Coordination Chemistry #### **Addition compound** (two or more simple salt combining with fixed proportion of mass) #### **Double salt** * Loose their identity in aqueous solution eg. KCl.MgCl₂.6H₂O carnalite salt K₂SO₄Al₂(SO₄)₃.24H₂O potash alum ## Co-ordination compound * Retain their indentity in aqueous solution eg. K₄[Fe(CN)₆] Potassium hexacyanidoferrate (II) # REPRESENTATION OF COMPLEX COMPOUND Co-ordination number = Number of electron pair accepted by central metal ion. #### LIGAND Chemical species which can donates electron pair. # Classification on the Basis of Denticity (Denticity: –Number of electron pair donated by central metal atom or ion) **Monodentate** (denticity = 1): eg. H, X, Py, N₂, N³⁻, N₂H₄ etc. **Bidentate** (denticity = 2): eg. en, pn, bn, ox²⁻, acac⁻¹, gly⁻¹, dmg⁻¹ **Polydentate** (denticity = 2): eg. dien, trien, EDTA⁴ **Ambidentate**: Ligand which have more than one donor site but at the time of donation only atom can donate electron pair. eg.: (CN⁻, NC⁻), (NO₂⁻, ONO⁻), (SCN⁻, NCS⁻), (OCN⁻, NCO⁻), (S₂O₃²⁻, SO₂S²⁻) Flexidentate ligand: Show more than one type of denticity. eg.: CO₃²⁻, SO₄²⁻, CH₃COO⁻ Bidentate and Polydentate are also called chelating ligand. Classification on the basis of electron donating and accepting tendency Classical ligand: H₂O, NH₃ etc. Non-classical ligand: CN⁻, NO⁺, NO, CO, PPh₃ π – donor ligand \Rightarrow C₂H₄, C₂H₂ etc. # **BONDING IN COORDINATION COMPOUND** ## Effective atomic number & Sidgwick rule Total number of electron present on central metal atom or ion after accepting the electron pair from ligand. $$K_4[Fe(CN)_6]$$ EAN = 26 - (+2) + 6(2) = 36 - If EAN value is equal to atomic number of Noble gas then complex follow sidgwick rule of EAN. - In carbonyl complex, if EAN value = Atomic number of Noble gas then carbonyl complex is more stable. | | eg. $[V(CO)_6]$ | $[Cr(CO)_6]$ | $[Mn(CO)_6]$ | |---|----------------------|--------------|-----------------| | | act as oxidising | stable | act as reducing | | | agent | complex | agent | | • | Brown ring complex | 37 | | | | Sodium nitroprusside | 36 | | | | Zeise's Salt | 84 | | | | $Mn_2(CO)_{10}$ | 36 | | | | $Fe_2(CO)_9$ | 36 | | | | $Co_2(CO)_8$ | 36 | | | | | | | #### WERNER'S CO-ORDINATION THEORY - Metals possesses two types of valencies PV & SV. - PV is non-directional, represent by (doted line) is satisfied by negative charge species. - SV is directional, represent by _____ (solid line) and satisfied by negative or neutral species. - Now a days primary valency and secondary valency is consider as oxidation & co-ordination number respectively. ## **VBT** - Metal provoide hybridised vacant orbital for the acceptance of lone pair from ligand. - Hybridisation, shape and magnetic behaviour of complex depends upon the nature of ligand. - Strong field ligand pair up the unpaired e of central metal atom where as weak field ligand does not. - If unpaired e⁻ present in complex then complex is paramagnetic. If unpaired e⁻ is absent then diamagnetic. eg. $$CN = 4$$; $[NiCl_4]^{2-}$ ## **CRYSTAL FIELD THEORY** Crystal