
18. ELECTRIC CHARGES, 
FORCES AND FIELDS

1. INTRODUCTION

You must have felt the attraction of hair of your hand when you bring it near to your Television screen. Did you ever 
think of cause behind it? These all are the electric charges and their properties. Now we will extend our concept to 
electric charges and their effects.

1.1 Nature of Electricity
The atomic structure shows that matter is electrical in nature i.e. matter contains particles of electricity viz. protons 
and electrons. Whether a given body shows electricity (i.e. charge) or not depends upon the relative number of 
these particles in the body.

(a)	 If the number of protons is equal to the number of electrons in a body, the resultant charge is zero and the 
body will be electrically neutral. For example, the paper of this book is electrically neutral (i.e. exhibits no 
charge) because it has the same number of protons and electrons.

(b)	 If from a neutral body, some *electrons are removed, the protons outnumber the electrons. Consequently, the body 
attains a positive charge. Hence, a positively charged body has deficit of electrons from the normal due share.

2. TYPES OF CHARGES

Depending upon whether electrons are removed or added to a body, there are two types of charges viz

(i) Positive charge 		  (ii) Negative charge

If a glass rod is rubbed with silk, some electrons pass from glass rod to silk. As a result, 
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the glass rod becomes positively charged and silk attains an equal negative charge as 
shown in Fig. 18.1. It is because silk gains as many electrons as lost by the glass rod. It 
can be shown experimentally that like charges repel each other while unlike charges 
attract each other. In other words, if the two charges are of the same nature (i.e., both 
positive or both negative), the force between them is of repulsion. On the other hand, if 
one charge is positive and the other is negative, the force between them is of attraction. 
The following points may be noted: 

(a)	 The charges are not created by the rubbing action. There is merely transfer of electrons from one body to 
another.

(b)	 Electrons are transferred from glass rod to silk due to rubbing because we have done external work. Thus law 
of conservation of energy holds.

(c)	 The mass of negatively charged silk will increase and that of glass rod will decrease. It is because silk has 
gained electrons while glass rod has lost electrons.

Figure 18.1
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3. PROPERTIES OF CHARGE

(a)	 Charge is a scalar quantity

(b)	 Charge is transferable

(c)	 Charge is conserved

(d)	 Charge is quantized

(e)	 Like point charges repel each other while unlike point charges attract each other.

(f)	 A charged body may attract a neutral body or an oppositely charged body but it always repels a similarly 
charged body

(g)	 Note: Repulsion is a sure test of electrification whereas attraction may not be.

(h)	 Charge is always associated with mass, i.e. charges cannot exist without mass though mass can exist without 
charge.

(i)	 Charge is relatively invariant: This means that charge is independent of frame of reference, i.e, charge on a 
body does not change whatever be its speed. This property is worth mentioning as in contrast to charge, the 
mass of a body depends on its speed and increases with increase in speed.

( j)	 A charge at rest produces only electric field around itself; a charge having uniform motion produces electric 
as well as magnetic field around itself while a charge having acceleration emits electromagnetic radiation also 
in addition to producing electric and magnetic fields.

4. ELECTROSTATICS

The branch of physics which deals with charges at rest is called electrostatics. When a glass rod is rubbed with 
silk and then separated, the former becomes positively charged and the latter attains equal negative charge. It is 
because during rubbing, some electrons are transferred from glass to silk. Since glass rod and silk are separated by 
an insulating medium (i.e. air), they retain the charges. In other words, the charges on them are static or stationary. 
Note that the word ‘electrostatic’ means charges at rest.

5. CONDUCTORS AND INSULATORS

In general, the substances are divided into the following two classes on the basis of their ability to conduct electric 
charges:

(a) Conductors: Those substances through which electric charges can flow easily are called conductors e.g., silver, 
copper, aluminum, mercury, etc. In a metallic conductor, there are a large number of free electrons which act as 
charge carries. However, in a liquid conductor, both positive and negative ions are the charge carries. When a 
positively charged body is brought close to or touches a neutral conductor (metallic), the free electrons (charge 
carriers) in the conductor move quickly towards this positive charge. On the other hand, if a negatively charged 
body is brought close to or touches a neutral conductor, the free electrons in the conductor move away from the 
negative charge that is brought close.

(b) Insulators: Those substances through which electric charges cannot flow are called insulators e.g., glass, rubber, 
mica etc. When such materials are charged by rubbing, only the area that is rubbed becomes charged and there is 
no tendency of the charge to move into other regions of the substance. It is because there are practically no free 
electrons in an insulator.

6. CHARGING OF A BODY

A body can be charged by means of (a) friction, (b) conduction, (c) induction, (d) thermionic ionization, (e) 
photoelectric effect and (f) field emission.
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(a) Charging by Friction: When a neutral body is 
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Figure 18.2

rubbed with another neutral body (at least one of 
them should be insulator) then some electrons are 
transferred from one body to another. The body which 
gains electrons becomes negatively charged and the 
other becomes positively charged. 

(b) Conduction (flow): There are two types of materials in nature.

(i)	 Conductor: Materials which have large number of 
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free electrons.

(ii)	 Insulator or Dielectric or Nonconductors: 
Materials which do not have free electrons.

When a charged conductor is connected with a 
neutral conductor, then charge flows from one body 
to another body. In case of two charged conductors, 
charge flows from higher potential to lower potential. 
The charge stops flowing when the potential of the two 
bodies become same.

Note: If two identical shaped conductors kept at large distance are connected to each other, then they will have 
equal charges finally.

(c) Induction: When a charged particle is taken near to a neutral
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Figure 18.4

object, then the electrons move to one side and there is excess of 
electrons on that side making it negatively charged and deficiency on 
the other side making that side positively charged. Hence charges 
appear on two sides of the body (although total charge of the body 
is still zero). This phenomenon is called induction and the charge 
produced by it is called induced charge.

A body can be charged by induction in following two ways.

Method-I: The potential of conductor A becomes zero after earthing.
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To make potential zero some electrons flow from the Earth to the 
conductor A and now connection is removed making it negatively 
charged. 

Method-II: The conductor which has included charge on it, is 
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Figure 18.6

connected to a neutral conductor which makes the flow of charge 
such that their potentials become equal and now they are 
disconnected making the neutral conductor charged. 

(d) Thermo-ionic emission: When the metal is heated at a high temperature then some electrons of metals are 
ejected and the metal gets ionized. It becomes positively charged. 

Figure 18.7
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(e) Photoelectric effect: When light of sufficiently high frequency is incident on
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metal surface then some electrons come out and metal gets ionized. 

(f) Field emission: When electric field of large magnitude is applied near the 
metal surface then some electrons come out from the metal surface and hence 
the metal gets positively charged. 

7. UNIT OF ELECTRIC CHARGE

We know that a positively charged body has deficit of electrons and a negatively charged body has excess of 
electrons from normal due share. Since the charge on an electron is very small, it is not convenient to select it as the 
unit of charge. In practice, coulomb is used as the unit of charge, i.e., SI unit of charge is coulomb abbreviated as C. 

The charge on one electron in coulomb is =-1.6×10-19C

Note that charge on an electron has been found experimentally.

8. QUANTIZATION OF ELECTRIC CHARGE

The charge on an electron (-e=1.6×10-19C)
 
or on a proton (+e=+1.6×10-19C)

 
is minimum. We know that charge on a 

body is due to loss or gain of electrons by the body. Since a body cannot lose or gain a fraction of an electron, the 
charge on a body must be an integral multiple of electronic charge e± . In other words, charge on a body can only 
be q ne= ±  where n=1, 2, 3, 4, and e=1.6×10-19C. This is called quantization of charge.

The fact that all free charges are integral multiple of electronic charge (e=1.6×10-19C) is known as quantization of 
electric charge.

∴Charge on a body, q ne= ±

Where n=1, 2, 3…….. and e=1.6×10-19C

Suppose you measure the charge on a tiny body as +4.5×10-19C. This measurement is not correct because measured 
value is not an integral multiple of minimum charge (i.e., 1.6×10-19C). 

Note:  (i)	The quantization of charge shows that charge is discrete in nature and not of continuous nature.

(ii)	 Since the charge on an electron is so small (e=1.6×10-19C), we normally do not notice its discreteness in 
macroscopic charge (1µC charge requires about 1013 electrons) which thus seems continuous.

9. CONSERVATION OF ELECTRIC CHARGE

Just as total linear momentum of an isolated system always remains constant, similarly, the total electric charge 
of an isolated system always remains constant. This is called law of conservation of charge and may be stated as 
under: The total electric charge of an isolated system always remains constant.

In any physical process, the charges may get transferred from one part of the system to the other but total or net 
charge remains the same. In other words, charges can neither be created nor destroyed. No violation of this law 
has ever been found and it is as firmly established as the laws of conservation of linear momentum and energy.
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Electrostatic Force-Coulomb’s Law

F = Electrostatic force

q = Electric charge

r= Distance between charge centers
k= Coulomb constant 9.0×109N.m2/C2 
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Figure 18.10

F21 is the force on charge 1 due to 2 and 12 1 2 21r r r r= − = −
   

In few problems of electrostatics, Lami’s theorem is very useful. � F
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Figure 18.11

According to this theorem, “if three concurrent forces 

1 2 3F ,F and F
  

 as shown in Fig. 18.11 are in equilibrium or if 

1 2 3F F F 0+ + =
  

, then 

31 2 FF F
sin sin sin

= =
α β γ 						    

 Nivvedan (JEE 2009 AIR 113)

PLANCESS CONCEPTS

10. RELATIVE PERMITTIVITY OR DIELECTRIC CONSTANT

Permittivity is the property of a medium and affects the magnitude of force between two point charges. Air or vacuum 
has a minimum value of permittivity. The absolute (or actual) permittivity of air or vacuum is 12 2 1 28.854 10 C N m− − −×
. The absolute permittivity ε  of all other insulating materials is greater than 0ε . The ratio 0/ε ε  is called relative 
permittivity of the material and is denoted by K or ( rε ).

( )0

Absolute permittivity of medium
K

Absolute permittivity of air or vacuum
ε

= =
ε

It may be noted that the relative permittivity is also called 

dielectric constant.

Another Definition. Force between two charges in air (or vacuum) is 1 2
air 2

0

q q1F
4 r

=
πε   

[See Fig. 18.12]

Force between the same two charges held same distance apart in a medium of absolute permittivity ε  is 
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1 2 1 2
m 2 2

0

q q q q1 1F
4 4 Kr r

= =
πε πε

    [see Fig. 18.12]
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m 0

F
K

F
ε

∴ = =
ε

=Relative permittivity of the medium

Hence, relative permittivity (or dielectric constant) of a medium may be defined as the ratio of force between two 
charges separated by a certain distance in air (or vacuum) to the force between the same charges separated by the 
same distance in the medium.

Discussion. The following points may be noted:

(a)	 For air or vacuum, 0 0K / 1.= ε ε = For all other insulating materials, the value of K is more than 1.

(b)	 m airF F / K= . This implies that force between two charges is decreased when air is replaced by other insulating 
medium. For example, K for water is 80. It means that for the same charges ( )1 2q ,q  and same distance (r), the 
force between two charges in water is 1/80th of that in air.

(c)	 K is number; being the ratio of two absolute permitivities. air

med

F
K

F
=  

0
K ε
=
ε

Comparison of Electrical Force with the Gravitational Force.

(a)	 Both electrical and gravitational forces follow the inverse square law.

(b)	 Both can act in vacuum also.

(c)	 Electrical forces may be attractive or repulsive but gravitational force is always attractive.

(d)	 Electrical forces are much stronger than gravitational forces. 

(e)	 Both are central as well as conservative forces.

(f)	 Both the forces obey Newton’s third law.

11. SUPERPOSITION OF ELECTROSTATIC FORCE

If in a region, more than 2 charges are present, then the net force acting on a particular charge will be the vector 
sum of the individual contribution of all other charges present in region, presence of any other charge in space 
cannot affect the force applied by a particular charge. 

1.net 12 13 14 15 1nF F F F F ......... F ,= + + + + +
     

Illustration 1: Two identical balls each having a density ρ are suspended from a common point by two insulating 
strings of equal length. Both the balls have equal mass and charge. In equilibrium, each string makes an angle θ
with vertical. Now, both the balls are immersed in a liquid. As a result, the angle θ does not change. The density of 
the liquid isσ . Find the dielectric constant of the liquid.� (JEE ADVANCED)

Sol: Inside the liquid, up thrust would act but simultaneously, electric force would also weaken due to dielectric of 
the liquid.
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In vacuum each ball is in equilibrium under the 
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Figure 18.13

following three forces:

(i) Tension, (ii) Electric force and (iii) Weight.

So, Lami’s theorem can be applied. 

In the liquid, ' e
e

F
F

K
= Where, K=dielectric constant 

of liquid and W’=W-up thrust

Applying Lami’s theorem in vacuum 

( ) ( )
eFW

sin 90 sin 180ο ο
=

+ θ − θ
 or eFW

cos sin
=

θ θ
 � … (i)

Similarly in liquid 
'
eFW'

cos sin
=

θ θ
 �  ... (ii)

Dividing Eq.(i) by Eq.(ii), we get e
'
e

FW
W' F

= 	 or WK
W upthrust

=
−

 e
'
e

F
as k

F

 
 =
 
 

V g
V g V g

ρ
ρ − σ

 (V=volume of ball)		 Or K ρ
=
ρ − σ

Note: In the liquid eF  and W have been changed. Therefore, T will also change.

Illustration 2: A non-conducting rod of length L with a uniform positive charge density λ  and a total charge Q is 
lying along the x-axis, as illustrated in Fig. 18.14. � (JEE ADVANCED)

Calculate the force at a point P located along the axis of the rod and a distant 0x  from one end of the rod. 

Sol: Consider rod as large number of small charges and apply y

dx’

x’

dq= dx’�

x

L
X

0

P

dF

Q

Figure 18.14

principle of superposition of forces.

The linear charge density is uniform and is given by Q / Lλ = .  
The amount of charge contained in a small segment of length 
dx'  is dq dx'= λ .

Since the source carries a positive charge Q, the force at P points 
in the negative x direction, and the unit vector that points from 
the source to P is ˆr̂ i= . The contribution to the electric field due 
to dq is 

( )
2

2 '2 '2

Q dq Q dx' 1 Q dx'ˆ ˆˆdF r i i
4 4 4r x Lxο ο ο

λ
= = − = −

πε πε πε



Integrating over the entire length leads to 

( )
2 2 2x L

'2x

1 Q dx' 1 Q 1 1 1 Qˆ ˆ ˆF dF i i i
4 L 4 L x x L 4 x L xx

+ο

οο ο ο ο ο ο ο

 
= = − = − − = −  πε πε + πε + 
∫ ∫

 

Notice that when P is very far away from the rod, xo >> L and the above expression becomes  
2

2

1 Q ˆF i
4 xο ο

≈ −
πε



 

The result is to be expected since at sufficiently far distance away, the distinction between a continuous charge 
distribution and a point charge diminishes.
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12. ELECTRIC FIELD

A charged particle cannot directly interact with another particle kept at a distance. A charge produces something 
called an electric field in the space around it and this electric field exerts a force on any other charge (except the 
source charge itself) placed in it.

Thus, the region surrounding a charge or distribution of charge in which its electrical effects can be observed is 
called the electric field of the charge or distribution of charge. Electric field at a point can be defined in terms of 
either a vector function E



 called ‘electric field strength’ or a scalar function V called ‘electric potential’. The electric 
field can also be visualized graphically in terms of ‘lines of force’. The field propagates through space with the 
speed of light, c. Thus, if a charge is suddenly moved, the force it exerts on another charge a distance r away does 
not change until a time r/c later. In our forgoing discussion we will see that electric field strength E



 and electric 
potential V are interrelated. It is similar to a case where the acceleration, velocity and displacement of a particle are 
related to each other.

12.1 Electric Field Strength ( )E
Like its gravitational counterpart, the electric field strength (often called electric field) at a point in an electric field is 
defined as the electrostatic force eF



 per unit positive charge. Thus, if the electrostatic force experienced by a small 

test charge e0q is F


, then field strength at that point is defined as,	 e

q 00 0

FE lim
q→

=





( 0q 0→  so that it doesn’t interfere with the electrical field) 

The electric field is a vector quantity and its direction is the same as the direction of the force eF


 on a positive test 
charge. The SI unit of electric field is N/C. Here it should be noted that the test charge 0q  does not disturb other 
charges which producesE



. With the concept of electric field, our description of electric interactions has two parts. 
First, a given charge distribution acts as a source of electric field. Second, the electric field exerts a force on any 
charge that is present in this field.

An electric field leads to a force 

Suppose there is an electric field strength E


 at some point in an electric field, then the electrostatic force acting on 
a charge q+  is qE in the direction of E



, while on the charge –q it is qE in the opposite direction ofE


.

The electric field at a point is a vector quantity. Suppose 1E


 is the field at a point due to a charge 1q  and 2E


 
is the field at the same point due to a charge 2q . The resultant field when both the charges are present is		

1 2E E E= +
  

If the given charges distribution is continuous, we can use the technique of integration to find the resultant electric 
field at a point.

Illustration 3: A uniform electric field E is created between two parallel charged plates as shown in Fig. 18.15. An 
electron enters the field symmetrically between the plates with a speed vο . The length of each plate is l. Find the 
angle of deviation of the path of the electron as it comes out of the field. � (JEE MAIN)

Sol: Electron gains velocity in the vertical direction due to field between the plates.

The acceleration of the electron is eEa
m

=  in the upward direction. The horizontal velocity remains vο  as there is 

no acceleration in this direction. Thus, the time taken in crossing the field is lt
vο

= . � … (i)

The upward component of the velocity of the electron as it emerges

+ + + + + + �

- - - - - -EV₀

Figure 18.15

 
from the field region is 

y
eElv at

mvο
= =

The horizontal component of the velocity remains xv v .ο=
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The angle θ  made by the resultant velocity with the original direction is given by 
y

2
x

v eEltan
v mvο

θ = = . Thus, the electron deviates by an angle 1
2

eEltan .
mv

−

ο

θ =

Charge Densities

It is of three types:

(i) Linear charge density: It is defined as charge per unit length, i.e.
q
l

λ =  its S.I. unit is coulomb/ metre and dimensional formula is 1ATL− 
 

(ii) Surface charge density: It is defined as charge per unit area, i.e.
q
A

σ =  its S.I. unit is 2coulomb / metre  and dimensional formula is 2ATL− 
 

(iii) Volume charge density: It is defined as charge per unit volume i.e.
q
V

ρ =  its S.I. unit is 3coulomb / metre  and dimensional formula is 3ATL− 
 

Nitin Chandrol (JEE 2012 AIR 134)

PLANCESS CONCEPTS

12.2 Electric Fields Due to Continuous Charge Distributions
The electric field at a point P due to each charge element dq is given by Coulomb’s law: 

2

1 dq ˆdE r
4 rο

=
πε



 

Where r is the distance from dq to P and r̂  is the corresponding unit vector. Using the superposition principle, the 

total electric field E


is the vector sum (integral) of all these infinitesimal contributions: 
2

v

1 dq ˆE r
4 rο

=
πε ∫



 

This is an example of a vector integral which consists of three separate integrations, one for each component of 
the electric field.

12.3 Electric Field Due to a Point Charge
The electric field produced by a point charge q can be obtained in general 

E
�

E
�

F
e

�
q₀

r
q

q

q

Figure 18.16

terms from Coulomb’s law. First note that the magnitude of the force exerted 
by the charge q on a test charge 0q is,

0
e 2

qq1F .
4 rο

=
πε

Then divide this value by 0q to obtain the magnitude of the field: 
2

1 qE .
4 rο

=
πε

If q is positive, E


 is directed away from q. On the other hand, if q is negative, 
then E



 is directed towards q.

