

DPP No. 9

Total Marks: 32

Max. Time: 36 min.

Topic: Chemical Bonding

Type of Questions

Single choice Objective ('-1' negative marking) Q.1 to Q.4

Match the Following (no negative marking) Q.5

Multiple choice objective ('-1' negative marking) Q.6

Subjective Questions ('-1' negative marking) Q.7 to Q.8

M.M., Min.

- [12, 12] (3 marks, 3 min.)
- [8, 10] (8 marks, 10 min.)
- (4 marks, 4 min.) [4, 4]
- (4 marks, 5 min.) [8, 10]
- 1. The correct representation of Lewis dot structure of HNO₃ is:

$$(A) \begin{array}{c} O \\ \parallel \\ H - N = O \\ \parallel \\ O \end{array}$$

- 2. Species not obeying octet rule is/are:
 - (A) CO_3^{2-}
- (B) BF.
- (C) NO_{2}^{-}
- (D) PCI

- 3. PCI₅ exists but NCI₅ does not, because :
 - (A) Nitrogen has no vacant 2d-orbitals
- (B) N and CI have almost same EN
- (C) N-atom is much smaller than P-atom
- (D) Nitrogen is highly inert
- The molecular without any lone pair around the centred atom is: 4.
 - (A) XeO₃
- (B) XeO₄
- (C) XeF₆
- (D) XeO₂F₂
- 5. Match the species in column (I) with their characteristics in column (II):

Column-I

(P) BH₄-

- Column-II
 - (1) 2 bond pair and 3 lone pair on central atom

(Q) ICI₂+

(2) 4 bond pair and no lone pair on central atom

(R) ICI₂-

(3) 3 bond pair and 1 lone pair on central atom

(S) ICI,-

- (4) 2 bond pair and 2 lone pair on central atom
- (5) 4 bond pair and 2 lone pair on central atom
- (A) P = 2: Q = 4: R = 3: S = 1
- (B) P = 2: Q = 4: R = 1: S = 5
- (C) P = 2; Q = 1; R = 5; S = 4
- (D) P = 2; Q = 1; R = 3; S = 4
- 6.* The odd electron molecules among the following is/are:
 - (A) NO₂
- (B) NO
- (C) CIO
- (D) CO

7. Assign formal charges to all atoms in the given species:

(c)
$$\begin{bmatrix} H \\ H - N - H \\ H \end{bmatrix}^{\dagger}$$
 (d)
$$\begin{bmatrix} \vdots \ddot{Q} - N = \ddot{Q} \\ \vdots & \vdots \\ Q : \end{bmatrix}^{-}$$

Explain on the basis of formal charge, which of the following is a more appropriate structure for C₃⁴⁻ ion : 8.

$$\left[\ddot{\mathbf{c}} \ddot{\mathbf{C}} = \mathbf{C} = \ddot{\mathbf{C}} \ddot{\mathbf{c}} \right]^{4-}$$

$$\left[\dot{\mathbf{x}} \mathbf{C} \equiv \mathbf{C} - \ddot{\mathbf{C}}_{\mathbf{x}}^{\mathbf{x}} \right]^{4}$$

Answer Key

DPP No. #9

1. (C)

2. (B)

3. (A)

4. (B)

5. (B)

6.* (A,B,C)

7. (a) All zero

(b) All have zero except single bonded oxygen (-1)

(c) All have zero except nitrogen (+1)

(d) Both single bonded O-atoms have (-1), N-atom has (+1) and double bonded O-atom has zero.

8. [¡¨C = C = C;] ⁴-

Hints & Solutions

DPP No. #9

- N-atom can't form hypervalent compound.
- 7. (a) All zero
 - (b) All have zero except single bonded oxygen (-1)
 - (c) All have zero except nitrogen (+1)
 - (d) Both single bonded O-atoms have (-1), N-atom has (+1) and double bonded O-atom has zero.
- 8. [ặĊ = C = Ċţ] ←