Field Theory: In the electric field of these negative charges, the five d-orbitals of the metal atom no longer have exactly same energy. Splitting of five degenerate d-orbitals of the metal ion into sets of orbitals having different energies is called crystal field splitting. Orbitals which have same energy in a subshell are known as degenerate orbitals. # Series which shows the Relative Strength of Ligands Γ (weakest) $< Br^{-} < SCN^{-} < Cl^{-} < S^{2-} < F^{-} < OH^{-} < C_{2}O_{4}^{2-} < H_{2}O < NCS^{-} < C_{2}O_{4}^{2-} < H_{2}O < NCS^{-} < C_{2}O_{4}^{2-} < H_{2}O < NCS^{-} < C_{2}O_{4}^{2-} C_{2}O_{4$ $edta^{4} < NH_3 < en < CN^{-} < CO(strongest)$ # **Crystal Field Stabilisation Energy (CFSE)** (i) For octahedral CFSE = $[-0.4(n_{t_{2}}) + 0.6(n_{eg})] \Delta_0 + \text{Paring energy (P.E.)} \times x$ $n_{t_{2g}}$ = number of electron in t_{2g} orbitals n_{eg} = number of electron in eg orbitals x = number of eletron pair (ii) For tetrahedral CFSE = $$[-0.6(n_e) + 0.4 (n_t) \Delta_t + Paring energy (P.E.) \times x]$$ n_{t_2} = number of electron in t_2 orbitals $n_e = number of electron in e orbitals$ x = number of electron pair Follow Hund's Pauli & Aufbau rule. #### CN-6 d²sp³, Octahedral low spin complex, inner complex, paramagnetic orbital # **Exception** | $\left[\operatorname{Co}(\operatorname{OX})_3\right]^{3-}$ | d^2sp^3 | diamagnetic | |---|-----------|--------------| | $[Co(H_2O)_6]^{3+}$ | d^2sp^3 | diamagnetic | | $[NiF_6]^{2-}$ | d^2sp^3 | diamagnetic | | $[Cr(NH_3)_6]^{2+}$ | sp^3d^2 | paramagnetic | | $[Mn(NH_3)_6]^{2+}$ | sp^3d^2 | paramagnetic | | $[Fe(NH_3)_6]^{2+}$ | sp^3d^2 | paramagnetic | | $\left[\text{CoL}_{6}\right]^{4-}\left(\text{L}=\text{NO}_{2}^{-}/\text{CN}^{-}\right)$ | d^2sp^3 | paramagnetic | [Ni(CN)₄]²⁻ 1 11 dsp², Sq. planar inner orbital complex, 1 paramagnetic low spin complex ## CN-4 paramagnetic low spin complex, ## **Exception** • d³s hybridisation, Td, diamagnetic, inner orbital complex eg. $$MnO_{4}^{-}, CrO_{4}^{2-}, Cr_{2}O_{7}^{2-}, CrO_{2}Cl_{2}, CrO_{2}F_{2}, VO_{4}^{3-}$$ Transference of electron eg. Cu⁺² in CN-4 with L (where L = NO₂⁻/CN⁻/NH₃ etc.) # Factor affecting splitting - (i) Strength of ligand - (ii) Oxidation state of central metal ion - (iii) Transition series (d-series) - (iv) Geometry (number of ligands) - (v) Chelation # Colour of complexes Colour d-d transition - → d¹-d⁹ complex can show colour. - → Complementry colour of absorb colour is observe. - eg.: $[Ti(H_2O_6)]^{3+}$, $[Ni_1(H_2O)_6]^{2+}$ $[Cu(NH)_4]^{2+}$ Charge transfer - → Metal-metal charge transfers or metal ligand charge transfers - → MnO₄⁻, brown ring complex sodium nitroprusside purssian blue, turnbull's blue # **ORGANOMETALLIC COMPOUNDS** Compounds in which the less E.N. (Ge, Sb, B, Si, P, As) central metal atoms are bonded directly to carbon atoms are called organometallic compounds. - σ-bonded compounds formed by nontransition elements. R-Mg-X, (CH₃-CH₂)₂ Zn, Ziegler natta catalyst, etc. - π-bonded organometallic compounds are generally formed by transition elements e.g. Zeise's