12.4 Electric Field Due to a Ring of Charge
A conducting ring of radius R has a total charge q uniformly distributed over its circumference. We are interested 
in finding the electric field at point P that lies on the axis of the ring at a distance x from its center. We divide the 
ring into infinitesimal segments of length dl. Each segment has a charge dq and acts as a point charge source of 
electric field. 
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Let dE


 be the electric field from one such segment; the net 

x

�

r =  X +R² ²
r

x

dE�

�

dE

P

dEy

y

dl,dq

R

90⁰

O

q

Figure 18.17

electric field at p is then the sum of all contributions dE


 
from all the segments that make up the ring. If we 
consider two ring segments at top and bottom of the 
ring, we see that the contributions dE



 to the field at P 
from these segments have the same x-component but 
opposite y-components. Hence, the total y-component 
of field due to this pair of segments is zero. When we add 
up the contributions from all such pairs of segments, the 
total field E



 will have only a component along the ring’s 
symmetry axis (the x-axis) with no component 
perpendicular to that axis (i.e. no y or z component). So 
the field at P is described completely by its x component 

xE .

Calculation of xE
qdq .dl

2 R
 

=  π 
;		

2

1 dqdE .
4 rο

=
πε

x 2 2 2 2

1 dq xdE dEcos
4 x R x Rο

   
 ∴ = θ =      πε +   + 

	
( )

( )3 22 2

dq x1 .
4 x Rο

 
=   πε  +

( )
x 3 2x 2 2

xE dE dq
4 x Rο

∴ = =
πε +

∫ ∫ ;	or 
( )

x 3 22 2

1 qxE
4 x Rο

 
=   πε  +

 

From the above expression, we can see that 

(a)	 � xE 0=  at x=0, i.e., field is zero at the center of the ring. We

E
max

E
x

R

2

X

Figure 18.18

 
should expect this, charges on opposite sides of the ring would 
push in opposite directions on a test charge at the center, and 
the forces would add to zero.

(b)	 � x 2

1 qE .
4 xο

=
πε

 for x >> R i.e., when the point P is much farther 

from the ring, its field is the same as that of a point charge. 

To an observer far from the ring, the ring would appear like a 

point, and the electric field reflects this. 

(c)	  xE  will be maximum where xdE
0

dx
= . Differentiating xE  w.r.t. x 

and putting it equal to zero we get Rx
2

=  and maxE  comes out to be, 
23

2 1 q.
4 R3 ο

 
  πε 

.

12.5 Electric Field Due to a Line Charge
Positive charge q is distributed uniformly along a line with length 2a, lying along the y-axis between y=-a and 
y=+a. We are here interested in finding the electric field at point P on x-axis.

λ=charge per unit length= q
2a

qdq dy dy
2a

= λ = ; 
2

1 dqdE .
4 rο

=
πε ( )2 2

dyq
4 2a x yο

=
πε +

( )
x 3/22 2

xdyqdE dEcos .
4 2a x yο

= θ =
πε +
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( )
y 3/22 2

ydyqdE dEsin .
4 2a x yο

= − θ =
πε +

  �

x

r =  X +R² ²

dy

y

O

r

x

P dEx

�

�

dEy

Figure 18.19

( )
a

x 3/2a 2 22 2

dy1 qx q 1E . .
4 2a 4 x x ax y

−
ο ο

∴ = =
πε πε ++

∫  

and 
( )

a
y 3/2a 2 2

ydy1 qE . 0
4 2a x y

−
ο

= =
πε +

∫

Thus, electric field is along x-axis only and which has a 
magnitude,

x 2 2

qE
4 x x aο

=
πε +

 � … (i) 

From the above expression, we can see that:

(a)	 If x >> a, x 2

1 qE . ,
4 xο

=
πε

 i.e., if point P is very far from the line charge, the field at P is the same as that of a 

point charge.

(b)	 Now assume that, we make the line of charge longer and longer, adding charge in proportion to the total 
length so that λ , the charge per unit length remains constant. In this case Eq(i) can be written as,

	
x 2 2

1 q 1E . .
2 2a x x / a 1ο

 
=  πε   +

	
2 22 x x / a 1ο

λ
=

πε +

	 Now, 2 2x / a 0asa x,= →  a >> x, xE
2 xο

λ
=

πε

13. ELECTRIC FIELD LINES

An electric line of force is an imaginary smooth curve in an electric field along which a free, isolated unit positive 
charge moves.

Properties

(a)	 Electric lines of force start at a positive and terminate at a negative charge.

(b)	 A tangent to a line of force at any point gives the direction of the force on positive charge and hence direction 
of electric field at that point.

(c)	 No two lines of force can intersect one another.

(d)	 The lines of force are crowded in the region of larger intensity and further apart in the region of weak field.

(e)	 Lines of force leave the surface of a conductor normally.

(f)	 Electric lines of force do not pass through a closed conductor.
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Field of some special classes

We here highlight the following charge distributions.

(a)	 Single positive or negative charge (Fig. 18.20 

q>0 q<0

(b)(a)

+q +q

( )c

+q -q

Figure 18.20

(a) and (b))- The field lines of a single positive 
charge are radially outward while those of a 
single negative charge are radially inward.

(b)	 Two equal positive charges (Fig18.20 (c))- the 
field lines around a system of two positive 
charges (q, q) give a vivid pictorial description 
of their mutual repulsion.

(c)	 Two equal and opposite charges (Fig18.20 
(d))-The field around the configuration of two 
equal and opposite charges (q,-q), a dipole, 
show clearly the mutual attraction between 
the charges.

Properties:

(a)	 Line of force originates out from a positive charge and terminates on a negative 

+A

+B

E > E
A B

Figure 18.21

charge. If there is only one positive charge then lines start from positive 
charge and terminate at ∞ . If there is only one negative charge then lines 
start from ∞  and terminate at negative charge.

(b)	 The electric intensity at a point is the number of lines of force streaming 
through per unit area normal to the direction of the intensity at that point. 
The intensity will be more where the density of lines is more. 

(c)	 Number of lines originating (terminating) from (on) is directly proportional 
to the magnitude of the charge.

Note: A charge particle need not follow an Electric field lines.

(a)	 Electric field lines of resultant electric field can never intersect with each other.

(b)	 Electric field lines produced by static charges do not form close loop.

(c)	 Electric field lines end or start perpendicularly on the surface of a conductor.

(d)	 Electric field lines never enter in to conductors.

Illustration 4: Consider the situation shown in Fig. 18.22. What are the signs of

q₂

q₁

Figure 18.22

1 2q and q ? If the lines are drawn in proportion to the charge, what is the ratio 
1 2q / q ?  � (JEE MAIN) 

Sol: Use properties of field lines.  �

The basic concept of this question is that number density is directly proportional 
to electric field. If we take the entire area of the sphere around the charge, then 
area will be the same. Now, we just have to count the number of lines originating 
from the two charges.

In case of point charges, E q∝ 	

Thus, 1 2 1 2 1 2E / E q / q n / n 6 / 18 1 / 3= = = =  
However, this problem can also be seen by flux. Why don’t you try it as an 
exercise?Plus, 1q has to be negative, while 2q  would be positive. 
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14. ELECTRIC FLUX

The strength of an electric field is proportional to the number of field lines per unit area. 

E
�

A
�

Figure 18.23

�
A

E

�

�

Figure 18.24

The number of electric field lines that penetrates a given surface is called an “electric 
flux,” which we denote as EΦ . The electric field can therefore be thought of as the 
number of lines per unit area.

In Fig. 18.23 shows Electric field lines passing through a surface of area A.

Consider the surface shown in Fig. 18.24. Let ˆA An=


be defined as the area vector 
having a magnitude of the area of the surface, A, and pointing in the normal 
direction, n̂ . If the surface is placed in a uniform electric field E



 that points in the 
same direction as n̂ , i.e., perpendicular to the surface A, the flux through the surface is 

E ˆE.A E.nA EAΦ = = =
  

 	

On the other hand, if the electric field E


 makes an angle θ with n̂ , the electric flux 
becomes E nE.A E.Acos E AΦ = = θ =

  

 

Where n ˆE E.n=


 is the component of E


 perpendicular to the surface.

Note that with the definition for the normal vector n̂ , the electric flux EΦ  is positive if 
the electric field lines are leaving the surface, and negative if entering the surface.

In general, a surface S can be curved and the electric field E


 may vary over the surface. 
We shall be interested in the case where the surface is closed. A closed surface is a 
surface which completely encloses a volume. In order to compute the electric flux, we 
divide the surface into a large number of infinitesimal area elements i i iˆA A n∆ = ∆



, as 
shown in Fig. 18.25. Note that for a closed surface, the unit vector in̂  is chosen to point 
in the outward normal direction.

Electric field is passing through an area element iA∆


, making an angle θ with the �A
l

�

E
l

�

�

S

Figure 18.25

normal of the surface.

The electric flux through iA∆


 is i iE i iE . A E A cos∆Φ = ∆ = ∆ θ
 

 

The total flux through the entire surface can be obtained by summing over all the 
area elements. Taking the limit iA 0∆ →



and the number of elements to infinity, we 

have i iE A 0i
lim E .dA E.dA

∆ →
∆Φ = =∑ ∫

   

 

In order to evaluate the above integral, we must first specify the surface and then 
sum over the dot product E.dA.

 

.

Let 1 1ˆA A r∆ = ∆


 be 

An area element on the surface of a sphere 1S  of radius 1r , as shown in Fig. 18.26.

�

�

�

r₂

r₁ E
L

�A₂

�A
n

S
2

��

� E₂

Q

Figure 18.26

The area element A∆  subtends a solid angle .∆Ω The solid angle ∆Ω  
subtended by 1 1ˆA A r∆ = ∆



 at the center of the sphere is defined as 
1

2
1

A

r

∆
∆Ω ≡  

Solid angles are dimensionless quantities measured in steradians (sr). Since 
the surface area of the sphere 1S  is 2

14 rπ , the total solid angle subtended by 
the sphere is 

2
1

2
1

4 r
4

r

π
Ω = = π

 

In Fig. 18.26, the area element 2A∆


 makes an angle θ with the radial unit vector r̂ , then the solid angle subtended 
by 2A∆  is
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2 2 2n
2 2 2
2 2 2

A cos AˆA .r
r r r

∆ θ ∆∆
∆Ω = = =



 

Illustration 5: A non - uniform electric field given by ˆ ˆE 3.0xi 4.0 j= +


 pierces the Gaussian cube shown in Fig. 18.28 
(E is in newton per coulomb and x is in meters.) What is the electric flux through the right face, the left face, and 
the top face? � (JEE ADVANCED) 

Sol: We can find the flux through the surface by integrating the scalar product E.dA
 

 over each face.

Right face: An area vector A


 is always perpendicular to its surface and always points away from the interior of a 
Gaussian surface. Thus, the vector dA



for the right face of the cube must point in the positive direction of the x 
axis. In unit-vector notation,

ˆdA dAi.=


 The flux Φ , through the right face is then 

( ) ( )ˆ ˆ ˆE.dA 3.0xi 4.0 j . dA iΦ = = +∫ ∫
 

( )( ) ( )( )ˆ ˆ ˆ ˆ3.0x dA i i 4.0 dA j i = ⋅ + ⋅ ∫ ( )3.0xdA 0 3.0 xdA.= + =∫ ∫
We are about to integrate over the right face, but we note that x has the same value everywhere on that face-
namely, x=3.0m. This means we can substitute that constant value for x. Then

( )r 3.0 3.0 dA 9.0 dA.Φ = =∫ ∫
The integral dA∫  merely gives us the area A=4.0 2m of the right face; so

( )( )2 2
r 9.0N / C 4.0m 36N.m / CΦ = = . �

Gaussian

surface

y

z
x=1.0m  x=3.0m

X

Figure 18.27

Left face: The procedure for finding the flux through the left face 
is the same as that for the right face. However, two factors change. 
(i) The differential area vector dA



points in the negative direction of 
the x axis, and thus ˆdA dAi.= −



 (ii) The term x again appears in our 
integration, and it is again constant over the face being considered. 
However, on the left face, x=1.0m. With these two changes, we find 
that the flux lΦ  through the left face is 

2
1 12N m / C.Φ = − ⋅

Top face: The differential area vector dA


points in the positive 
direction of the y axis, and thus ˆdA dAj.= +



 The flux lΦ  through the 
top face is then

( ) ( )1
ˆ ˆ ˆ3.0xi 4.0 j dAjΦ = + ⋅∫ ( )( ) ( )( )ˆ ˆ ˆ ˆ3.0x dA i j 4.0 dA j. j = ⋅ + ∫ ( )0 4.0dA 4.0 dA= + =∫ ∫ 216 N m / C= ⋅ .

15. GAUSS’ LAW

Consider a positive point charge Q located at the center of a sphere of radius r, as

�

�

r

dA E

Gaussian

surface

Figure 18.28

 
shown in Fig. 18.28. The electric field due to the charge Q is ( )2

0 ˆE Q / 4 r r= πε


, 
which points in the radial direction. We enclose the charge by an imaginary sphere 
of radius r called the “Gaussian surface”. 

A spherical Gaussian surface enclosing a charge Q. 
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In spherical coordinates, a small surface area element on the sphere is given by
2 ˆdA r sin d d r= θ θ φ



  �

y

�

�

�

V sin d d² � � �

rd�

x

z

Figure 18.29

A small area element on the surface of a sphere of radius r.

Thus the net electric flux through the area element is 

( )2
E 2

2 2

1 Qd E dA EdA r sin d d
4 r

Q sin d d a b
4

ο

ο

 
Φ = ⋅ = = θ θ φ  πε 

= θ θ φ +
πε

 

 

( )2
E 2

2 2

1 Qd E dA EdA r sin d d
4 r

Q sin d d a b
4

ο

ο

 
Φ = ⋅ = = θ θ φ  πε 

= θ θ φ +
πε

 

The total flux through the entire surface is 

z 2
E

s

Q QE dA sin d d
4

π

ο ο
ο ο

Φ = ⋅ = θ θ φ =
πε ε∫∫ ∫ ∫

 



 	  

The same result can also be obtained by noting that a sphere of radius r has

S₃
S₂

Q+
S₁

E
�

Figure 18.30

 
a surface area 2A 4 r= π , and since the magnitude of the electric field at any 
point on the spherical surface is 2E Q / 4 rο= πε , the electric flux through the 
surface is

2
E 2

s s

1 Q QE dA E dA EA 4 r
4 rο ο

 
Φ = ⋅ = = = π =  πε ε 

∫∫ ∫∫
 

 

 

In the above, we have chosen a sphere to be the Gaussian surface. However, 
it turns out that the shape of the closed surface can be arbitrarily chosen. For 
the surfaces shown in Fig. 18.30, the same result ( )E Q / οΦ = ε is obtained. 
Whether the choice is 1 2S ,S  or 3S .

The statement that the net flux through any closed surface is proportional 
to the net charge enclosed is known as Gauss’s law. Mathematically, Gauss’s 
law is expressed as 

ene
E

s

q
E dA

ο

Φ = =
ε∫∫

 





 	 (Gauss’s law) 

Where eneq  is the net charge inside the surface. One way to explain why Gauss’s law holds is that the number 
of field lines that leave the charge is independent of the shape of the imaginary Gaussian surface we choose to 
enclose the charge. 

Illustration 6: Fig. 18.31 shows five charged lumps of plastic and an electrically 

+

-
+

-

-

s

q¹

q⁴

q²
q³

q⁵

Figure 18.31

neutral coin. The cross section of a Gaussian surface S is indicated. What is the 
net electric flux through the surface if 1 4q q 3.1nC,= = + 2 5q q 5.9nC,= = −
and 3q 3.1nC?= − Five plastic objects, each with an electric charge, and a coin, 
which has no net charge. A Gaussian surface, shown in cross section, encloses 
three of the charged objects and the coin.  � (JEE MAIN) 

Sol: In Gauss’s law, only enclosed charges used to calculate the flux.

The net flux Φ  through the surface depends on the net charge encq enclosed 
by surface S.

The coin does not contribute to Φ  because it is neutral and thus contains equal amounts of positive and negative 
charge. Charges 4q  and 5q  do not contribute because they are outside surface S. Thus, encq  is 1 2 3q q q+ +  and 
gives us

enc 1 2 3q q q q

ο ο

+ +
Φ = =

ε ε

9 9 9

12 2 2

3.1 10 C 5.9 10 C 3.1 10 C
8.85 10 C / N m

− − −

−

+ × − × − ×
=

× ⋅
2670N.m / C.= −
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Conclude: The minus sign shows that the net flux through the surface is inward and thus that the net charge within 
the surface is negative.

Illustration 7: Find the flux through the disk shown in Fig. 18.32. The line joining the charge to the center of the 
disk is perpendicular to the disk.� (JEE MAIN)

Sol: The electric flux through the disk cannot be found by the equation 

q

�

4

3
R

x

Figure 18.32

E A EAcosφ = ⋅ = θ
 

If we wish to use the basic formula, we can divide the 
disk into small rings as shown in Fig. 18.33 and find the electric field due 
to charge at all the rings:

E.ds.φ = ∫
 

Here we divide the entire disk into thin ring and find the flux 
due to the charge through the thin ring.

the electric field due to the point charge at the location of the ring shown is given by

( ) 2 2

kqE
16 / 9 R x

=
+ .

As we discussed before, the area of the ring is 2 xdxπ . But 

q

�

dx

4

3
R

x

�

E

Figure 18.33

the electric field is not normal to the ring. The angle can be 
found as shown:

( )2 2

4R / 3cos
16R / 9 x

θ =
+

,		  E dsφ = ⋅∫
 

,

( )
( ) ( )

0.75R

0 2 2 2 2

kq 4R / 3 2 xdx q .
10x 16R / 9 x 16R / 9 ο

× × π
φ = =

ε + × +  

∫  

Illustration 8: An infinitely long rod of negligible radius has a uniform 
charge density λ . Calculate the electric field at a distance r from the wire. 
� (JEE MAIN)

Sol: We shall solve the problem by following the steps outlined above.  
�
(a)	 An infinitely long rod possesses cylindrical symmetry.

(b)	 The charge density is uniformly distributed throughout the length, 

and the electric field E


must point radially away from the symmetry 
axis of the rod (Fig. 18.34). The magnitude of the electric field is 
constant on cylindrical surface of radius r. Therefore, we choose a 
coaxial cylinder as our Gaussian surface.

(c)	 Field lines for an infinite uniformly charged rod (the symmetry axis 
of the rod and the Gaussian cylinder are perpendicular to plane of 
the page.)

(d)	 The amount of charge enclosed by the Gaussian surface, a cylinder 
of radius r and length   (Fig. 18.35), is encq = λ .

(e)	 As indicated in Fig. 18.36, the Gaussian surface consists of three 
parts: a two ends S1 and S2 plus the curved side wall S3. The flux 
through the Gaussian surface is

1 1 2 2 3 3E
S S S S1 2 3

E.dA E dA E dA E dAΦ = = ⋅ + ⋅ + ⋅∫∫ ∫∫ ∫∫ ∫∫
       



( )3 30 0 E A E 2 r= + + = π 

E
1

�

E
2

�
E

3

�

dA
3

�

s
3 dA

2

�

r

+ + +

s
1dA

1

�
s

2

+ + +

Gaussian

surface

�

Figure 18.35

a

E = O
� �

E
�

Figure 18.34
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Where we have set 3E E= . As can be seen from the Fig. 18.35, no flux 
passes through the ends since the area vectors 1dA



. and 2dA


 are perpendicular 
to the electric field which points in the radial direction. �

(f)	 Applying Gauss’s Law gives ( )E 2 r / οπ = λ ε  , or E
2 rο

λ
=

πε
  

The result is in complete agreement with that obtained in equation 
using Coulomb’s law. Notice that the result is independent of the 
length   of the cylinder, and only depends on the inverse of the 
distance r from the symmetry axis. The qualitative behavior of E as a 
function of r is plotted in Fig. 18.36.

