If $\sin^{-1}\frac{x}{5} + \csc^{-1}\frac{5}{4} = \frac{\pi}{2}$, then the value of x is

- (a) 4
- (b) 5
- (c) 2

(d) 3

Solution:

(d) 3 Hint:

$$\sin^{-1}\frac{x}{5} + \csc^{-1}\frac{5}{4} = \frac{\pi}{2}$$

$$\Rightarrow \qquad \sin^{-1}\frac{x}{5} = \frac{\pi}{2} - \csc^{-1}\frac{5}{4} = \sec^{-1}\frac{5}{4}$$

$$\Rightarrow \qquad \sin^{-1}\frac{x}{5} = \sec^{-1}\frac{5}{4} = \cos^{-1}\frac{4}{5}$$

 $\sin^{-1}\frac{x}{5} = \theta$

Let

$$\Rightarrow \qquad \sin \theta = \frac{x}{5}$$

so
$$\cos \theta = \frac{\sqrt{25 - x^2}}{25 - x^2}$$

so
$$\cos \theta =$$

$$\Rightarrow \qquad \theta = \cos^{-1} \frac{\sqrt{25 - x^2}}{5} = \cos^{-1} \frac{4}{5} \text{ (given)}$$
$$\Rightarrow \qquad \frac{\sqrt{25 - x^2}}{5} = \frac{4}{5} \qquad \Rightarrow \sqrt{25 - x^2} = 4$$

5

$$25 - x^2 = 16$$

$$\Rightarrow \sqrt{25 - x^2} = 4$$
$$\Rightarrow x^2 = 9 \Rightarrow x = 3$$

Question 20.

⇒

 $sin(tan^{-1})$, |x| < 1 is equal to

(a)
$$\frac{x}{\sqrt{1-x^2}}$$
 (b) $\frac{1}{\sqrt{1-x^2}}$ (c) $\frac{1}{\sqrt{1+x^2}}$ (d) $\frac{x}{\sqrt{1+x^2}}$

Solution:

(d)
$$\frac{x}{\sqrt{1+x^2}}$$

Hint:

$$\sin(\tan^{-1} x) = \sin\left(\sin^{-1} \frac{x}{\sqrt{1+x^2}}\right) = \frac{x}{\sqrt{1+x^2}}$$
$$= \frac{x}{\sqrt{1+x^2}}$$