salt, ferrocene, dibenzene chromium, etc. - σ-and π-bonded organometallic compounds: Metal carbonyls compounds formed between metal and carbon monoxide belong to this class. Ni(CO)₄, Fe(CO)₅ etc. # **IUPAC** nomenclature of complex compounds • For anionic complex (like K₄[Fe(CN)₆]) Common name of normal cation (without numeral prefix) + name of ligands (with numeral prefix) + latin name of CMI along with suffix ate + oxidation state (in roman number). eg.: Potassium hexacyanoferrate (II) For cationic complex like [Cu(NH₃)₄]SO₄ Name of ligands (with numeral prefix) + Common name of CMI + oxidation state (In roman number) + Name of anion (without numeral prefix) eg.: Tetraammine copper (II) sulphate. For neutral complex (like [Fe(CO)₅]) Name of ligands (with numeral prefix) + Common name of CMI + oxidation state (In roman number) eg.: Pentacarbonyl iron (O) • Rule same just apply alphabetical order when write the name of ligands e.g. [Pt(NH₃)₂Cl₂] Diamminedichloroplatinum (II) ## STRUCTURAL ISOMERISM • Ionisation isomerism: Counter ion as a ligand & ligand act as counter ion. $[\text{Co}(\text{H}_2\text{O})_5\text{Cl}]\text{SO}_4 \rightarrow [\text{Co}(\text{H}_2\text{O})_5\text{SO}_4]\text{Cl}$ • Hydrate isomersim: Number of water molecule inside & outside the co-ordinate sphere are different. $[Cr(H_2O)_6]Cl_3 \leftrightarrow [Cr(H_2O)_5Cl]Cl_2.H_2O \leftrightarrow [Cr(H_2O)_4Cl_2]Cl.2H_2O$ • Linkage: Exihibit when ambidentate ligand is present in co-ordination sphere. $[NC \to Ag \leftarrow CN]^{-} \leftrightarrow [NC \to Ag \leftarrow NC]^{-} \leftrightarrow [CN \to Ag \leftarrow NC]^{-}$ • Co-ordination isomerism: Exihibit when both are cationic & anionic complex $[Pt(NH_3)_4][PtCl_4] \leftrightarrow [Pt(NH_3)_3Cl][Pt(NH_3)Cl_3]$ #### **STEREO ISOMERISM** # Stereo Isomerism in Co-ordination Compound #### CN-4 - Square planar complex does not show optical isomerism. - Square planar complex show optical activity if the cooridinated ligand having chiral center. - Square planar complex [Ma₂b₂]^{n±}, [Ma₂bc]^{n±}, [Mabcd]^{n±}, [M(AB)cd]^{n±} [M(AB)(CD)]^{n±} show geometrical isomerism - [Mabcd]^{n±} form two cis and one trans. - Tetrahedral com plex [Mabcd]^{n±}, [M(AB)cd]^{n±} [M(AB)(CD)] n± show optical isomerism - Tetrahdral complex does not show geometrical isomerism. | CN-6
Number of Possible Isomers for Specific Complexes | | | | | | | |---|-------------------------|-------------------------|----------------|--|--|--| | Formula | Number of stereoisomers | Pairs of
Enantiomers | Number of G.I. | | | | | Ma_4b_2 | 2 | 0 | 2 | | | | | Ma_3b_3 | 2 | 0 | 2 | | | | | Ma ₄ bc | 2 | 0 | 2 | | | | | Ma_3b_2c | 3 | 0 | 3 | | | | | Ma ₃ bcd | 5 | 1 | 4 | | | | | $Ma_2b_2c_2$ | 6 | 1 | 5 | | | | | Ma ₂ b ₂ cd | 8 | 2 | 6 | | | | | Ma ₂ bcde | 15 | 6 | 9 | | | | | Mabcdef | 30 | 15 | 15 | | | | | M(AA)(BC)de | 10 | 5 | 5 | | | | | M(AB)(AB)cd | 11 | 5 | 6 | | | | | M(AB)(CD)ef | 20 | 10 | 10 | | | | | $M(AB)_3$ | 4 | 2 | 2 | | | | Uppercase letter represent chelating ligands and lowercase letter represent monodentate ligands.