Illustration 9: Consider an infinitely large non-conduction plane in the xy-plane with uniform surface charge 
densityσ . Determine the electric field everywhere in space. � (JEE MAIN)

Sol: (i) An infinitely large plane possesses a planar symmetry. 
(ii) Since the charge is uniformly distributed on the surface, the electric 
field E



must point perpendicularly away from the plane, ˆE Ek=


. The 
magnitude of the electric field is constant on planes parallel to the non-
conducting plane.

We choose our Gaussian surface to be a cylinder, which is often referred 
to as a “pillbox”

The pillbox also consists of three parts: two end-caps S1 and S2, and a 
curved side S3.

(ii) Since the surface charge distribution is uniform, the charge enclosed 
by the Gaussian “pillbox” is encq A= σ , where A=A1=A2 is the area of the 
end-caps.

(iv) The total flux through the Gaussian pillbox flux is 

1 1 2 2 3 3E
S S S S1 2 3

E dA E dA E dA E dAΦ = ⋅ = ⋅ + ⋅ + ⋅∫∫ ∫∫ ∫∫ ∫∫
       

   

= 1 1 2 2E A E A 0+ +  ( )1 2E E A= +

Since the two ends are at the same distance from the plane, by symmetry, 
the magnitude of the electric field must be the same: 1 2E E E= = . Hence, 
the total flux can be rewritten as

E 2EAΦ =  

(v) By applying Gauss’s law, we obtain encq A2EA
ο ο

σ
= =

ε ε
Which gives 

E
2 ο

σ
=

ε
 

In unit-vector notation, we have 
k̂, z 0

2
E

k̂, z 0
2

ο

ο

 σ
> ε= 

σ− <
 ε



 

Thus, we see that the electric field due to an infinite large non-conducting 
plane is uniform in space. The result, plotted in Fig. 18.39, is the same 
as that obtained using Coulomb’s law. Note again the discontinuity in 
electric field as we cross the plane: 

z z zE E E
2 2+ −

ο ο ο

 σ σ σ
∆ = − = − − =  ε ε ε 
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r

Figure 18.36
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Illustration 10: A thin spherical shell of radius a has a charge +Q evenly 
distributed over its surface. Find the electric field both inside and outside 
the shell. � (JEE MAIN)

Sol:  Apply Gauss’s law, as the charge distribution is symmetric.

The charge distribution is spherically symmetric, with a surface charge 
density 2

sQ / A Q / 4 aσ = = π , where 2
sA 4 a= π  is the surface area of 

the sphere. The electric field E


 must be radially symmetric and directed 
outward (Fig. 18.40). We treat the regions r a≤  and r a≥  separately.

Electric field for uniform spherical shell of charge

Case 1: r a≤ We choose our Gaussian surface to be a sphere of radius
r a≤ , as shown in Fig. 18.41 (a).

The charge enclosed by the Gaussian surface is encq 0=  since all the 
charge is located on the surface of the shell. Thus, from Gauss’s law, 

E encq / οΦ = ε , we conclude E=0, 	 r<a 	  

Case 2: r a≥ In this case, the Gaussian surface is a sphere of radius r a≥
, as shown in Fig. 18.42 (b). Since the radius of the “Gaussian sphere” is 
greater than the radius of the spherical shell, all the charge is enclosed:

encq Q=

Since the flux through the Gaussian surface is ( )2
E

S

E dA EA E 4 rΦ = ⋅ = = π∫∫
 



 

By applying Gauss’s law, we obtain e2 2

Q QE k
4 r rο

= =
πε

, r a≥  

Note that the field outside the sphere is the same as if all the charges 
were concentrated at the center of the sphere. The qualitative behavior 
of E as a function of r is plotted in Fig. 18.42 showing electric field as a 
function of r due to a uniformly charged spherical shell.

As in the case of a non-conducting charged plane, we again see a 
discontinuity in E as we cross the boundary at r=a. The change, from 
outer to the inner surface, is given by 

2

QE E E 0
4 a+ −

οο

σ
∆ = − = − =

επε

Illustration 11: Non-Conducting Solid Sphere

An electric charge +Q is uniformly distributed throughout a non-conducting solid sphere of radius a. Determine 
the electric field everywhere inside and outside the sphere. � (JEE MAIN)

Sol: For non-conducting object. Charge distributed thoughout the mass.
The charge distribution is spherically symmetric with the charge density given by 

( ) 3

Q Q
V 4 / 3 a

ρ = =
π  

Where V is the volume of the sphere. In this case, the electric field E


is radially 
symmetric and directed outward. The magnitude of the electric field is constant on 
spherical surfaces of radius r. The regions r aandr a≤ ≥  shall be studied separately.

Case 1: r a≤

a

E = O
� �

E
�

Figure 18.40

Figure 18.41

Gaussian

sufface

Gaussian

sufface

a
r

a

r

(a)

(b)

a

E=
k Q

e

E

r
2

Figure 18.42
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We choose our Gaussian surface to be a sphere of radius r a≤ , as shown in  
Fig. 18.41 (a).

Fig. 18.41 (b) shows Gaussian surface for uniformly charged solid sphere, for (a)
r a≤ , and (b) r a> .

The flux through the Gaussian surface is  ( )2
E

S

E dA EA E 4 rΦ = ⋅ = = π∫∫
 



With uniform 

charge distribution, the charge enclosed is  
3

3
enc 3

V

4 rq dV V r Q
2 a

  
= ρ = ρ =ρ π =        
∫  

Which is proportional to the volume enclosed by the Gaussian surface. Applying 
Gauss’s law 

E encq / οΦ = ε , we obtain ( )2 34E 4 r r
3ο

 ρ
π = π ε  

 or 
3

r QrE r a
3 4 aο ο

ρ
= = ≤

ε πε
Case 2: r a≥

In this case, our Gaussian surface is a sphere of radius r a≥ , as shown in Fig. 18.44 
. Since the radius of the Gaussian surface is greater than the radius of the sphere 

all the charge is enclosed in our Gaussian surface: encq Q= . With the electric flux 

through the Gaussian surface given by ( )2
E E 4 rΦ = π , upon applying Gauss’s law, 

we obtain

( )2E 4 r Q / οπ = ε , or e2 2

Q QE k ,
4 r r

r a
ο

= =
ε

>
π

The field outside the sphere is the same as if all the charges were concentrated 
at the center of the sphere. The qualitative behavior of E as a function of r is 
plotted in Fig. 18.45. 

PROBLEM-SOLVING TACTICS

The following steps may be useful when applying Gauss’s law:

(a)	 Identify the symmetry associated with the charge distribution.

(b)	 Determine the direction of the electric field, and a “Gaussian surface” on which the magnitude of the electric 
field is constant over portions of the surface.

(c)	 Divide the space into different regions associated with the charge distribution. For each region, calculate encq
, the charge enclosed by the Gaussian surface.

(d)	 Calculate the electric flux EΦ through the Gaussian surface for each region.

(e)	 Equate EΦ with encq / οε , and deduce the magnitude of the electric field.

In this chapter, we have discussed how electric field can be calculated for both the discrete and continuous charge 

distributions. For the former, we apply the superposition principle: i
i2

i i

q1 ˆE r
4 rο

=
πε ∑



For the latter, we must evaluate the vector integral 
2

1 dq ˆE r
4 rο

=
πε ∫



r

a

Gaussian suface

Figure 18.43

E
�

Gaussian surface

Figure 18.44

a
r

E=
keQ

E

r
2

Figure 18.45
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Where r is the distance from dq to the field point P and r̂  is the corresponding unit vector. To complete the 
integration, we shall follow the procedure outlined below:

(a)	 Start with 
2

1 dq ˆdE r
4 rο

=
πε



(b)	 Rewrite the charge element dq as 
( )
( )

( )

d length

dq dA area

dV volume

λ
= σ
ρ



Depending on whether the charge is distributed over a length, an area, or a volume.

(c)	 Substituting dq into the expression for dE


.

(d)	 Specify an appropriate coordinate system (Cartesian, cylindrical or spherical) and express the differential 
element ( )d ,dAordV  and r in terms of the coordinates (see table below for summary.)

Cartesian (x,y,z) Cylindrical ( ), , zρ φ Spherical ( )r, ,θ φ

Dl dx, dy, dz
d , d , dzρ ρ φ dr,rd ,r sin dθ θ φ

dA dxdy, dydz, dzdx
d dz, d dz, d dρ ρ φ ρ φ ρ 2rdrd ,r sin drd ,r sin d dθ θ φ θ θ φ

dV dxdydz
d d dzρ ρ φ 2r sin drd dθ θ φ

Differential elements of length, area and volume in different coordinates

(a)	 Rewrite dE


 in terms of the integration variable(s), and apply symmetry argument to identify non-vanishing 
component(s) of the electric field.

(b)	 Complete the integration to obtain E


.

In the Table below we illustrate how the above methodologies can be utilized to compute the electric field for an 
infinite line charge, a ring of charge and a uniformly charged disk.

Line charge Ring of charge Uniformly charged disk

(1) Figure

P

x
x’

r’

y

y

o

L
dx’

Figure 18.46

x

z

P

r

z

R

dq

‘

y

dq

dE
�

dE
�

Figure 18.47

dp

R

r

r’

z

P

x

y

dr’

dE
�

Figure 18.48

(2) Express dq in 
terms of charge 
density

dq dx'= λ dq d= λ  dq dA= σ

(3) write down dE
e '2

dx'dE k
r
λ

= e 2

dldE k
r
λ

= e 2

dAdE k
r
σ

=
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Line charge Ring of charge Uniformly charged disk

(4) Rewrite r and 
the differential 
element in terms 
of the appropriate 
coordinates

dx'

y
cos

r '
θ =

2 2r ' x' y= +

d Rd '= φ

zcos
r

θ =

2 2r R z= +

dA 2 r 'dr '= π

zcos
r

θ =

2 2r r' z= +

(5) Apply symmetry 
argument 
to identify 
non-vanishing 
component(s) of dE

ydE dEcos= θ

( )
e 3/2'2 2

ydx'k
x y

λ
=

+

ydE dEcos= θ

( )
e 3/22 2

Rzd 'k
R z

λ φ
=

+

ydE dEcos= θ

( )
e 3/22 2

2 zr 'dr 'k
r ' z

πσ
=

+

(6) Integrate to 
get E

( )
/2

y e 3/2/2 2 2

dxE k y
x y

+

−
= λ

+
∫




( )
e

2 2

2k / 2
y / 2 y

λ
=

+





( )
z e 3/22 2

R zE k d '
R z

λ
= φ

+
∫

( )
( )

e 3/22 2

2 R z
k

R z

π λ
=

+
=

( )
e 3/22 2

Qzk
R z+

( )
R

z e 3/20 '2 2

r 'dr 'E 2 k z
r z

= πσ
+

∫

e 2 2

z z2 k
z z R

 
 = πσ −
 + 

System Infinite line of charge Infinite plane of charge Uniformly Charged solid 
sphere

Figure

+ + + + + + + + + + + + +

Figure 18.49

+ + + + + + +
+ + + + + + +
+ + + + + + +
+ + + + + + +
+ + + + + + +
+ + + + + + +
+ + + + + + +

Figure 18.50

a

Figure 18.51

Identify the symmetry Cylindrical Planar Spherical

Determine the 
direction of E



+ + + + + + + + + + + + +

E
�

Figure 18.52

E
�

z

y

E
�

x

Figure 18.53

E
�

Figure 18.54

Divide the space into 
different regions

r>0 Z >0 and z<0
r a and r a≤ ≥
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Choose Gaussian 
surface

E
1

�

E
2

�
E

3

�

dA
3

�

s
3 dA

2

�

r

+ + +

s
1dA

1

�
s

2

+ + +

Gaussian

surface

�

Figure 18.55

E
1

�

dA
1

�

E
3

�

s
1

dA
3

�

s
3

dA
2

�

E
2

�

+

+

+ + + + + + + + + + +

+ + + + + + + + +

+ + + + + + +

Gaussian pillbox

s
2

Figure 18.56

r

a

Gaussian

shere

Concentric shpere

Figure 18.57

Calculate electric flux
E E(2 rl)Φ = π E EA EA 2EAΦ = + =

2
E E(4 r )Φ = π

Calculate enclosed 
charge inq encq l= λ encq A= σ

3(r /a)

enc
Q r aq
Q r a

 ≤= 
≥

Apply Gauss’s law 

E in 0q /Φ = ε to find 
E

0
E

2 r
λ

=
πε 0

E
2
σ

=
ε

3
0

2
0

Qr , r a
4 a

E
Q r a

4 r


≤

πε= 
 ≥
 πε

FORMULAE SHEET

Electric Charges, Forces and Fields

S. No Term Description

1

Charge Charges are of two types

(a) Positive charge (b) Negative charge

Like charges repel each other and unlike charges attract each other.

2 Properties of charge 1. Quantization:-q=ne where n=0, 1, 2…… and e is charge of an electron.

2. Additive: netq q− = ∑
3. Conservation: - total charge of an isolated system is constant

3 Coulomb’s law The mutual electrostatic force between the charges 1q and 2q separated by a 
distance r is given by Force on the charge 1q 2

1 1 2 12F Kq q r / r=

Where 12r  is the unit vector in the direction from 2q and 1q .

For more than two charges in the system, the force acting on any charge is 
vector sum of the coulomb force from each of the other charges. This is called 
principle of superposition for 1q , 2q , 3q ….. nq Charges are present in the system. 
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S. No Term Description

4 Electric Field -The region around a particular charge in which its electrical effects can be 
observed is called the electric field of the charge

-Electric field has its own existence and is present even if there is no charge to 
experience the electric force.

5 Electric field 
Intensity E=F/ 0q Where F is the electric force experienced by the test charge 0q  at this 

point. It is a vector quantity.

Some points to note on this

1. Electric field lines extend away from the positive charge and towards the 
negative charge.

2. Electric field produces the force so if a charge q is placed in the electric field 
E, the force experienced by the charge is F=qE

3. Principle of superposition also applies to electric field so

1 2 3 4E E E E E .....= + + + +

Electric field intensity due to point charge 
2

KQ r
E

r
=





Where r is the distance from the point charge and r is the unit vector along the 
direction from source to point.

Electric Field Intensities due to various Charge Distributions

Name/Type Formula Note Graph

Point Charge

2 3

Kq Kqr r
rr

=






•• q is source charge

•• r
  is vector drawn from source 
charge to the test point. E

r

Infinitely long line 
charge

0

2Kr r
2 r r
λ λ

=
πε

 

•• λ is linear charge density 
(assumed uniform)

•• r is perpendicular distance of 
point from line charge

•• r is radial unit vector drawn from 
the charge to test point

E

r

Uniformly Charged Ring

2 2 3/2

centre

KQxE
(R X )

E 0

=
+
=

•• Q is total charge of the ring

•• x=distance of point on the axis 
from centre of the ring.

•• Electric field is always along the 
axis.

E

E
max

R

2

r
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Infinitely large non-
conducting thin sheet

0
n̂

2
σ
ε

•• σ  is surface charge density 
(assumed uniform)

•• n is unit normal vector

•• Electric field intensity is 
independent of distance

E

r

� �/2
0

Infinitely large charged 
conducting sheet

0
n̂σ

ε

•• σ  is surface charge density 
(assumed uniform)

•• n  is unit normal vector

•• Electric field intensity is 
independent of distance

E

r

� �/
0

Uniformly charged 
hollow conducting/non 
conducting sphere or 
solid conducting sphere

(i) for r R≥

2

KQ ˆE r
r

=




(ii) for r<R

E 0=


•• R is radius of the sphere

•• r
 is vector drawn from centre of 
the sphere to the test point.

•• Sphere acts like a point charge 
placed at the centre for point 
outside the sphere.

•• E


is always along radial direction.

•• Q is total charge 2( 4 R ).= σ π

(σ = Surface charge density)

E

R r

KQ/R
2

Uniformly charged solid 
non conducting sphere 
(insulating material)

(i) for r R≥

2

KQ ˆE r
r

=




(ii) for r R≤

3
0

KQE r r
3R
ρ

= =
ε



 

•• r
 is vector drawn from centre of 
the sphere to the test point.

•• Sphere acts like a point charge 
placed at the centre for points 
outside the sphere.

•• E


is always along radial direction

•• Q is total charge 34( R ).
3

= ρ π

(ρ=volume charge density)

•• Inside the sphere E r∝

•• Outside the sphere 2E 1 / r∝

E

R r

KQ/R
2

Note: (i) Net charge on a conductor remains only on the outer surface of a conductor.

(ii) On the surface of spherical conductors charge is uniformly distributed.
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Solved Examples

JEE Main/Boards

Example 1: A block having mass m and charge –q is 
resting on a frictionless plane at a distance L from fixed 
large non-conducting infinite sheet of uniform charge 
density s as shown in figure. Discuss the motion of the 
block assuming that collision of the block with the sheet 
is perfectly elastic. Is it SHM?

R

qE

Sheet

mg

m

L

Sol: Electric force produced by sheet will accelerate the 
block towards the sheet producing an acceleration.

Acceleration will be uniform because electric field E due 
to the sheet is uniform

0
F qEa , where E / 2
m m

= = = σ ε

As initially the block is at rest and acceleration is 
constant, from second equation of motion, time taken 
by the block to reach the wall

2 04mL1 2L 2mLL at i.e., t
2 a aE a

ε
= = = =

σ

As collision with the wall is perfectly elastic, the block 
will rebound with same speed and as now its motion 
is opposite to the acceleration, it will come to rest after 
travelling same distance L in same time t. After stopping 
it will be again accelerated towards the wall and so the 
block will execute oscillatory motion with ‘span’ L and 
time period.

04mL2mLT 2t 2 2
aE a

ε
= = =

σ

However, as the restoring force F=qE is constant and 
not proportional to displacement x, the motion is not 
simple harmonic.

Example 2: How many electrons must be given to a 
neutral body so that it could acquire a charge of 4.0 pC?

Sol: Formula based.

On giving electrons, body acquires-ve charge and to 
acquire a net charge of 4pc

12q 4 x10−= C
19e 1.6x10−= C

12
7

19

q 4x10n 2.5x10
e 1.6x10

−

−
⇒ = = =

72.5x10  electrons will have to be given.

Example 3: What is the value of charge on a body if it 
has an excess of 1.5 x 710  electrons?

Sol:  Electrons are negatively charged
7n 1.5x10=  and the body has excess of electrons

⇒ it is- vely charged and charge on it is q=ne
7 19q 1.5x10 x1.6x10−⇒ = C

q 2.4pC⇒ =

Example 4: When 2210  electrons are removed from a 
neutral metal sphere, what is the charge on the sphere?

Sol: Loss of electrons make a body positively charged.

On removing electrons, body acquires +ve charge and 
its value is

q=ne 22 1910 x1.6x10−= =1600 coulomb.

Example 5: Calculate the coulomb force between two 
α -particles separated by a distance of 153.2x10− m.

Sol: Charge on α -particle

We have 19q 2e 3.2x10−
α =+ = C

3.2 x 10 m¹⁵

�

B
�

A

2
0

q q1F
4 r

α α=
πε

19 19
9

30

3.2x10 x3.2x10
9x10 x

3.2x3.2x10

− −

−
=

=90 N (repulsive)

Example 6: Consider two identical spheres P and Q with 
charge q on each. A third sphere R of the same size but 
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uncharged is successively brought in contact with the 
two spheres. What is the new force of repulsion between 
P and Q?

Sol: Charge on two spheres will be equally divided on 
two sphere each times on touching.

When R is kept in contact with R, charge q is equally 
distributed between P and R.

Charge on qP
2

=

Charge on qR
2

=

When R is kept in contact with Q, total charge will again 
be equally distributed.

