DPP - 09 CLASS – 10th **TOPIC – FUNDAMENTAL THEOREM OF ARITHMETIC**

- Q.1 Express each of the following integers as a product of its prime.
 - (i) 420
 - (ii) 468
 - (iii) 945
 - (iv) 7325
- Q.2 Determine the prime factorisation of each of the following positive integers:
 - (i) 20570
 - (ii) 58500
 - (iii) 45470971
- Q.3 Explain why 7×11×13+13 and 7×6×5×4×3×2×1+5 are composite numbers.
- Check whether 6ⁿ can end with the digit 0 for any natural number n. Q.4
- Q.5 Explain why $3 \times 5 \times 7 + 7$ is a composite number.

REAL NUMBER

DPP – 09 CLASS – 10th TOPIC – FUNDAMENTAL THEOREM OF ARITHMETIC

Sol.1 (i) 420

2	420
2	210
5	105
7	21
3	3
	1

420=2×2×3×5×7

 $\therefore 420 = 2^2 \times 3 \times 5 \times 7$

(ii) 468

2	468
2	234
3	117
3	39
13	13
	1

468=2×2×3×3×13

 $::468=2^2\times 3^2\times 13$

(iii) 945

5	945
3	189
З	63
3	21
7	7
	1

945=3×3×3×5×7

∴945=3³×5×7

(MATHEMATICS)

REAL NUMBER

(iv) 7325

7325=5×5××293

:.7325=5²×293

Sol.2 (i)

5	20570
2	4114
11	2057
11	197

11 18/ 17 17 1

205770=2×5×11×11×17

:205770=2×5×11²×17

(ii)

5	58500
5	11700
5	2340
2	468
2	234
3	117
3	39
13	13
	1

REAL NUMBER

(iii)

7	45470971
7	6495853
13	927979
13	71383
17	5491
17	323
19	19
	1

45470971=7×7×13×13×17×17×19

::45470971=7²×13²×17²×19.

Sol.3 So, basically, there are two types of numbers, i.e., prime numbers and composite numbers. Understanding that, Prime numbers are those numbers having 1 and the number itself as factors.

And composite numbers are those numbers having factors other than 1 and itself. It's seen that,

7 × 11× 13 + 13 = 13 × (7 × 11 + 1) [taking 13 out as common]

= 13× (77 + 1)

= 13 ×78

= 13 × 13 × 6

So, the given expression has 6 and 13 as its factors. Therefore, we can conclude that it is a composite number.

$7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 + 5 = 5 \times (7 \times 6 \times 4 \times 3 \times 2 \times 1 + 1)$ [taking 5 out- common]

- = 5 x (1008 + 1)
- = 5 x 1009

Since 1009 is a prime number, the given expression has 5 and 1009 as its factors other than 1

and the number itself. Hence, it is a composite number.

Sol.4 In order to check whether 6ⁿ can end with the digit 0 for any natural number n, let us find the factors of 6.

It's seen that the factors of 6 are 2 and 3.

So, $6^n = (2 \times 3)^n$

 $6^n = 2^n \ge 3^n$

Since the prime factorisation of 6 does not contain 5 and 2 as its factor together, we can

conclude that 6ⁿ can never end with the digit 0 for any natural number n.

Sol.5 Basically, there are two types of numbers, i.e., prime numbers and composite numbers. Understanding that,

Prime numbers are those numbers having 1 and the number itself as factors.

And composite numbers are those numbers having factors other than 1 and itself.

It's seen that,

 $3 \times 5 \times 7 + 7 = 7 \times (3 \times 5 + 1) = 7 \times (15 + 1) = 7 \times 16$

Since the given expression has 7 and 16 as its factors, we can conclude that it is a composite number.