Charge on q (q / 2) 3qQ
2 4

+
= =

Charge on 3qR
4

=

Initial force of repulsion between P and Q

2
0

1 qxqF(say)
4 r

 
 πε  

Final force of repulsion between P and Q

1
2

0

q 3qx1 32 4F F
4 8r

 
 

= = 
πε   

 

Example 7: Compare the electrostatic force and 
gravitational force taking two protons.

Sol: Simply apply the formula for Gravitational and 
Electrostatic force 

2

e 2
0

1 eF
4 r

=
πε

;
2
p

g 2

m
F G

r
= ;

 
Mass of proton = 1.67×10-27kg

r

r

e

A

e

B

m
p

A

m
p

B

r

36e

g

F
1.24 x10

F
⇒ =

Example 8: A charge Q is to be divided on two objects. 
What should be the value of the charges on the two 
objects, so that the force between them can be 
maximum?

Sol: If a + b constant, than a x b is maximum when a = b.

Let the charges divided on the two objects be q and Q-q 

so that the force between them is 
2

q(Q q)f K
r
−

=

For maximum force, dF 0
dq

=

2

d q(Q q)K 0
dq r

 −
= 

 

2

K d [q(Q q)] 0
dqr

⇒ − =

2d [qQ q ] 0
dq

⇒ − =

QQ 2q 0 q
2

⇒ − = ⇒ =

i.e, the charge must be equally divided.

Example 9: Two identical point charges of magnitude 
Q are kept at a distance r from each other. A third 
point charge q is placed on the line joining the above 
two charges, such that all the three charges are in 
equilibrium. What is the sign, magnitude and position 
of the third charge?

Sol: For equilibrium, net F on each charge = 0

Let identical charges Q be placed at A and B and 
another charge q is at a distance x from A so that it is in 
equilibrium.

+Q q +Q

A B
r

x

∴  Force on q due to charge at A in the + X direction 

=
2

0

1 Qq
4 xπε

 and force on a due to charge at B in the-X 

direction =
2

0

1 Qq
4 (r x)πε −

 

For equilibrium, these two forces must be equal i.e., 

2 2

1 1 ror x
2x (r x)

= =
−

If q was a negative charge, the 

direction of force due to q at B would be in-X and at A 

in +X direction.

But, if all the three charges are of same nature, there 
would be repulsion between charges at A and B also. 
Hence to have equilibrium among three charges, Q must 
be opposite of q so that force of attraction between Q 
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and q=force of repulsion between Q and q.

i.e.. 

2

2 2 2
0 0

0

Q Oq Qq
4 r 4 r r4

2

= =
πε πε  

πε  
 

Qq
4

∴ =

Example 10: A charge Q is uniformly distributed on 
the circumference of a circular ring of radius a. Find the 
intensity of electric field at a point at a distance x from 
the center on the axis of ring.

Sol: Consider a small part of the ring. All points on the 
ring are symmetrical to any point on the axis of the ring.
Given situation is depicted in the figure. Consider an 
infinitesimal element at point A on the circumference of 
the ring. Let charge on this element be dq. The 

magnitude of the intensity of electric field dE


 at a point 
P situated at a distance x from the center on its axis is, 

2 2 2
0

1 dq dqdE k .
4 AP (a x )

= =
πε +

dE

dE cos �

X

dE sin �

� p

�

A

a

Its direction is from A to P. Now consider two 

components of dE


 (i) dE sin θ , parallel to the axis of 
the ring and (ii) dE cos θ , parallel to the axis.

Here it is clear that in the vector sum of intensities due 
to all such elements taken all over the circumference, 
the dE sin θ  components of the diametrically opposite 
elements will cancel each other as they are mutually 
opposite. Hence only dEcos θ  components should be 
considered for integration.

∴  The total intensity of electric field at point P,

2 2

dq OPdEcos k
AP(a x )

= ∫ θ = ∫
+ 2 2 1

2 2 2

dq xE k
(a x )

(a x )

= ∫
+

+

3 3surface2 2 2 22 2

x dxQE k dq
(a x ) (a x )

∴ = ∫ =
+ +

3
0 2 2 2

1 xQ
4

(a x )

=
πε

+

JEE Advanced/Boards

Example 1: An arc of radius r subtends an angle θ  at 
the center with x-axis in a Cartesian coordinate system. 
A charge is distributed over the arc such that the linear 
charge density is λ . Calculate the electric field at the 
origin.

Y

d�

�

rd�

r
�

X

dE
�

Sol: Consider small element on the arc as point charge 
and then proceed by integrating for all such points.
The electric charge distributed on the portion of the 
arc making an angle d φ  is dQ= rdλ φ . The electric field 
produced due to this portion at the origin will be, 

2

k r.ddE
r
λ φ

= The electric field vector dE


 of this portion 
of the arc is indicated in the diagram.

dE


 has two components

x 2

k rddE cos i
r
λ φ

= − φ


and y 2

k r.ddE cos j
r
λ φ

= − φ


0
0

x 0
0

k kE cos d i [sin ] i
r r
λ λ

∴ = ∫ φ φ = − φ θ


 

x
kE sin i ( not )
r
λ

∴ = − φ θ φ




Now, 0
y 0

k kE sin d j [cos ] j
r r
λ λ

= ∫ φ φ = φ θ


 

y
kE
r
λ

∴ =


[ (cos 1) jθ −


]

y
kE [(1 sin ) i (cos 1) j]
r
λ

∴ = − θ + θ −


 

( )î component is just - sin θ

Example 2: Two small spheres each having mass m kg 
and charge q coulomb are suspended from a point by 
insulating threads each 1 metre long but of negligible 
mass. If θ  is the angle each string makes with the 
vertical when equilibrium has been attained, show that

2 2 2
0.q (4mgl sin tan )4= θ θ πε

Sol: Gravitational as well as electrostatic force act on 
each sphere.

Consider two small spheres A and B each of mass 
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m kg and charge q coulomb. When the two spheres 
are suspended from point S by two threads each of 
length I, they repel each other and when equilibrium is 
attained, each string makes an angle θ  with the vertical 
[See figure.].

S

� �

l l

T T

A B FF

q O q

mg mg

Each of the two spheres is acted upon by the following 
three forces:

(i) The electrostatic force of repulsion f directed away 
from each other.
(ii) The weight mg of the sphere acting vertically 
downwards.
(iii) The tension T in the string directed towards point S.
Since the two spheres are in equilibrium, the three 
forces acting on a sphere can be represented by the 
three sides of the ∆ AOS taken in order. For sphere A, 
we have at equilibrium by Lami’s theorem

mgF T
OA SO AS

= =  � … (i)

Here, OA lsin ; SO lcos And AB 2AO 2lsin= θ = θ = = θ

and 
2

2 2 2
0 0

1 qxq 1 qF
4 4AB 4l sin

= ⋅ = ⋅
πε πε θ

From equation (i), we have OAF mgx
SO

=

2

2 2
0

2 2 2
0

lsin1 qor mgx
4 lcos4l sin

or q (4mgl sin tan )4

θ
⋅ =

πε θθ

= θ θ πε

Example 3: A point charge + 10µC is at a distance 5 
cm directly above the center of a square of side 10 cm 
as shown in Fig. What is the magnitude of the electric 
flux through the square?

D

A B

10 cm

C
5 cm

O

q + = +10 C�

Sol: Charge is symmetric to all faces of the cube, hence 
by symmetry each face would have equal flux passing 
though it.
Here, 5q 10 C 10 C−= + µ =

x

O
q

A
q

B

0.16m

Consider that the charge q is at a distance of 5cm 
from the square ABCD of each side 10 cm [figure]. The 
square ABCD can be considered as one of the six faces 
of a cube of each side 10cm. Then, according to Gauss’s 
theorem, total electric flux through all the six faces of 
the cube, 

0

q
φ =

ε
 

x
�

-�III III

Obviously, the flux through the square ABCD will be

0

1 1 qx x
6 6

φ = φ =
ε

5
5 2 1

12

1 10x 1.88x10 N m C
6 8.854x10

−
−

−
= =

Example 4: Two large thin metal plates are parallel and 
close to each other as shown in the figure. On their 
inner faces, the plates have surface charge densities 
of opposite signs and of magnitude 17.0  × 10–22 Cm–2. 
What is E (i) to the left of the plates, (ii) to the right of 
the plates and (iii) between the plates?

Sol: Apply formula for Electric field intensity due to 
charged plate.

Here 22 217.0x10 Cm− −σ =

(i) To the left of plates: The region I is to the left of the 
plates. Therefore, the electric field to the left of plates 
is zero.
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(ii) To the right of plates: The region II is to the right 
of the plates. Again, the electric field in the region II is 
zero.

(iii) Between the two plates, the electric field given by
22

10 1
12

0

17.0x10E 1.92x10 NC
8.854x10

−
− −

−

σ
= = =
ε

Example 5: A parallel plate capacitor is to be designed 
with a voltage rating 1 kV, using a material of dielectric 
constant 3 and dielectric strength about 107 Vm–1. 
(Dielectric strength is the maximum electric field a 
material can tolerate without breakdown, i.e., without 
starting to conduct electricity through partial ionization.) 
For safety, we should like the field never to exceed, say 
10% of the dielectric strength. What minimum area of 
the plates is required to have a capacitance of 50 pF?

Sol: Maximum field strength should be 10% of the 
dielectric strength of the material,.

10% of the given field i.e. 7 110 Cm−  

Given 7 1E 0.1x10 Cm−=

Using dVE
dr

= −  i.e. VE
r

= , we get

3
7

V 1000r 10 m
E 0.1x10

−= = =

Using 0 r A
C

d
∈ ∈

= , we get

0 r 0 r

Cd CrA = =
∈ ∈ ∈ ∈

12 3
2

12

(450x10 )(10 )
19 cm .

8.854 x10 x3

− −

−
= =

Example 6: The electrostatic force on a small sphere 
of charge 0.4 µC due to another small sphere of 
charge-0.8µC in air is 0.2 N.

(i) What is the distance between the two spheres?

(ii) What is the force on the second sphere due to the 
first?

Sol: Consider each sphere as a point change and apply 
Coulomb’s law.

(i) Force on charge 1 due to charge 2 is given by the 
relation

9 1 2
12 2

q q
F 9x10

r
=

2 12
9

1 2

F
r

(9x10 )q q
⇒ =

9 6 6

0.2
(9x10 )(0.8x10 )(0.4 x10 )− −

=  

i.e. r=0.12m

(ii) 12 12F F 0.2 N,= = Attractive F21=F12.

Example 7: Electric field in the above figure is directed 
along + x direction and given by xE 5Ax 2B= + , where E 
is in 1NC−  and x is in meter. A and B are constants with 
dimensions. 

Y

X
M

-10 cm

N

Z

Taking A= 1 1 110NC m and B 5 NC− − −= , Calculate

(i) The electric flux through the cube.

(ii) Net charge enclosed within the cube.

Sol: Vector rotation of area and Gauss’s Law for net 
enclosed charged is applied.

(i) Given xE 5Ax 2B= + . The electric field at face  
M where x=0 is 1E 2B= The electric field at face N where 
x = 10cm=0.010m is 2E =5A x 0.10+ 2B= 0.5A+2B

The electric flux through face M is 

1 1 1 1 1 1 1E .S E S cos E Sφ = = π = −


22Bxl= −  where 1=10 cm= 0.01 m 

The electric flux through face N
2

2 2 2 2 1E S E S cos 0 (0.5A 2B)lφ = ⋅ = = +


Net electric flux 1 2φ = φ + φ

2 2 22Bl (0.5A 2B)l 0.5Al= − + + =

2 20.5x10x(0.10) 5x10 Vm−= =

(ii) If θ  is net charge enclosed within the cube, then by 

Gauss’s theorem 
0

1 qφ =
ε

12 2 13
0 8.85x10 x5x10 C 4.425x10 C− − −φ = ε φ = =

Example 8: Four electric charges, +q,+q, -q and –q are 
respectively placed on the vertices A, B, C and D of 
square. The length of the square is a. Calculate the 
intensity of the resultant electric field at the center.

BA

D C

+q +q

-q -q

O
E +E

B D

E
�

E +E
A C

Sol: Apply Superposition of electrostatic forces.

All the electric charges are equidistant from the center 
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O. If r is the distance of vertices from the center, we 

have, A B C D 2

kqE E E E
r

= = = =

The directions of these electric fields are as shown in 
figure. 

If E’ is the resultant field of BE  and DE

B D 2

kqE' E E 2
r

= + =

E is the resultant of E’ and E’’. It is evident from the 
geometry of the figure that,

2 2
2 2 2

4

8k qE E' E''
r

= + = Using 

r=
2

a q,E 4 2k
a2

=

JEE Main/Boards

Exercise 1 

Q.1 Electrostatic force between two charges is called 
central force. Why?

Q.2 In Coulomb’s law, on what factors the value of 
electrostatic force constant k depends?

Q.3 Define dielectric constant of a medium.

Q.4 Dielectric constant of water is 80. What is its 
permittivity?

Q.5 State the principle of superposition of forces in 
electrostatics.

Q.6 How many electrons must be removed from a 
conductor, so that it acquires a charge of 3.5nC?

Q.7 A point charge of 710−  coulomb is situated at the 
center of a cube of 1 m side. Calculate the electric flux 
through its surface.

Q.8 Find the electric flux through each face of a hollow 
cube of side 10 cm, if a charge of 8.854µC is placed at 
its center.

Q.9 What is the force between two small charged 
spheres having charges of 2 x 710− C and 3 x 710− C 
placed 30 cm apart in air?

Q.10 A polythene piece rubbed with wool is found to 
have a negative charge of 3 x 710− C.

(i) Estimate the number of electrons transferred (from 

which to which?)

(ii) Is there a transfer of mass from wool to polythene?

Q.11 Give two properties of electric lines of force. 
Sketch them for an isolated positive charge.

Q.12 An infinite line charge produces a field of 9 x 410  
N/C at a distance of 2 cm. Calculate the linear charge 
density.

Q.13 Calculate the Coulomb’s force between a proton 
and electron separated by 0.8 x 1510− m.

Q.14 If the distance between two equal point charges is 
doubled and their individual charges are also doubled, 
what would happen to the force between them?

Q.15 Which is bigger, a coulomb or charge on an 
electron? How many electronic charge form one 
coulomb of charge?

Q.16 What is the amount of charge possessed by 1kg 
of electrons? Given that mass of an electron is 9.1 x 

3110− kg.

Q.17 Four charges +q, ..+q,-q,-q are placed respectively 
at the four corners of a square of side a. Find the 
magnitude and direction of the electric field at the 
center of the square.

Q.18 Four point charges A Bq 2 C, q= µ  
C D5 C, q 2 C and q 5 C= − µ = µ = µ are located at corners 

of a square ABCD of side 10 cm. What is the force on a 
charge of 1 µC placed at the center of the square?
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Q.19 Two point charges A Bq 3 C and q 3 C= µ = µ are 
located 20 cm apart in vacuum.

(i) What is the electric field at the midpoint O of the line 
AB joining the two charges?

(ii) If a negative test charge of magnitude 1.5 x 910− C 
is placed at this point, what is the force experienced by 
the test charge?

Q.20 Consider a uniform electric field E=3 x 310  i


N/C. 
(i) What is the flux of this field through a square of 10 
cm on a side whose plane is parallel to the yz plane?  
(ii) What is the flux through the same square if the 
normal to its plane makes a o60 angle with the x-axis?

Q.21 A point charge +10µC is at 5 cm

1
0

c
m

10 cm

a distance of 5 cm directly above 
the center of a square of side 10 
cm, as shown in figure What is the 
magnitude of the electric flux 
through the square?

Q.22 Show that the electric field at the surface of a 

charged conductor is given by 
0

E nσ
=
ε
 , where σ  is the 

surface charge density and n is a unit vector normal to 

the surface in the outward direction.

Q.23 A copper atom consists of copper nucleus 
surrounded by 29 electrons. The atomic weight of 
copper is 63.5 g Let us now take two pieces of copper 
weighing 10 g. Let us transfer one electron from one 
piece. What will be the Coulomb force between the two 
pieces after the transfer of electrons, if they are 1 cm 
apart? Avogadro number = 6 × 1023 C mol–1, charge on 
an electron = 1.6 × 10–19 C.

Q.24 Two fixed point charged 4Q and 2Q are separated 
by a distance x. Where a third point charge q should be 
placed for it to be in equilibrium?

Q.25 It is required to hold four equal point charges +q 
in equilibrium at the corners of a square. Find the point 
charge that will do this, if placed at the center of the 
square.

Q.26 Four point charges, each having a charge q are 
placed on the four corners A, B, C and D of a regular 
pentagon ABCEDE. The distance of each corner from 
the center is a. Find the electric field at the center of 
the pentagon.

Q.27 Define electric flux, Write its S.I. unit, A charge q is 
enclosed by a spherical surface of radius R. If the radius 
is reduced to half, how would the electric flux through 
the surface charge?

Q.28 A positive point charge (+q) is kept in the vicinity 
of an uncharged conducting plate. Sketch electric field 
lines originating from the point on to the surface of the 
plate.

Derive the expression of the electric field at the surface 
of a charged conductor.

Exercise 2 
Single Correct Question

Q.1 A point charge 50 Cµ  is located in the XY plane 
at the point of position vector 0r 2 i 3 j= +

 

what is the 
electric field at the point of position vector r 8 i 5 j= +

 

.

(A) 1200V/m	 (B) 0.04V/m

(C) 900V/m	 (D) 4500V/m

Q.2 A point charge q is placed at origin. Let A, B CE E and E  
be the electric field at three points A (1, 2, 3), B (1, 1,-1) 
and C (2, 2, 2) due to charge q Then

[i] A BE E⊥  [ii] B CE | 4 | E |= Select the correct alternative

(A) Only [i] is correct	

(B) (B) only [ii] is correct

(C) Both [i] and [ii] are correct	

(D) (D) both [i] and [ii] are wrong

Q.3 Two identical point charges are placed at a 
separation of l. P is a point on the line joining the 
charges, at a distance x from any one charge, The field 
at P is E. E is plotted against x for values of x from close 
to zero to slightly less than l. Which of the following 
best represents the resulting curve?

E

O L
x

E

O L
x

E

O

L
x

E

O

L
x

(A) (B)

(  )C
(D)
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Q.4 Four charges are arranged at the corners of a 
square ABCD, as shown. The force on a +ve charge kept 
at the center of the square is  �

-q

A B

C D

-2q +2q

+q(A) Zero

(B) Along diagonal AC 

(C) Along diagonal BD

(D) Perpendicular to the side AB

Q.5 Two free positive charges 4q and q are a distance l 
apart. What charge Q is needed to achieve equilibrium 
for the entire system and where should it be placed 
from charge q ?

(A) 4 lQ q(negative)at
9 3

=

(B) 4 lQ q(positive)at
9 3

= (C) lQ q(positive)at
3

=

(D) lQ q(negative)at
3

=

Q.6 A small particle of mass m and charge –q is placed 
at point P on the axis of uniformly charged ring and 
released. If R >> x, the particle will undergo oscillation 
along the axis of symmetry with an angular frequency 
that is equal to

R

Q

X

P

(A)
3

0

qQ
4 mRπε 	

(B) 
4

0

qQx

4 mRπε
	

(C) 
3

0

qQ
4 mRπε

	  (D) 
4

0

qQx
4 mRπε

Q.7 Which of the following is a volt:

(A) Erg per cm	

(B) Joule per coulomb

(C) Erg per ampere

(D) Newton/(Coulomb x 2m )

Q.8 A charged particle having some mass is resting 
in equilibrium at a height H above the center of a 
uniformly charged non-conducting horizontal ring 
of radius R. The force of gravity acts downwards. The 

equilibrium of the particle will be stable

(A) for all values of H	 (B) only if H> R

2

(C) only if H < R

2
	 (D) only if H= R

2

Q.9 Point P lies on the axis of a dipole. If the dipole is 
rotated by o90  anti-clock wise, the electric field vector 
E at P will rotate by

(A) o90  Clock wise	 (B) o180 	

(C) o90 Anti clock wise	 (D) no ne

Q.10 The Fig. shows 
the electric field lines in 
the vicinity of two point 
charges. Which one of 
the following statements 
concerning this situation 
is true?

(A) 1q is negative and 2q  is positive	

(B) The magnitude of the ratio ( 2q / 1q ) is less than one

(C) Both 1q  and 2q  have the same sign of charge

(D) The electric field is strongest midway between the 
charges.

Q.11 Electric flux through a surface of area 100 2m  
lying in the xy plane is (in V-m) if ˆ ˆ ˆE i 2 j 3k= + +

(A) 100	 (B) 141.4 

(C) 173.2	 (D) 200

Q.12 An infinite, uniformly

R

X

�

charged sheet with surface 
charge density σ  cuts through 
a spherical Gaussian surface of 
radius R at a distance x from its 
center, as shown in the Fig. 
18.80. The electric flux Φ
through the Gaussian surface is

(A) 
2

0

Rπ σ
ε

	 (B)
2 2

0

2 (R x )π −
σ ε

(C) 
2

0

(R x)π −
σε

	 (D) 
2 2 2

0

(R x )π − σ
ε

Q.13 Two identical small conducting spheres, having 
charges of opposite sign, attract each other with a 
force of 0.108 N when separated by 0.5 m. The spheres 

q₁

q₂
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are connected by a conducting wire, which is then 
removed, and thereafter, they repel each other with a 
force of 0.036 N. The initial charges on the spheres are

(A) 6 65x10 C and 15x10 C− −±  	

(B) 6 61.0x10 C and 3.0x10 C− −± 

(C) 6 62.0x10 C and 6.0x10 C− −±  	

(D) 6 60.5x10 C and 1.5x10 C− −± 

Previous Years’ Questions 

Q.1 An alpha particle of energy 5 MeV is scattered 
through o180 by a fixed uranium nucleus. The distance 
of closest approach is of the order of � (1981)

(A) l Â 	 (B) 1010 cm−

(C) 1210 cm− 	 (D) 1510 cm−

Q.2 Two equal negative charges – q are fixed at points 
(0,-a) and (0,a) on y-axis. A positive charge Q is released 
from rest at the point (2a, 0) on the x-axis. The charge Q 
will � (1984)

(A) Execute simple harmonic motion about the origin

(B) Move to the origin and remain at rest

(C) Move to infinity

(D) Execute oscillatory but not simple harmonic motion

Q.3 A charge q is placed at the centre of the line joining 
two equal charges Q. The system of the three charges 
will be in equilibrium if q is equal to � (1987)

(A) Q
2

−
      

(B) Q
4

−  	 (C) Q
4

+  	       (D) Q
2

+

Q.4 The magnitude of electric Q

-q +q
a

field E


 in the annular region of a 
charged cylindrical capacitor	�
� (1996)

(A) Is same throughout

(B) Is higher near the outer 
cylinder than near the inner 
cylinder

(C) Varies as 1/r where r is the distance from the axis

(D) Varies as 1/ 2r  where r is the distance from the axis

Q.5 A metallic solid sphere is placed in a uniform 

electric field. The lines of force follow the path(s) shown 
in figure as� (1996)

1

2

3

4

1

2

3

4

(A) 1           (B) 2	 (C)3	        (D) 4

Q.6 An electron of mass em , initially at rest, moves 
through a certain distance in a uniform electric field 
in time 1t . A proton of mass pm , also initially at rest, 
takes time 2t  to move through an equal distance in this 
uniform electric field. Neglecting the effect of gravity, 
the ratio 2t / 1t  is nearly equal to.	  � (1997)

(A) 1	 (B) 1/2
p e(m / m )

(C) 1/2
e p(m / m )  	 (D) 1836

Q.7 A non-conducting ring of radius 0.5 m carries a total 
charge of 1.11×10-10  C distributed non-uniformly on its 
circumference producing an electric field E everywhere 
in space. The value of the integral t 0

t E dl=
=∞∫ − ⋅

 

 (l=0 being 
center of the ring) in volt is �  (1997)

(A) +2         (B) -1	 (C) -2 	      (D) zero

Q.8 Three charges Q, +q and +q are placed at the 
vertices of a right angle triangle (isosceles triangle) as 
shown. The net electrostatic energy of the configuration 
is zero, if Q is equal to � (2000)

(A) q

1 2

−

+   
(B) 2q

2 2

−

+
	(C)-2q	      (D) +q

Q.9 Three positive charges of equal value q are placed 
at the vertices of an equilateral triangle. The resulting 
lines of force should be sketched as in� (2001)

(A) (B)

(  )C

(D)
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Q.10 A metallic shell has a point charge q kept inside its 
cavity. Which one of the following diagrams correctly 
represent the electric lines of force?� (2003)

(A) (B)

(D)(  )C

(A) (B)

(D)(  )C

Q.11 Six charges, three positive and three negative 
of equal magnitude are to be placed at the vertices 
of a regular hexagon such that the electric field at 
O is double the electric field when only one positive 
charge of same magnitude is placed at R. Which of the 
following arrangements of charge is possible for, P, Q, 
R, S, T and U respectively? � (2004)

(A) +, -, +, -, -,+	 (B) +, -, +, -, +, -

(C) +, +, -, +, -, -	 (D) -, +, +, -, +, -

Q.12 Consider the charge configur- P Q

R

ST

U O

ation and a spherical Gaussian 
surface as shown in the figure. 
When calculating the flux of the 
electric field over the spherical 
surface, the electric field will be due 
to	�  (2004)

(A) 2q 				    (B) Only the positive charges

(C) All the charges		  (D) 1 1q and q+ −

Q.13 Three infinitely long charge sheets are placed as 
shown in figure. The electric field at point P is� (2005)

z

P
z  =3a

z  =0

x

z =-a

�

-2�

-�

(A) 
0

2 kσ
ε



   
(B) 

0

2 kσ−
ε



	 (C) 
0

4 kσ
ε



	     (D) 
0

4 kσ−
ε



Q.14 Consider a neutral conducting sphere. A positive 
point charge is placed outside the sphere. The net 
charge on the sphere is then� (2007)

q
2

+q
1

-q
1

(A) Negative and distributed uniformly over the surface 
of the sphere

(B) Negative and appears only at the point on the 
sphere closest to the point charge

(C) Negative and distributed non-uniformly over the 
entire surface of the sphere

(D) zero

Q.15 A spherical portion has been 
removed from a solid sphere having a 
charge distributed uniformly in its 
volume as shown in the figure. The 
electric field inside the emptied space 
is � (2007)

(A) Zero everywhere		 (B) Non-zero and uniform

(C) Non-uniform		  (D) Zero only at its center

Q.16 A disk of radius a
4

having a uniformly distributed 

charge 6C and 6C is placed in the x-y plane with its 

center at a ,0,0
2

 −
 
 

. A rod of length a carrying a 

uniformly distributed charge 8C is placed on the x-axis 

from ax
4

=  to 5ax
4

= . Two point charges -7C and 3C 

are placed at a a, ,0
4 4

 −
 
 

 and 3a 3a, ,0
4 4

 −
 
 

. Respectively. 

Consider a cubical surface formed by six surfaces 

a a ax , y , z
2 2 2

= ± = ± = ± . The electric flux through this 

cubical surface is� (2009)

y

x

(A)
0

2C−
ε        

(B) 
0

2C
ε

	 (C) 
0

10C
ε

 	         (D) 
0

12C
ε
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Q.17 Three concentric metallic spherical shells of 
radii R, 2R and 3R are given charges 1 2 3Q , Q and Q  
respectively. It is found that the surface charge densities 
on the outer surfaces of the shells are equal. Then the 
ratio of the charges given to the shells, 1 2 3Q :Q : Q is 
� (2009) 

(A) 1:2:3      (B) 1:3:5	 (C) 1:4:9	          (D) 1:8:18

Q.18 A tiny spherical oil drop carrying a net charge q is 

balanced in still air with a vertical uniform electric field 

of strength 5 181 x10 Vm
7

−π , When the field is switched 

off, the drop is observed to fall with terminal velocity 
3 12x10 ms− − . Given g= 29.8ms− , viscosity of the air 

=1.8 x 510−  Ns 2m− and the density of oil = 900 kg m-3, 

the magnitude of q is� (2010)

(A) 1.6 x10-19C 	 (B) 3.2 x10-19C 

(C) 4.8 x10-19C 	 (D) 8.0 x10-19C 

Q.19 A uniformly charged thin spherical shell of radius 
R carries uniform surface charge density of σ  per 
unit area. It is made of two hemispherical shells, held 
together by pressing them with force F (see figure). F is 
proportional to� (2010)

F F

(A) 2 2

0

1 Rσ
ε    

(B) 2

0

1 Rσ
ε

	   (C) 
2

0

1
R
σ

ε
	 (D) 

2

2
0

1
R
σ

ε

Q.20 Consider an electric field 0E E x=


 , where 0E  is a 
constant. The flux through the shaded area (as shown 
in the figure) due to this field is � (2011)

z

(a,a,a)(a,0,a)

(0,0,0) (0,a,0)
y

x

(A) 2
02E a      (B) 2

02E a 	   (C) 2
0E a 	 (D) 

2
0E a

2

Q.21 In a uniformly charged sphere of total charge Q 
and radius R, the electric field E is plotted as a function 
of distance from the centre. The graph which would 
correspond to the above will be� (2012)

E

R r

E

R r

E

R r

E

R r

(A) (B)

(  )C (D)

Q.22 Two charges, each equal to q, are kept at x = −a 
and x = a on the x-axis. A particle of mass m and charge 

0
qq
2

=  is placed at the origin. If charge 0q  is given a 
small displacement (y << a) along the y-axis, the net 
force acting on the particle is proportional to: � (2013)

(A) – y          	 (B) 1
y

	

(C) 1
y

− 	 (D) y

Q.23 A long cylindrical shell carries positive surface 
charge σ  in the upper half and negative surface charge 
-σ  in the lower half. The electric field lines around 
the cylinder will look like figure given in: (figures are 
schematic and not drawn to scale) � (2015)
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JEE Advanced/Boards

Exercise 1 

Q.1 A negative point charge 2q and a positive charge q 
are fixed at a distance l apart. Where should a positive 
test charge Q be placed on the line connecting the 
charge for it to be in equilibrium? What is the nature 
of the equilibrium with respect to longitudinal motion?

Q.2 Draw E-r graph for 0<r<b, 

0

a b
r

if two point charges a & b are 
located r distance apart, when

(i) Both are + ve

(ii) Bothe are – ve

(iii) a is + ve and b is – ve

(iv) a is – ve and b is + ve

Q.3 A clock face has negative charges –q, -2q, -3q, 
…….., , -12q fixed at the position of the corresponding 
numerals on the dial. The clock hands do not disturb 
the net field due to point charges. At what time does 
the hour hand point in the same direction as electric 
field at the center of the dial.

Q.4 A charge + 910− C is located at the origin in free 
space & another charge Q at (2, 0, 0). If the X-component 
of the electric field at (3, 1, 1) is zero, calculate the value 
of Q. Is the Y-component zero at (3, 1, 1)?

Q.5 A simple pendulum of length l and
+
+
+
+
+
+
+
+
+

�

l

 
bob mass m is hanging in front of a 
large non - conducting sheet having 
surface charge densityσ . If suddenly a 
charge +q is given to the bob & it is 
released from the position shown in 
figure. Find the maximum angle 
through which the string is deflected 
from vertical.

Q.6 A particle of mass m and charge –q moves along 
a diameter of a uniformly charged sphere of radius R 
and carrying a total charge + Q. Find the frequency of 
S.H.M. of the particle if the amplitude does not exceed 
R.

Q.7 A charge +Q is uniformly distributed over a thin 
ring with radius R. A negative point charge –Q and 
mass m starts from rest at a point far away from the 
center of the ring and moves towards the center. Find 
the velocity of this particle at the moment it passes 
through the center of the ring.

Q.8 A point charge +q & mass 100 gm experiences a 
force of 100 N at a point at a distance 20 cm from a 
long infinite uniformly charged wire. If it is released find 
its speed when it is at a distance 40 cm from wire

Q.9 consider the configuration of a system of four 
charges each of value +q. Find the work done by 
external agent in changing the configuration of the 
system from figure (i) and figure (ii).

+q +q

+ q + q

a
(I)

+q

+q

a

+q

+q

(II)

Q.10 Two identical particles of mass m carry charge 
Q each. Initially one is at rest on a smooth horizontal 
plane and the other is projected along the plane 
directly towards the first from a large distance with an 
initial speed V. find the closest distance of approach.

R

a

Q

Q.11 A particle of mass m and negative charge q is 
thrown in a gravity free space with speed u from the 
point A on the large non conducting charged sheet 
with surface charge densityσ , as shown in figure. Find 
the maximum distance from A on sheet where the 
particle can strike.

u

+

+

+

+

+

+

+

+

+ A

�

�
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Q.12 The length of each side of a cubical closed surface 
is l. If charge q is situated on one of the vertices of the 
cube, then find the flux passing through shaded face of 
the cube.

q

Q.13 A point charge Q is located on the axis of a disc 
of radius R at a distance a from the plane of the disc. 
If one fourth (1/4th) of the flux from the charge passes 
through the disc, then find the relation between a & R.

Q.14 Two thin conducting shells of radii R and 3R are 
shown in figure. The outer shell carries a charge +Q 
and the inner shell is neutral. The inner shell is earthed 
with the help of switch S. find the charge attained by 
the inner shell.

+Q
3R

SR

Q.15 Consider three identical metal spheres A, B and 
C. spheres A carries charge + 6q and sphere B carries 
charge -3q. Sphere C carries no charge. Spheres A and 
B are touched together and then separated. Sphere C is 
then touched to sphere A and separated from it. Finally 
the sphere C is touched to sphere B and separated from 
it. Find the final charge on the sphere C.

Q.16 Six charges are placed at the vertices of a regular 
hexagon as shown in the figure. Find the electric field 
on the line passing through O and perpendicular to 
the plane of the figure as a function of distance x from 
point O. 

+Q -Q

-Q

O

+Q

+Q -Q
a

Q.17 A circular ring of radius R with uniform positive charge 
density λ  per unit length is fixed in the Y-Z plane with its 
center at the origin O. A particle of mass m and positive 
charge q is projected from the point P ( 3R,0,0) on the 
positive X-axis directly towards O, with initial velocity v.  

Find the smallest value of the speed v such that the 
particle does not return to P.

Q.18 2 small balls having the same mass & charge & 
located on the same vertical at heights 1 2h & h  are 
thrown in the same direction along the horizontal at 
the same velocity v. The 1st ball touches the ground 
at a distance l from the initial vertical. At what height 
will the 2nd ball be at this instant? The air drag & the 
charges induced should be neglected.

Q.19 Two identical balls of charges 1 2q & q initially have 
equal velocity of the same magnitude and direction. 
After a uniform electric field is applied for some time, 
the direction of the velocity of the first ball changes 
by o60 and the magnitude is reduced by half. The 
direction of the velocity of the second ball changes by

o90 . In what proportion will the velocity of the second 
ball changes?

Q.20 Small identical balls with equal charges are fixed 
at vertices of regular 2008- g on with side a. At a certain 
instant, one of the balls is released & a sufficiently long 
time interval later, the ball adjacent to the first released 
ball is freed. The kinetic energies of the released balls 
are found to differ by K at a sufficiently long distance 
from the polygon. Determine the charge q of each part.

Q.21 A non - conducting ring of mass m and radius R 
is charged as shown. The charged density i.e. charge 
per unit length is λ . It is then placed on a rough non 
- conducting horizontal surface plane. At time t=0, a 
uniform electric field 0E E i=  is switched on and the ring 
start rolling without sliding. Determine the frictional 
force (magnitude and direction) acting on the ring, 
when it starts moving.

y

x

+
+

+

+

-
-

-
-

Q.22 Find the electric field at the center of semicircular 
ring shown in figure.

Y

-q q

R
X

+
+

+
+
+

-
-
-
-
-

- - -
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Q.23 Two concentric rings, one of radius ‘a’ and the 
other of radius ‘b’ have the charges +q and 3/2(2 / 5)−−
q respectively as shown in the figure. Find the ratio 
b/a if a charge particle placed on the axis at z=a is in 
equilibrium.

b

q =-(2/5) q
B

-3/2

a

q =+q
A

z=a

Q.24 A positive charge Q is uniformly distributed 
throughout the volume of a non - conducting sphere 
of radius R. A point mass having charge +q and mass 
m is fired towards the center of the sphere with velocity 
v from a point at distance r(r > R) from the center of 
the sphere. Find the minimum velocity v so that it can 
penetrate R/2 distance of the sphere. Neglect any 
resistance other than electric interaction. Charge on the 
small mass remain constant throughout the motion.

Q.25 A cavity of radius r is present inside a solid 
dielectric sphere of radius R, having a volume charge 
density of ρ . The distance between the centers of the 
sphere and the cavity is a. An electron e is kept inside 
the cavity at an angle o45θ =  as shown. How long will 
it take to touch the sphere again?

a

�
r
e

Exercise 2 
Single Correct Choice Type

Q.1 Mid way between the two equal and similar charges, 
we placed the third equal and similar charge. Which of 
the following statements is correct, concerning to the 
equilibrium along the line joining the charges 

(A) The third charge experienced a net force inclined to 
the line joining the charges.

(B) The third charge is in stable equilibrium.

(C) The third charge is in unstable equilibrium.

(D) The third charge experiences a net force 
perpendicular to the line joining the charges.

Q.2 Select the correct statement: (Only force on a 
particle is due to electric field)

(A) A charged particle always moves along the electric 
lines of force.

(B) A charged particle may move along the line of force.

(C) A charged particle never moves along the line of 
force.

(D) A charged particle moves along the line of force 
only if released from rest.

Q.3 A conducting sphere of radius r has a charge. Then

(A) The charge is uniformly distributed over its surface, 
if there is an external electric field.

(B) Distribution of charge over its surface will be non-
uniform if no external electric field exists in space.

(C) Electric field strength inside the sphere will be equal 
to zero only when no external electric field exists. 

(D) Potential at every point of the sphere must be same.

Multiple Correct Choice Type

Q.4 Two fixed charges 4Q (positive) and Q (negative) 
are located at A and B, the distance AB being 3 m.

A

+ 4Q -Q

B3 m

(A) The point P where the resultant field due to both is 
zero is on AB outside AB.

(B) The point P where the resultant field due to both is 
zero is on AB inside AB.

(C) If a positive charge is placed at P and displaced 
slightly along AB it will execute oscillation

(D) If a negative charge is placed at P and displaced 
slightly along AB it will execute oscillations.

Q.5 Three point charges Q, 4Q and 16Q are placed on 
a straight line 9 cm long. Charges are placed in such 
a way that the system has minimum potential energy. 
Then

(A) 4Q and 16Q must be at the ends and Q at a distance 
of 3 cm from the 16Q.

(B) 4Q and 16Q must be at the ends and Q at a distance 
of 6 cm from the 16Q.

(C) Electric field at the position of Q is zero.

(D) Electric field at the position of Q is 
0

Q
4πε

.



Physics  |   18.39

Q.6 Two infinite sheets of uniform charge density 
and+σ − σ  are parallel to each other as shown in the 

Fig. 18.103, Electric field at the

-�+�

+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-

(A) Points to the left or to the right of the sheets is zero.

(B) Midpoint between the sheets is zero.

(C) Midpoint of the sheets is 0/σ ε and is directed 
towards right.

(D) Midpoint of the sheet is 2 0/σ ε  and is directed 
towards right.

Q.7 A particle of mass m and charge q is thrown in 
a region where uniform gravitational field and electric 
field are present. The path of particle

(A) May be a straight line		 (B) May be a circle

(C) May be a parabola		  (D) May be a hyperbola

Assertion Reasoning Type

(A) Statement-I is true, statement-II is true and 
statement-II is correct explanation for statement-I

(B) Statement-I is true, statement-II is true and  
statement-II is NOT the correct explanation for statement-I

(C) Statement-I is true, statement-II is false.

(D) Statement-I is false, statement-II is true.

Q.8: Statement-I: A positive point charge initially 
at rest in a uniform electric field starts moving along 
electric lines of forces. (Neglect all other forces except 
electric forces)

Statement-II: Electric lines of force represents path of 
charged particle which is released from rest in it.

Q.9: Statement-I: For a non-uniformly charged thin 
circular ring with net charge zero, the electric potential 
at each point on axis of the ring is zero.

Statement-II: For a non-uniformly charged thin circular 
ring with net charges zero, the electric field at any point 
on axis of the ring is zero.

Q.10: Statement-I: If a concentric spherical Gaussian 
surface is drawn inside this spherical shell of charge, 
electric field (E) at each point of surface must be zero.

tatement-II: In accordance with Gauss’s law

net enclosed
E

0

net enclosed E

Q
E.dA

Q 0 implies 0

φ = =
ε

= φ =

∫
 

Q.11: Statement-I: In a given situation of arrangement 

of charges, an extra charge is placed outside the 

Gaussian surface. In the Gauss Theorem in
in

0

Q
E.ds Q=

ε∫
remains unchanged whereas electric field E at the site 

of the element is changed.

Statement-II: Electric field E at any point on the 
Gaussian surface is due to inside charge only.

Q.12: Statement-I: The flux crossing through a closed 
surface is independent of the location of enclosed 
charge.

Statement-II: Upon the displacement of charges within 
a closed surface, the E at any point on surface does not 
charge.

Previous Years’ Questions 

Paragraph: (Q.1-Q.4) The nuclear charge (Ze) is non-
uniformly distributed within a nucleus of radius R. 
The charge density p(r) (change per unit volume) is 
dependent only on the radial distance r from the center 
of the nucleus as shown in figure, the electric field is 
only along the radial direction.

�(r)

a R
r

d

Q.1 The electric field r=R is �  (2008)

(A) Independent of a

(B) Directly proportional to a

(C) Directly proportional to 2a

(D) Inversely proportional to a

Q.2 For a=0, the value of d (maximum value of p as 
shown in the figure) is� (2008)

(A)
3

3Ze
4 Rπ

     (B)
3

3Ze
Rπ

	   (C)
3

4Ze
3 Rπ

 	 (D)
3

Ze
3 Rπ
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Q.3 The electric field within the nucleus is generally 
observed to be linearly dependent on r. This implies 
� (2008)

(A) a=0      (B) Ra
2

= 	 (C) a R= 	       (D) 2Ra
3

=

Q.4 Under the influence of the coulomb field of charge 
+Q, a charge –q is moving around it in an elliptical 
orbit. Find out the correct statement(s). � (2008)

(A) The angular momentum of the charge –q is constant

(B) The linear momentum of the charge –q is constant

(C) The angular velocity of the charge –q is constant

(D) The linear speed of the charge –q is constant.

Q.5 A positively charged thin metal ring of radius R is 
fixed in the x-y plane with its centre at the origin O. A 
negatively charged particle P is released from rest at 
the point (0, 0, 0z ) where 0z >0. Then the motion of P is 
� (1998)

(A) Periodic for all values of 0z satisfying 0< 0z <∞ .

(B) Simple harmonic for all values of 0z satisfying 0<
0z ≤R.

(C) Approximately simple harmonic provided 0z <<R.

(D) Such that P crosses O and continues to move along 
the negative z-axis towards z=-∞ . 

Q.6 A non-conducting solid sphere of radius R is 
uniformly charged. The magnitude of the electric field 
due to the sphere at a distance r from its center.�(1998)

(A) Increases as r increases for r<R

(B) Decreases as r increases for 0 <r<∞

(C) Decreases as r increases for R<r<∞

(D) Is discontinuous at r=R

Q.7 A few electric field lines for a 

Q
1

Q
2

system of two charges Q1 and 
Q2  fixed at two different points 
on the x-axis are shown in the 
figure. These lines suggest that �
� (2010)

(A) 1 2Q Q>

(B) 1 2Q Q<

(C) At a finite distances to the left 1Q  the electric field 
is zero.

(D) At a finite distance to the right of 2Q  the electric 
field is zero.

Q.8 A spherical metal shell A of radius AR and a solid 
metal sphere B of radius ( )B AR R< are kept for apart 
and each is given charge +Q. Now they are connected 
by a thin mental wire. Then� (2011)

(A) inside
AE 0= 	 (B) A BQ Q>

(C) A B

B A

R
R

σ
=

σ
	 (D) onsurface onsurface

A BE E<

Q.9 A cubical region of side a has its centre at the origin. 
It encloses three fixed point charges , -q at (0, -a/4, 0), + 
3q at (0, 0, 0) and -q at (0, +a/4, 0). Choose the correct 
option(s) � (2012)

(A) The net electric flux crossing the plane x = +a/2 is 
equal to the net electric flux crossing the plane x = −a/2

(B) The net electric flux crossing the plane y = +a/2 is 
more than the net electric flux crossing the plane y = 
−a/2.

(C) The net electric flux crossing the entire region is 
0

q
ε

(D) The net electric flux crossing the plane 

z = +a/2 is equal to the net electric flux crossing the 
plane x = +a/2. 

Q.10 An infinitely long solid cylinder of radius R has 
a uniform volume charge density ρ . It has a spherical 
cavity of radius R/2 with its centre on the axis of the 
cylinder, as shown in the figure. The magnitude of the 
electric field at the point P, which is at a distance 2R 
from the axis of the cylinder, is given by the expression 

0

23 R
16k

ρ
ε

. The value of k is� (2012)

z

y

x

R

2R

R/2

P

Q.11 Two non-conducting solid spheres of radii R and 
2R, having uniform volume charge densities 1ρ  and 2ρ  
respectively, touch each other. The net electric field at 
a distance 2R from the centre of the smaller sphere, 
along the line joining the centre of the spheres is zero. 
The ratio 1 2/ρ ρ  can be 	�  (2013)

(A) – 4       (B) 32
25

−
	

(C) 32
25

	        (D) 4
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Q. 12 Two non-conducting spheres of radii R1 and R2  
and carrying uniform volume charge densities +ρ  and 
−ρ , respectively, are placed such that they partially 
overlap, as shown in the figure. At all points in the 
overlapping region, � (2013)

R
1

� -�

R
2

(A) The electrostatic field is zero

(B) The electrostatic potential is constant

(C) The electrostatic field is constant in magnitude 

(D) The electrostatic field has same direction

Q.13 Let ( ) ( )1 2E r , E r  and ( )3E r  be the respective 
electric fields at a distance r from a point charge Q, an 
infinitely long wire with constant linear charge density 
λ , and an infinite plane with uniform surface charge 
density σ . If ( ) ( ) ( )1 0 2 0 3 0E r E r E r= =  at a given distance 

0r , then � (2014)

(A) 2
0Q 4 r= σπ 			    (B) 0r 2

λ
=

πσ

(C) ( ) ( )1 0 2 0E r / 2 2E r / 2=   (D) ( ) ( )2 0 3 0E r / 2 4E r / 2=

Q.14 Charges Q, 2Q and 4Q are uniformly distributed 
in three dielectric solid spheres 1, 2 and 3 of radii R/2, 
R and 2R respectively, as shown in figure. If magnitudes 
of the electric fields at point P at a distance R from 
the centre of spheres 1, 2 and 3 are 1 2E ,E  and 3E  
respectively, then� (2014)

(A) 1 2 3E E E> > 	 (B) 3 1 2E E E> >

(C) 2 1 3E E E> > 	 (D) 3 2 1E E E> >

P

R

Q

R/2

P

2Q

R

4Q

R

P

2R

Sphere 3

Sphere 2Sphere 1

Q.15 Four charges Q1, Q2, Q3 and Q4 of same magnitude 
are fixed along the x axis at x = -2a, - a, +a and +2a, 
respectively. A positive charge q is placed on the 
positive y axis at a distance b > 0. Four options of the 
signs of these charges are given in List I. The direction 
of the forces on the charge q is given in List II. Match 
List I with List II and select the correct answer using the 
code given below the lists.� (2014)

List I List II

P. Q1, Q2, Q3, Q4  all positive 1. + x

Q. Q1, Q2 positive , Q3, Q4 negative 2. - x

R. Q1, Q4 positive , Q2, Q3 negative 3. + y

S. Q1, Q3 positive , Q2, Q4 negative 4. - y

Codes: 

(A) P-3, Q-1, R-4, S-2 	 (B) P-4, Q-2, R-3, S-1

(C) P-3, Q-1, R-2, S-4 	 (D) P-4, Q-2, R-1, S-3

q

(+0, b)

Q
1

(-2a, 0)

Q
2

(-a, 0)

Q
3

(+a, 0)

Q
4

(-2a, 0)

Q.16 The figures below depict two situations in which 
two infinitely long static line charges of constant 
positive line charge density λ are kept parallel to each 
other. In their resulting electric field, point charges 
q and -q are kept in equilibrium between them. The 
point charges are confined to move in the x direction 
only. If they are given a small displacement about their 
equilibrium positions, then the correct statement(s) is 
(are) � (2015)

(A) Both charges execute simple harmonic motion.

(B) Both charges will continue moving in the direction 
of their displacement.

(C) Charge +q executes simple harmonic motion while 
charge - q continues moving in the direction of its 
displacement.

(D) Charge -q executes simple harmonic motion while 
charge +q continues moving in the direction of its 
displacement.

Q.17 Consider a uniform spherical charge distribution 
of radius 1R  centred at the origin O. In this distribution, 
a spherical cavity of radius R2, centred at P with distance 

1 2OP a R R= = −  (see figure) is made. If the electric field 



18.42  |   Electric Charges, Forces and Fields

inside the cavity at position r


 is ( )E r


 , then the correct 
statement(s) is(are) � (2015)

+q

� �

x

-q

� �

x

(A) E


is uniform, its magnitude is independent of 2R  
but its direction depends on r

 (B) E


is uniform, its 
magnitude depends on 2R and its direction depends 
on r



(C) E


is uniform, its magnitude is independent of a but 
its direction depends on a



(D) E


 is uniform and both its magnitude and direction 
depend on a



R
1

O

JEE Main/Boards

Exercise 1 
Q. 17	 Q.18	 Q.19

Q.23

Exercise 2 
Q. 1	 Q.3

Previous Years’ Questions 
Q.7	 Q.8	 Q.11

JEE Advanced/Boards

Exercise 1 
Q.4	 Q.20	 Q.23

Q.24	 Q.25

Exercise 2 
Q.6

Previous Years’ Questions 
Q.1	 Q.2	 Q.3

Q.4	 Q.5	 Q.8

PlancEssential Questions

JEE Main/Boards

Exercise 1 
Q.2 System of Units and nature of medium

Q.6 2.1875 1010×

Q.7 1.13 4 2 110 Nm C−×

Answer Key

Q.8 1.67 5 2 110 Nm C−×

Q.9 6 310 N(repulsive)−×

Q.10 (i) 2 × 1012, from wool to polythene, 

(ii) Yes, but of a negligible amount (=2 1810× kg in the  
example).

Q.12 0.1 µC/m	
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Q.13 -360 N

Q.14 No change

Q.15 One coulomb, 6.25 1810×

Q.16 1.76 1110 C×

Q.17 24 2kq / a

Q.18 Zero N

Q.19 (i) 6 15.4 10 Nm alongOB−×

(ii) 38.1 10 N alongOA−×

Q.20 (i) 230Nm / C , (ii) 215Nm / C

Q.21 5 222 10 Nm / C×

Q.23 182.06 10 N× (attractive)

Q.24 At a distance 2a/3 from the charge +4 q; Q=4q/9 
(negative)

Q.25 1 2 2 q
4

+ (negative)

Q.26 2kq / a along OE

Q.27 No change

Q.28 (i) dV=4E, (ii) c AV V>

Exercise 2 
Q.1 D	 Q.2 C	 Q.3 D	 Q.4 D	 Q.5 A	 Q.6 A

Q.7 B	 Q.8 B	 Q.9 A	 Q.10 B	 Q.11 C	 Q.12 D

Q.13 B

Previous Years’ Questions 
Q.1 C	 Q.2 D	 Q.3 B	 Q.4 C	 Q.5 B	 Q.6 B

Q.7 A	 Q.8 B	 Q.9 C	 Q.10 C	 Q.11 D	 Q.12 C

Q.13 B	 Q.14 D	 Q.15 B	 Q.16 A	 Q.17 B	 Q.18 D

Q.19 A	 Q.20 C	 Q.21 C	 Q.22 D	 Q.23 D

JEE Advanced/Boards

Exercise 1 
Q.1 a (1 2)= + , the equilibrium will be stable

Q.2  

E�

b r�a

E�

b r�a

E�

b r�a

E�

b r�a(i) (ii) (iii) (iv)

Q.3 9:30			   Q.4 
3

933 10 C
11

−
 

− ×  
 

, No field along y-axis

Q.5 1 0

0

q
2tan

2 mg
−  σ
  ε  		

Q.6 
3

0

1 qQ
2 4 mRπ πε 		

Q.7 
22kQ

mR 			 
Q.8 20 ln2

Q.9 ( )
2kq 3 2

a
− −

			
Q.10 

2

2

4KQr
mV

=
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Q.11 
2

02 u m
q
ε

σ 			 
Q.12 

0

q
24∈ 			 

Q.13 Ra
3

=
			 

Q.14 -Q/3			 

Q.15 1.125 q			   Q.16 0  		

Q.17 
0

q
2 m
λ
ε

			 
Q.18 

2

2 1 2H h h g
V

 
= + −  

 

 	  	

Q.19 v

3 			 
Q.20 04 Kaπε

			 

Q.21 0
ˆRE iλ 			   Q.22 

2

4kq î
R

−
π 			 

Q.23 2			   Q.24 2kQq 1 11
m r 8R

 −
+ 

  		

Q.25 06 2mr 

epa

ε

Exercise 2 

Single Correct Choice Type

Q.1 B	 Q.2 B	 Q.3 D

Multiple Correct Choice Type

Q.4 A, D	 Q.5 B, C	 Q.6 A, C	 Q.7 A, C

Assertion Reasoning Type

Q.8 C	 Q.9 C	 Q.10 D	 Q.11 C	 Q.12 C

Previous Years’ Questions 

Q.1 A	 Q.2 B	 Q.3 C	 Q.4 A, C	 Q.5 A, C	 Q.6 A

Q.7 A, D	 Q.8 A, B, C, D	 Q.9 A, C, D	 Q.10 6	 Q.11 B, D	 Q.12 C, D

Q.13 C	 Q.14 C	 Q.15 A	 Q.16 C
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JEE Main/Boards

Exercise 1

Sol 1: Because, the forces act towards or away from 
centre of the charge

+ -
Sol 2: The value of a quantity depends on the units it’s 

been given. Electrostatic force constant k = 1
4πε

 where 
ε = permittivity of medium

∴ k is dependent on nature of medium 

Sol 3: Dielectric constant of a medium is the ratio of 
permittivity of medium to permittivity of vacuum, 

k = 
0

ε
ε

 

Sol 4: Given, dielectric constant = 80

⇒ ε = 80 × ε0 = 80 × 8.854 × 10-12

= 0.708 × 10-9 C2/N-m2 

Sol 5: If a system contains many number of particles 
then the force on the system is the sum of forces on 
the particles.

F


 = 1F


 + 2F


+ 3F


 + ..... nF


 .

Sol 6: q = ne

⇒ n = q
e

 = 
9

19

3.5 10
1.6 10

−

−

×

×
 = 2.1875 × 1010 electrons 

Sol 7:

Electric flux through the surfaces of cube

= 
o

charge enclosed
∈

= 
7

12

10
8.854 10

−

−×
 = 1.13 × 104 Nm2 C-1 

Sol 8:

Electric flux through all surfaces 

cube =
o

charge enclosed
ε

=
6

12

8.854 10
8.854 10

−

−

×

×
=106 Nm2 C-1 

flux through one surface 

= 1
6

(106) Nm2 C-1 = 1.67 × 105 Nm2 C-1 

(By symmetry)

Sol 9: 
3 x 10 C

-7

2 x 10 C
-7

30cm

F = 1 2
2

k.q q

r
= 

9 14

2

9 10 6 10
9 10

−

−

× × ×

×
  = 6 × 10-3N (repulsive)

Sol 10: (i) q = ne

⇒ n = q
e

 = 
7

19

3 10
1.6 10

−

−

×

×
 ≅ 2 × 1012

electrons should be present in polythene.

∴ Direction of flow of electrons is from wool to 
polythene.

(ii) Yes, since electrons have mass, there is mass transfer.

Sol 11: Properties:

→ Electric lines of forces start at a positive charge and 
terminate at a negative charge.

→ No two lines of forces can intersect one another.

+

Solutions
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Sol 12: 

r

�

Electric flux through the imaginary cylinder

= 
o

charge enclosed
ε

⇒ E(2prl) = 
o

λ
ε
  

⇒ E = 
o

1
2  π ε

 . 
r
λ  

λ = 2 π oε E r

⇒ λ=2p × (8.854 × 10-12) × 9 × 104 × 2 × 10-2 

⇒ λ = 10-7 C/m 

⇒ λ = 0.1 µC/m 

Sol 13: 
0.8×10 m-15

+ –
electronproton

F = 1 2
2

k.q q

r

= 
9 19 19

15 2

9 10 (1.6 10 ) ( 1.6 10 )
(0.8 10 )

− −

−

× × × × − ×

×
 

= -360 N (attractive) 

Sol 14: F1 = 
1 2
2

kq q

r
 

F2 = 1 2
2

k(2q )(2q )

(2r)
 = 1 2

2

kq q

r
 = F1 

∴ No change is observed.

Sol 15: Electron charge 1.6 × 10-19 C << 1 C

∴ Coulomb is bigger

q = ne⇒ n = q
e

 = 
19

1
1.6 10−×

 

= 6.25 × 1018 electrons are required 

Sol 16: Given,

1 kg of electrons

mass of electrons = 9.1 × 10-31 kg

No. of electron = 
31

1
9.1 10−×

 

Charge of 1 kg of electrons = n.e

= 
31

1
9.1 10−×

 × 1.6 × 10-19 C= 1.76 × 1011 C 

Sol 17: 

0

+q +q

0a

0 0

a

-q -q

Electric field due +q at center 

= 
2

kq

r
=
 
 
 

2
kq

a
2

=
2

2kq
a

 

Addition of the four vectors gives field 2 2  (Eq) 
downward 

∴ Electric field = 4 2  . 
2

kq
a

 

Sol 18: 10 cm
A

2 c� 5 c�

�C

5 c�
2 c�

B

D C

10 cm

We can see that the forces acting on 1µC are pairs of 
forces with equal magnitude and opposite direction

∴ Net force = 0


 

 
A B

20 cm

3 c� -3 c�o

10 cm

Sol 19: (i) Electric field at O 

= 
2

k(3mC)
(10cm)

î  + ì ˆ −
−  

 2
k( 3 C) ( i)
(10cm)

 = ì
10−2

2k(3 C) î

= 5.4 × 106 Nm-1 along OB

(ii) If a charge of -1.5 × 10-9 C is placed at O, then the 
force it experiences=E×q= –8.1 × 10-3 N along OA
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Sol 20:

10 cm

10
cm

E=3x10 iN/c
3 >

z

y

x

(i) Flux=E.A
 

=3×103 î × (10-2) î =30 Nm2/C

(ii) Flux=E.A
 

= 3×103 î  (10-2) 
ˆˆ 

 +
 
 

3 ji
2 2

 

= 15 Nm2/C

Sol 21: 

    	   

5cm

10

10

10
10

10

5cm

Construct a Gaussian surface as shown

The electric flux through the surfaces of cube = 

o

charge enclosed
ε

 

= 
o

10 Cµ
ε

 = 4π × 9 × 109 × 10 × 10-6 = 36π × 104 Nm2 C-1 

Flux through one plate (bottom plate)

= 1
6

 × (total/flux)  (∴ Symmetry)

= 1
6

 × 
o

10 Cµ
ε

 = 6π × 104 Nm2 C-1 = 2 × 105 Nm2 C–1 

Sol 22: 	

		

flux = E. 2rπ = enclosed

0

q
∈

 (gauss law)

⇒ E = 
0

σ
ε

 (∴ σ = 
2

q
rπ

)

d
A

n

>

electric field as in direction of n̂

0

ˆE nσ
⇒ = ⋅

ε



Sol 23: No. of copper molecules 

= 109
63.59

 × 6.023 × 1023 = 0.95 × 1023 atoms

No. of electrons transferred 
230.95 10

100
×

= 210.95 10 electrons= ×

Charge of the pieces = n.e. 

= 1.52 × 102 = 152 C

Force between the two pieces 

= 1 2
2

kq q

r
 = 

9

4

9 10 (152) ( 152)
10−

× × × −  

Sol 24: 

n

9Q Q

region (1)     region (2)     region (3)

Charge q should be negative to achieve equilibrium

Also if charge is placed in region (1) or (3) the charge 
will attract the charge in the middle while the other 
positive charge pushes the middle charge towards q. 
So only region (2) is appropriate 

Let distance between 4Q and q be ‘d’ then for 
equilibrium

2

k(4Q)(Q)
x

 = 
2

(k)(4Q)(q)
d

 

q
Q

 = 
2

2
d
x

 

Also 
2

k(4Q)(Q)
x

 = 
2

(k)(Q)(q)
(x d)−

 

⇒ q
Q

 = − 2

2
4(x d)

x
 

⇒ d2 = 4(x – d)2 ⇒ x = d ±  d
2

 

⇒ d = 2x
3

 or d = 2x and q
Q

 = 4
9

 ⇒ q = 4Q
9

 

∴ q = 4Q
9

−  (negative charge) 
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Sol 25: 

q

kq
2

2a
2

kq
2

a
2

q

kq
2

a
2

qq

The force on one charge due to others is 

= 
   

+      
   

2 22 2

2 2
kq kq
a a

 + 
2

2
kq
2a

 = 12
2

 
+ 

 
 

2

2

kq
q

 

The charge to be placed at the center should be 
negative and let value be Q

 
 
 

2
kQ(q)

a
2

 = 
2

2
kq
a

 12
2

 
+ 

 
 

⇒ Q = 1 2 2
4

 +
  
 

 q

∴ Q = – 
(1 2 2)

4
+  q 

Sol 26: C

QQ

Q

QO

B

A

Eq

a 0

Ea Ea

Ea

E

2

kqE
a

=

The system will be stable if a force Eq is placed at O 
along EO (∴ symmetric and equal forces are acting)

∴ By adding a force Eq along EO and OE we get

Eq

Eq

Eq

Eq
Eq

Eq

Eq=Ea

∴ final electric field is E along OE

E = 
2

kq
a

 

Sol 27: Electric flux is the rate of flow of the electric 
field through a given area

φ = E.A
 

 

SI units of flux is Volt-meter 

Electric flux is independent of the radius of spherical 

surface since flux = enclosed

o

q
ε

(Gauss law)

∴ No change will be observed. 

Sol 28:

tq

O

-

-

-

-

-

-

-

-

-

-

-

-

-

-

For derivation of the expression, please refer the theory.

Exercise 2

Sol 1: (D) 

(2,3)3

2

(8,-5)

(5
0

c
)

�

Direction of field = ( )ˆ ˆ6i 8 j−  m

distance = 10 m 

Magnitude of field = 
2

kq
r

 = 
9

2

9 10 (90 c)
10

× × µ = 4500 V/m

Sol 2: (C)

		

A

O

B

C

AE


 is parallel to OA


 and similarly are others.

OA


 . OB


 = 1 + 2 – 3 = 0 
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⇒ OA


 ⊥ OB


 ⇒ AE


 ⊥ BE


 

OB 
 



= 3  OC 
 



 = 2 3  

⇒ BE  ∝ 
2

1

OB


 , EC ∝ 
2

1

OC


 ⇒ C

B

E
E

 = 1
4

 

Sol 3: (D)  
qq x

P

E

at x=0

E=-�

x �/2

at x = 1/2

E = 0

at x = 1

E =-�

p 2 2

kq kqE
x ( x)

= −
−

Sol 4: (D) 
+q -q

2E (due to =2q)

E (due to -q)

E (due to +q)

2E

A D

The vector sum gives field in direction perpendicular 
to AB

Sol 5: (A) Refer question 24 of exercise I JEE Main

Sol 6: (A)

R

x

�

R +X
2 2

Electric field due to ring at x is 

= E = dE∫  = ˆ ˆdEcos i dEsin jθ + θ∫ ∫

⇒ E = 
Q Q

2 2 2 2
0 0

K cos dq K sin dqˆ ˆi j
(x R ) (x R )

θ θ
+

+ +∫ ∫

⇒ E = 
Q

2 2 3/2
0

x dq 0
(x R )

+
+∫  

(∴ ĵ  components get cancelled while integration)

⇒ E = 
2 2 3/2

kQx
(R x )+

 

⇒ E = 
3

kQx
R

 if R ≫> x

⇒ F = moa = - Eq

⇒ a = − 
3

0

kQq
m R

 .x

w2 = 
3

0

kQq
m R

 

⇒ ω = 
3

0 0

Qq
4  m Rπ ε

 

Sol 7: (B) Volt = joule/coulomb

(Since volt is S.I. unit of electric potential =W/q)

Sol 8: (B) F = 
2 2 3/2

kQx( q)
(R x )

+

+
 -mg

if dF
dx

 < 0 then the particle is in stable equilibrium

⇒ 
2 2 3/2 2 2 1/2 2

2 2 3

3(R x ) (R x ) (2x )
2

(R x )

+ − +

+
 < 0 

⇒ R2 + x2 – 3x2 < 0 

⇒ x > R

2
 or x < R

2
−  

∴ Only if x > R

2
, the equilibrium will be stable.

Sol 9: (A) Initial Final

+-

P E
��

+

-

P
�

E
�

P

The field vector is rotated by 90° clockwise 

Sol 10: (B) q1 is positive, (emission of field lines), q2 is 
negative, (termination of field lines).

2

1

q numberof linesabsorbed7 1
q 10 numberof linesemitted

= = <  

Electric field is strongest at some point closer to q2. 
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Sol 11: (C) 

y

z

x

E = i+   2j +   3k

> >>

A = 100 m
2

Only z-component of field is responsible for flux 
through plate

⇒ Flux=E.A
 

 = ˆ ˆ ˆ(i 2 j 3k)+ +  . (100 k̂ ) = 173.2 V-m

Sol 12: (D)

R

x

qenclosed = σ. Aenclosed 

Aenclosed = pr2 = π(R2 – x2) 

∴ Flux through sphere  = enclosed

o

q
∈

 = 
2 2

0

(R x )π − σ
∈

 

Sol 13: (B)

0.5m

q
1

q
2

1 2
2

kq q

(0.5)
 = 0.108 N

When connected with a wire, the charges on them will 
be distributed equally giving

q = 1 2q q
2

− +
 on each sphere 

(Since one of them is negative)
2

2

kq
(0.5)

 = 0.036 N

⇒ 
2

1 2

q
q q

 = 
0.036
0.108

 = 
1
3

 

⇒ (q2 – q1)2 = 1 24q q
3

 

⇒ q2
2 + q1

2 – 1 210q q
3

 = 0 

⇒ q2 = 1q
3

 or q1 = 2q
3

substituting q2 = 1q
3

 in 1 2
2

kq q

r
 = 0.108N gives

⇒ q1 = ±3 × 10-6 C and q2 = ±1 × 10-6 C

Previous Years’ Questions

Sol 1: (C) From conservation of mechanical energy 

Decrease in kinetic energy = increase in potential 
energy 

or 
0

1
4πε min

(Ze)(2e)
r

=5MeV=5×1.6×10–13 J

∴ rmin =

0

1
4πε

2

–13

2Ze
5 1.6 10× ×

= 
9 –19 2

–13

(9 10 )(2)(92)(1.6 10 )
5 1.6 10

× ×

× ×
		 (   Z = 92)

+2e+Ze

r
min

= 5.3 × 10–14 m 

= 5.3 × 10–12 cm 

i.e., rmin is of the order of 10–12 cm 

Sol 2: (D) Motion is simple harmonic only if Q is 
released from a point not very far from the origin on 
x-axis. Otherwise motion is periodic but not simple 
harmonic. 

Sol 3: (B) Since, q is at the centre of two charges Q and 
Q, net force on it is zero, whatever the magnitude and sign 
of charge on it.

Q q Q

For the equilibrium of Q, q should be negative because 
other charge Q will repel it, so q should attract it. 
Simultaneously these attractions and repulsions should 
be equal. 

0

1
4πε 2

QQ
r 0

1
4πε 2

Qq
(r / 2)

or q = Q
4

or with sign q = - Q
4
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Sol 4: (C) The magnitude of electric field at a distance 
r from the axis is given as: 

0
E

2 r
λ

=
πε

 

i.e., 1E
r

∝  

Here, λ is the charge per unit length of the capacitor.

Sol 5: (B) Electric Field lines never enter a metallic 
conductor (E = 0, inside a conductor) and they fall 
normally on the surface of a metallic conductor 
(because whole surface is at same potential and lines 
are perpendicular to equipotential surface) 

Sol 6: (B) Electrostatic force, Fe = eE (for both the 
particles) 

But acceleration of electron, ae = Fe/me and acceleration 
of proton, ap = Fe/mp

S = 1
2

ae
2
1t

 = 1
2

2
p 2a t  

∴ 2

1

t
t

 = e

p

a
a

 = p

e

m

m

Sol 7: (A)
0

E .d
= → →

=∞

− ∫




 =
0

dV V
=

=∞

=∫




 (centre)	– V (infinity)

But V(infinity) = 0 

∴ 
0

E .d
= → →

=∞

− ∫




 corresponds to potential at centre of ring.

And V(centre) = 
0

1
4πε

. q
R

= 
9 –10(9 10 )(1.11 10 )

0.5
× × =2 volt

Sol 8: (B) Net electrostatic energy of the configuration 
will be 

U = K q.q Q.q Q.q
a a2a

 
+ + 

 
 Here, K=

0

1
4πε

Putting U = 0 we get, Q = –2q

2 2+
 

Sol 9: (C) Electric lines of force never form closed loops.

Sol 10: (C) Electric field is zero everywhere inside a 
metal (conductor) i.e., field lines do not enter a metal. 
Simultaneously these are perpendicular to a metal 
surface (equipotential surface). 

Sol 11: (D) According to option (d) the electric field 
due to P and S and due to Q and T add to zero. While 
due to U and R will be added up. 

Sol. 12: (C) At any point over the spherical Gaussian 
surface, net electric field is the vector sum of electric 
fields due to +q1, –q1 and q2. Don’t confuse with the 
electric flux which is zero (net) passing over the Gaussian 
surface as the net charge enclosing the surface is zero.

Sol 13: (B) All the three plates will produce electric field 
at P along negative z-axis, Hence, 

pE
→

 = 
0 0 0

2
2 2 2
 σ σ σ

+ + 
ε ε ε  

(– k̂ )= – 
0

2σ
ε

k̂

∴ Correct answer is (b)

Sol 14: (D) Charge will be induced in the conducting 
sphere, but net charge on it will be zero.

∴ Option (d) is correct. 

Sol 15: (B) Inside the cavity, field at any point is uniform 
and non-zero.

Therefore, correct option is (b). 

Sol 16: (A) Total enclosed charge as already shown is 

qnet = 6C
2

 + 8C
4

 – 7C = – 2C

From Gauss theorem, net flux, φnet = net

0

q
ε

=
0

–2C
ε

 

Sol 17: (B) � �(36 R )
2

-Q
1

Q
1

-16 R��
2

S=(16 R )�
2

Q1 = σ(4pR2) = 4psR2 

Q2 = 16psR2 – Q1 = 12psR2

Q3 = 36psR2 – 16psR2 = 20psR2

Q1 : Q2 : Q3 = 1 : 3 : 5 

∴
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Sol 18: (D) qE = mg � … (i)

6phrv = mg

4
3

pr3 rg = mg � … (ii)

∴ r = 
1/3

3mg
4 g

 
 πρ  �

… (iii)

Substituting the value of r in Eq. (i) we get,

6phv
1/3

3mg
4 g

 
 πρ 

 = mg 

or (6phv)3
3mg
4 g

 
 πρ 

=(mg)3

Again substituting mg = qE we get.

(qE)2 = 3
4 g

 
 πρ 

(6phv)3

or qE = 
1/2

3
4 g

 
 πρ 

(6phv)3/2

∴ q = 1
E

1/2
3

4 g
 
 πρ 

(6phv)3/2

Substituting the values we get

q = 
5

7
81 10π×

33 216
4 900 9.8

× π
π× ×

		  × –5 –3 3(1.8 10 2 10 )× × ×

= 8.0 × 10–19 C

Sol 19: (A) Electrical force per unit area = 1
2

e0E2 

= 1
2

e0

2

0

 σ
  ε 

= 
2

02
σ
ε

Projected area = pR2

∴ Net electrical force = 
2

02

 σ
  ε 

(pR2)

In equilibrium, this force should be equal to the applied 
force. 

∴ F = 
2 2

0

R
2

πσ
ε

 or F ∝ 
2 2

0

Rσ
ε

Sol 20: (C) Electric flux, φ = E
→

. S
→

or		  φ = ES cos q

Here, θ is the angle between E
→

 and S
→

In this question θ = 45°, because S
→

 is perpendicular 
to surface.

E = E0

S = ( 2 a)(a) = 2 a2

∴ φ = (E0)( 2 a2) cos 45° = E0a2 

Sol 21: (C) inside 3
0

1 QE r
4 R

 
=   πε 

outside 3
0

1 QE r
4 R

 
=   πε 

∴ E

R
r

Sol 22: (D)

netF 2 Fcos= θ  
2 22 2

yk.q.q / 22 .
a ya y

=
  ++ 
   

( )
2

3

kq y
y a

a
= <<

F F

q/2

� �

y

q a a q

Sol 23: (D) It originates from +Ve charge and terminates 
at - Ve charge. It can not form close loop.

JEE Advanced/Boards

Exercise 1

Sol 1:  
x

Q
q-2q

�

 

For equilibrium x >   and Q should be positive 
balancing force equations,

2

k(2q)(Q)
(x)

 = 
2

kq(Q)
(x )− 

 

⇒  
− 

 



2

1
x

 = 1
2

 ⇒ 1 - 
x
 = ± 1

2
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⇒ 
x
  = 2 1

2

±  ⇒ x = 2 ± 2    

x >   ⇒ x = (2 + 2 )   

(1 + 2 )   from q

It is in stable equilibrium w.r.t. longitudinal motion 

Sol 2:

E

r

(i) (ii)

(iii) (iv)

Sol 3: -12q

-q

-2q

Direction of electric field at center is 

E
R

�

6E
6E

6E
6E

6E

6E

3E

12E

6E

9E
�

≡  
6E

6+6+6 3

0.1
6

6(2+ )3
≡

RE


 

tan θ = 1

2 3+
 

tan θ = 2 - 3  

⇒ θ = 15°

The hour hand should be midway of between 9 and 10

Time 9 : 30∴ =  

Sol 4:

(2,0,0)

(3
,1

,1
)

Q
q

(0,0,0)

q 2 2 2

ˆ ˆ ˆ3i j kkQE
11(3 1 1 )

 + +
=   

 + +



QE


 = 
2 2 2

kQ

1 1 1 + + 
 

 
ˆ ˆ ˆi j k

3

 − −
  
 

 

At P x-Component of field is zero

⇒ P Q x(E E )+
 

 = 0 ⇒ 
( )3

3kq

11
 = 

( )3
QK

3

−  

⇒ Q = -3 
3

3
11

 
  
 

 × 10-9 C

y-component has zero field.

Sol 5: Electric field due to plate = 
02

σ
∈

 

(Non-conducting plate)

The force that is being applied on bob = Eq

Eq

mg

Q T

mg

Eq

Change in gravitational potential = mg   (1 – cosθ)

Change in electrical potential = Eq   sin q

mg   (2 sin2 θ /2) = Eq   (2 sin θ /2 cos θ/2)

⇒ tan θ/2 = Eq
mg

⇒ θ = 2 tan-1 
0

q
2 mg

 σ
  ε 
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Sol 6: 

Q

-q

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+ ++

+++

++ +

+++

++ +

+
+
+

+
+

++
+

+
+

+

++

At any point x from center, the acceleration of the 
charge is 

a = - Eq
m

 

But, electric field at the point is 

E.(4pr2) = encloses

0

q
ε

(Gauss’s law)

⇒ E.4pr2 = 
0

1
ε

 . 
3

Q
4 R
3
π

 . 4
3

3rπ  

⇒ E = 3
0

Qr
4  Rπ ε

 

⇒ 2
0

Qqa .x
4x R
−

=
ε

⇒ ∴ ω = 
3

0

Qq
4  Rπ ε

 

⇒ f = 
2
ω
π

 = 1
2π

 
3

0

Qq
4  Rπ ε

Sol 7:

t>0

+Q

-Q

-Q

t>t

Electric potential at center of ring = kQ
R

By energy conservation,

1
2

 mv2 = kQ(Q)
R

⇒ v = 
22kQ

mR

Sol 8:

.Q

E =
2 r�

�

V = - Edr∫  = 
r2

r1

nr
2
 −λ
 π 

  

DV = 
2
λ
π

 ln 1

2

r
r

 

By energy conservation

1
2

 mv2 = 
2
λ
π

 ln 2

1

r
r

 
  
 

 

v = 2

1

r
ln

m r
 λ
  π  

 ⇒ v = 2Er .ln2
m

2 100 0.2v .ln2
0.1

× ×
=  

⇒ v = 20 ln2  

Sol 9:
a

+q+q

Q

+q
+q

Initial configuration

Initial potential energy = 
2kq

a
 × 4 + 

2kq

2a
 × 2 

=(4 + 2 ) kq2 /a

+q

+q +q

2a

2a

+q

Final configuration

Final potential energy

= 
2kq

2a
 × 4 + 

2kq
2a

 × 2 = (2 2  + 1) kq2 /a

work done = f iU U−
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= ( ) ( )( )2 2 1 4 2+ − +  
2kq

a
 = ( )3 2− −  

2kq
a

Sol 10: 	 Q 	     Q

			    ← V Initial
		  Q 	     Q 
		  ← 	     ← 
		  V V′ ′

		  r  

At closest distance of approach

By momentum conservation V′ = V/2

By energy conservation,

1
2

 mV2 = 1
2

 m 
2

V
2
′ 

 
 

 × 2 + 
2kQ

r
 

⇒ 1
r

 kQ2 = 1
4

 mV2 

⇒ 
2

2

4KQr
mV

=  

Sol 11:

4

a=
E

q

m

+

+

+

+

+

+ �

⇒ Maximum horizontal distance = 
2u sin2

a
θ  

⇒ Hmax = 
2u
a

 

⇒ Hmax = 
2

q

mu
E

 = 
2

02 mu
q

ε

σ

(∴ E = 
02 

σ
ε

 for non-conducting plate) 

Sol 12:

q

Construct Gaussian surface as below
Construct gaussian surface

such that the original is 1
8

th of it

Flux = enclosed

0

q
ε

 

flux through one forth of one surface 

= 1
4

 . 1
6

 
0

q
ε

 = 
0

q
24 ε

 (By symmetry) 

Sol 13: R

a

Q

Take an elemental part with thickness dr as below 

a

Q

E cos

a
E

dx

�

r

The electric field at the elemental part is 

E = 
2 2

kQ
a r+

 

flux through the element dφ = E. dA cos θ 

( )
( )

R

1/22 20

Ea 2 r
dr

a r

π
⇒ φ =

+
∫

 

⇒ φ = 2pkQa 
R

2 2 3/2
0

r dr
(a r )+∫  

⇒ φ = apkQ 

R

2 2 1/2

0

(a r )
1
2

−
 
 +
 
 − 
 

 

⇒ φ = apkQ [-2] 
2 2 1/2

1 1
a(a R )

 
− 

+ 
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⇒ φ = 2pkQ 2 2 1/2

a1
(a R )

 
− 

+ 
 

Given

φ = 
0

Q
4 ε

 

⇒ 
0

Q
2 ε

 
2 2 1/2

a1
(a R )

 
−  + 

 = 
0

Q
4 ε

 

⇒ 
2 2 1/2

a
(a R )+

 = 1
2

  ⇒ 3a2 = R2 ⇒ a = R

3
 

Sol 14: 
E

Q-q

3R +

E+q

++

+

q

qR

The potential at r = R is zero

⇒ k(Q q)
3R
−  + kq

3R
 - kq

R
 = 0 

⇒ q = Q
3

 (negative) 

Sol 15:

 
A

+6q

B

–3q C

A B

+ 1.5q + 1.5q

C

O

A +B C

+0.75q +1.5q +0.75q

A

+0.75q

+B C

1.125q

1.5 + 0.75

2� �q

I.

II.

III.

∴ Charge on C = 1.125 q 

Sol 16: y

+Q

-Q

a
-Q

+Q

z
Q/2 -Q

a

+Q

x

x

Consider electric field due to +Q charges,

We will get,

QE+


 = 
2

2

kQ
a x2 +

 
2 2

x

a x+
 ˆ( j)+  

while due to negative charges,

QE−


 = 
2

2

kQ
a x2 +

 
2 2

x

a x+
 ˆ( j)−  

∴ Electric field at point on the y-axis 

= QE+


 + QE−


 = 0 

Sol 17: 

R

x

y

z

P�V(  3R, 0)

Initial electric potential energy = q.VP

= 
2 2

kQq.
R ( 3R)+

 = kQq
2R

 = k (2 R)q
2R

λ π  = 
0

q
4 
λ
ε

Final potential energy = kQ
R

 q = 
0

q
2 
λ
ε

 

for minimum velocity, final kinetic energy = 0 

By conservation of Energy,

K.E.i + P.Ei = K.E.f + P.E.f 

⇒ 1
2

 mv2 + 
0

q
4 
λ
ε

 = 0 + 
0

q
2 
λ
ε

 

⇒ v = 
0

q
2 m
λ
ε

 

Sol 18: Consider the two balls of system, the only 
external force is gravitational force. Initial position of 

COM is at 1 2h h
2
+

. The vertical distance moved by 
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COM during time t = 
v

 
 
 

  is h = 1
2

 g 
2

v
 
 
 

  

Final height of COM is 
2

1 2h h g
V

H
2

 
+ −  

 =



 

If the COM is at H, and one particle is on ground then the 

height of the other will be at height H2 = COM 12(H ) H
2 1

−

−
 

⇒ H2 = h1 + h2 – g 
2

v
 
 
 

  

∴ Height at which the body is located is 

H = h1 + h2 – g 
2

v
 
 
 

  

Sol 19: I. t = 0 →	 ΙΙ. t = t

V/2

V
1

q
1

v
q

1 60
o

q
2

v
q

2

Acceleration of first ball in x-direction due to 

field = 1 x(a )  = 3V
4t

 ˆ(i)  

Similarly 1 y(a )  = 
3V
4t

 ˆ( j)−  

(a2)x = V
t
− ˆ(i)  

(a2)y = V'
t

−  ˆ( j)  

1a
  = 1E.q

m



 = - 3v
4t

 î  - 3v
4t

 ĵ  

⇒ E


 = 
1

3mv
4q t
−  î  - 

1

3mv
4q t

 ĵ  

2a
  = 2Eq

m



 = 2

1

ˆ3vq i
4q t
−

 - 2

1

3vq
ĵ

4q t
 = v î

t
−  - 

1v ĵ
t

 

⇒ 2

1

q
q

 = 4
3

 and V1 = 3V
4

 4
3

 
 
 

 = v

3
 

Sol 20:

2008-Gm

+q
+q

+q

+q

The potential energy of the system be U = U12 + U13 + 
…… U20062007 

The K.E. of the first ball after being released for a long 
time 

By energy conservation

K.Ef + P.Ef = K.Ei + P.Ei 

⇒ K1 = 0 + (P.Ei - P.Ef)

⇒ K1 = U12 + U13 + U14 + …… U2007 

The K.E. of second ball after being released for a long 
time 

By energy conservation

K2 = (P.E.’ i – P.E’
f)

= U23 + U24 + U25 + ….. + U2 2007 

= U12 + U13 + U14 + …. + U1 2006 

(∴ Un n + 1 = Un-1 n by symmetry)

⇒ K1 – K2 = U1 2007 = 
2

2

kq
a

 = K(∴ K1 – K2 = K Given)

⇒ q = 04  aKπ ε  

Sol 21: 

T

f

++
+

+

E i
0

>

Friction acts in forward direction decreases angular 
acceleration and increasing linear acceleration

⇒ f = ma

and Te – f. R = Iα = mR2α 

also a = Rα 

⇒ f = eT
2R

 

but Te = edT∫  = 
Q

0
0

E dq.Rcosθ∫  
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⇒ Te = 2 × 
/2

2
0

0

E .R cos d
π

λ θ θ∫

(2 is multiplied considering –ve changes also)

= 2 × E0 λ R2 
/2

0
sin

π
 θ   

⇒ Te = 2E0 lR2 

⇒ f = E0 lR î  
dq

E dq
0

Rcos�
d�

�

Sol 22: 

E+

------------------

+++
+
+
+
+
+
+
+
+

E
R

E
E

-q q

E+1

dw

�
d�

dE sin
t

�

dE
t

dE cos
t

�

�

The x-component of field = dE sin
+

θ∫

= 
2

k.dq
R∫

 sinθ = k
R

 λ 
/2

0

sin d
π

θ θ∫  

= k
R
λ  /2

0
cos

π
 − θ   = k (1)

R
λ = kq

RR
2

 π
 
 

 = 
2

2kq
Rπ

 

The y-component of positive charges’ field cancels the 
y-component field of negative charges’ field. 

∴ The total electric field will be 

totalE


 = E+


 + E−


 = 
2

4kQ
Rπ

 ˆ( i)−  

Sol 23:

b O

a

+q

z=a

2

5� �-

-3/2q

AE


 = 
2 2 3/2

kQ(a)
(a a )+

 ˆ(i)  

BE


 = 
2 2 3/2

kQ'(a)
(b a )+

 ˆ( i)−  

E


 = AE


 + BE


 = 0 (given)

⇒ 
2 3/2

Q
(2a )

 = 
2 2 3/2

Q'
(b a )

−

+
 

⇒ b2 + a2 = 2a2 5
2

 
 
 

 

⇒ b = 2a ⇒ b
a

 = 2 

Sol 24:

vq

+ +
+++

+
+

+++
+
+

+
+
+

+
+
+
+
+
++

+
+
++

+
+ +

+

+
+

+

+

+
+

+
+

+

+

+
+

++
+

+
+

+
+

+

+
+ +

+

k r

R

R/2

dq

dr

r

R

∴ potential at R/2 is 

V = dV∫  = 
1Q

0

k.dq
R
2

 
 
 

∫  + 
Q

Q'

kdq
r∫  

(element part is a hollow sphere of rad radius r)

R/2 R 22

3
0 R/2

k 4 r drk. .4 r dr QV
rR (4 / 3) R

2

 ρ πρ π
⇒ = + ρ =    π  

 

∫ ∫ 

 ⇒ V = 2k
R
ρ  × 4π 

R
3 2

0

r
3

 
 
  

 + 4pρk 
R2

R
2

r
2

 
 
  

 

⇒ V = 2k
R

 Q
8

 + 9
8

 kQ
R

 = 11
8

 kQ
R
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By energy conservation we get,

K.E.i + P.E.i = K.E.f + P.E.f

⇒ 1
2

 mv2 + kQq
r

 = 0 + 11kQq
8R

 

⇒ V = 2kQq 1 11
m r 8R

 −
+ 

 
 

Sol 25:

The electric field inside the cavity will be 

E = 
2

kQ
a

 along OO’ (proof next page)

Oa

�
r

e

E0
1

----

The distance the electron has to travel is 

2a cos θ = 2r  

s = 1/2 at2 

�

f i

�

⇒ t = 2s
a

 = 2 2r
Eq
m

 [∴ a = Eq
m

 ]

⇒ t = 
3

2
0

2m 2r
(4 / 3) a1e.

4  a
ρ× π

π ε

 = 06 2mr 
e a

ε

ρ
 

requiredE


 = wholeE


 - cutE


=  
O 0

1

P

P

0
1

= OP


 - O'P


 = OO'


 

Field at center of cavity = 
2

kq
a

 where q = 4
3
ρpa3 

(Included charge)

⇒ requiredE


 = 
0

a
3
ρ
ε

 along OO'


 

It is true for any point inside cavity.

Exercise 2

Single Correct Choice Type

Sol 1: (B) 

+q +q +q

The charge in the middle experiences force along the 
line.

The equilibrium is stable along the line connecting 
charges while

The equilibrium is unstable along the line perpendicular 
to the line of charges

∴ Only option B is correct (given consider equilibrium 
only along line joining charges) 

Sol 2: (B) It is not necessary for particle to move along 
lines of force. Lines of forces only denote the direction 
of force that exists on particle.

∴ Option B is correct (It may move in a uniform electric 
field)

To contradict option D, take negative charge.

Sol 3: (D) Charge won’t be uniformly distributed if there 
is an external field, even in an external electric field, the 
field strength inside sphere is zero (by Gauss law)

Potential must be same at every point of sphere

Multiple Correct Choice Type

Sol 4: (A, D) 

+4Q

A

-Q

B

The resultant electric field will be zero at point closer to 
B and outside AB (by analysing directions of field and 
magnitudes)
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If a positive charge is placed at P and distributed, the 
positive charge either goes towards, -Q or moves away 

from –Q but won’t oscillate (∴
2

P
2

d v

dx
 > 0) (unstable 

equilibrium) while negative charge oscillate (∴
2

n
2

d U

d x
 

= 
2

P
2

d U

d x
−  < 0) (Stable equilibrium)

Sol 5: (B, C) For the system to be at minimum potential 
energy, the higher charged particles should be far apart.

16Q4Q Q

9 cm

x

and now potential energy 

U=
2 2 2

2

(k)(64Q ) k(16Q ) k4Q
d x xd

+ +
−

 

dU
dx

 = 0 ⇒ 
2

16
(d x)
+

−
 = 

2

4
x

 

⇒ ±2x = d – x 

⇒ x ± 2x = d

⇒ x = d/3 or x = -d

⇒ 9x 3cm.
3

= =

Field at Q is 

= 
2

k(4Q)
(3cm)

 - 
2

k(16Q)
(6cm)

 = 0 

Sol 6: (A, C) Q

t

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

flux = E 2(2 r )π  = enclosed

0

q
ε

 = 
0

0 0=
ε

 

∴ E = 0 

Also for any point between plates
+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

E
�O

⇒ flux = E.(pr2) = enclosed

0

q
ε

 = 
2

0

rσπ
ε

 

⇒ E =
0

σ
ε

= towards right 

Sol 7: (A, C)
E

v

m

a = Eq g
m

+  (∴ F = ma = Eq + mg)

if Eq g 0 (linearmotion)
m

+ = ⇒

if Eq
m

 + g = k (constant) ⇒ parabolic motion

Assertion Reasoning Type

Sol 8: (C) Electric lines of force represent the force 
acting on particle at that point

Sol 9: (C) Refer to question 30 of exercise - III 

Sol 10: (D) Drawing Gaussian surface won’t change 
electric field.

Sol 11: (C) Statement-I is true, since Qenclosed is same but 
E at that site changes depending on external charge. 
But Gauss law is still valid since the flux by the external 
change is zero.

Sol 12: (C) Statement-I is true by Gauss law.

Statement-II is false since distance between the point 
charge and the site decreases which changes electric 
field.

Previous Years’ Questions

Sol 1: (A) At r = R. From Gauss’s law 

E (4pR2) = net

0

q
ε

 = 
0

Ze
ε

or E = 
0

1
4πε 2

Ze
R

 

E is independent of a. 
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Sol 2: (B) For a = 0 

ρ(r) = d– .r d
R

 
+ 

 

Now 
R

2

a

(4 r )π∫
dd – r
R

 
 
 

dr = net charge = Ze. 

d

�

R
r

Solving this equation, we get d = 
3

3Ze
Rπ

 

Sol 3: (C) In case of solid sphere of charge of uniform 
volume density 

E = 
0

1
4πε

.
3

q
R

.r�

R
t

�(  )r

or E ∝ r 

Thus, for E to be linearly 
dependent on r, volume charge 
density should be constant. 

or a = R 

Sol 4: (A, C) Net torque on (–q) about a point (say P) 
lying over +Q is zero. Therefore, angular momentum of 
(–q) about point P should remain constant.

Sol 5: (A, C) Let Q be the charge on the ring, the 
negative charge –q is released from point P (0, 0, z0). 
The electric field at P due to the charged ring will be 
along positive z-axis and its magnitude will be

y

Q

O

R

P(0,0z )
0

z
-q

E

F
0

E = 
0

1
4πε

0
2 2 3/2

0

Qz

(R z )+

E = 0 at centre of the ring because z0 = 0 

Force on charge at P will be towards centre as shown, 
and its magnitude is 

Fe = qE=
0

1
4πε

. 2 2 3/2
0

Qq
(R Z )+

. z0 � ….(i)

Similarly, when it crosses the origin, the force is again 
towards centre O.

Thus, the motion of the particle is periodic for all values 
of z0 lying between 0 and ∞.

Secondly, if z0 <<R, (R2 + 2
0z )3/2 = R3

Fe = 
0

1
4πε

. 
3

Qq
R

.z0	 [From Eq. (i)]

i.e., the restoring force Fe ∝ – z0. Hence, the motion of 
the particle will be simple harmonic. (Here negative 
sign implies that the force is towards its mean position.)

Sol 6: (A) Inside the sphere E = 
0

1
4πε 3

Q
R

r

⇒ E ∝ r for r ≤ R 

i.e., E at centre = 0 as r = 0

and E at surface = 
0

1
4πε

. 
2

Q
R

as r = R 

Outside the sphere 

E = 
0

1
4πε

. 
2

Q
r

 for r ≥ R or E ∝ 
2

1
r

Thus, variation of electric field (E) with distance (r) from 
the centre will be as shown 

E

E=
1

4��
0

Q

R
2

E r�

O r = R
t

E�
1

r
2

Sol 7: (A, D) From the behaviour of electric lines, we 
can say that Q1 is positive and Q2 is negative. Further, 
|Q1| > |Q2|

At some finite distance to the right of Q2, electric field 
will be zero. Because electric field due to Q1 is towards 
right (away from Q1) and due to Q2 is towards left 
(towards Q2). But since magnitude of Q1 is more, the 
two fields may cancel each other because distance of 
that point form Q1 will also be more

Sol 8: (A, B, C, D) Inside a conducting shell electric field 
is always zero. Therefore, option (a) is correct. When the 
two are connected, their potentials become the same. 

∴ VA = VB
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or A

A

Q
R

 = B

B

Q
R

0

1 QV
4 R

 
=  πε 

Since, RA > RB ∴ QA > QB 

Potential is also equal to, V = 
0

Rσ
ε

, VA = VB 

∴ σARA = σBRB or A

B

σ
σ

 = A

B

R
R

 or σA < σB

Electric field on surface, E = 
0

σ
ε

 or E ∝ s

Since σA < σB ∴ EA < EB

Sol 9: (A, C, D) in
out

0 0

q q
φ = =

ε ε
By symmetry

Sol 10:  (1) + (2) = Complete cylinder

1 2E E E+ =

2

0 0

R RE
2 (2R) 4
ρ × π ρ

= =
πε ε

( )
3

2 2
00

4 RR 1E
3 2 24 44 4R

 π ρ
= ρ× × =  × ε  πε

1 2
0 0 0

R R 23 R1 23E E E 1
4 24 4 4 6 16 6

 ρ ρ ρ
= − ⇒ − = = ε ε × ε × 

1

2

Sol 11: (B, D)

At point 
( ) 3

1 2
1 2

0 0

4 / 3 R R1P ,
4 34R

ρ π ρ
=

πε ε

1 2R R
12 3
ρ ρ

=

1

2
4

ρ
=

ρ

At point 2P ,  
( )
( )

( )
( )

3 3
1 2

2 2

4 / 3 R 4 / 3 8R
0

2R 5R

ρ π ρ π
+ =

1

2

32
25

ρ
∴ = −

ρ

P
2 �

1

P
1

�
2

2R

Sol 12: (C, D) In triangle 1 2PC C

2 1r d r= +


 

The electrostatic field at point P is

( )3 3
1 2 2 1

3 3
1 2

4 4K R r K R r
3 3

E
R R

   
ρ π ρ π −   
   = +

 

( )2 1
4E K r r
3

= ρ π −
 

0
E d

3
ρ

=
ε




C
1

R
1

�
r

2

P

�
r

1

�

-�
C

2

R
2

d

Sol 13: (C) 2
0 0 00 0

Q
2 r 24 r

λ σ
= =

πε επε

0 0 0
1 2 32

0 0 00 0

r r rQE , E ,E
2 2 r 2 2r

     λ σ
= = =          πε επε     

0 0
1 2

r r
E 2E

2 2
   

∴ =      
   

Sol 14: (C)

For point outside dielectric sphere 
2

0

QE
4 r

=
πε

For point inside dielectric sphere E = s
rE
R

Exact Ratio 1 2 3E : E : E 2 : 4 : 1=

Sol 15: (A) 

P: By Q1 and Q4, Q3 and Q2 F is in +y

Q: By Q1 and Q4, Q2 and Q3 F is in + ve x.

R: By Q1 and Q4, F is in + ve y
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By Q2 and Q3, F is in –ve y

But later has more magnitude, since its closer to (0, b). 
Therefore net force is in –y

S: By Q1 and Q4, F is in +ve x and by Q2 and Q3, F is in –x, 
but later is more in magnitude, since its closer to (0, b). 
Therefore net force is in –ve x.

(+0, b)

Q
1

(-2a, 0)

Q
2

(-a, 0)

Q
3

(+a, 0)

Q
4

(-2a, 0)

Sol 16: (C) In Case I:

( ) ( ) ( )
0 0

q qˆ ˆF i i
2 r x 2 r x

λ λ
= + −

πε + πε − ( )2
0

q ˆx i
r

λ
= −
πε

Hence +q, charge will performs SHM with time period

2
0r m

T 2
q

π ε
= π

λ

In case II: Resultant force will act along the direction of 
displacement.

Sol 17: (D) 1 2
0

E C C
3
ρ

=
ε



1C ⇒  Centre of sphere and 2C ⇒ centre of cavity.


