SUBJECTIVE

1. Find the equations of the tangents drawn from the point (2, 3) to the ellipse $9x^2 + 16y^2 = 144$.

2. If the line x - y = 5 touches the ellipse $9x^2 + 16y^2 = 144$, find the points of contact.

3. For what value of λ does the line $y = x + \lambda$ touches the ellipse $9x^2 + 16y^2 = 144$?

4. Find the equations of the tangents to the ellipse $\frac{x^2}{3} + \frac{y^2}{4} = 1$ having slope 2.

5. Find the equations of the pair of tangents to the ellipse $2x^2 + 3y^2 = 1$ from the point (1, 1).

6. If the tangents are drawn from a point (1, 2) to the ellipse $3x^2 + 2y^2 = 5$, find the angle between the tangents.

SINGLE ANSWER CORRECT TYPE

7. The y-axis is the directrix of the ellipse with eccentricity e = 1/2 and the corresponding focus is at (3, 0), equation to its auxiliary circle is

(A)
$$x^2 + y^2 - 8x + 12 = 0$$

(B)
$$x^2 + y^2 - 8x - 12 = 0$$

(C)
$$x^2 + y^2 - 8x + 9 = 0$$

(D)
$$x^2 + v^2 = 4$$

8. Equation of the common tangent to the ellipses, $\frac{x^2}{a^2 + b^2} + \frac{y^2}{b^2} = 1$ and $\frac{x^2}{a^2} + \frac{y^2}{a^2 + b^2} = 1$ is -

(A)
$$ay = bx + \sqrt{a^4 - a^2b^2 + b^4}$$

(B) by =
$$ax - \sqrt{a^4 + a^2b^2 + b^4}$$

(C) ay = bx -
$$\sqrt{a^4 + a^2b^2 + b^4}$$

(D) by =
$$ax + \sqrt{a^4 - a^2b^2 + b^4}$$

9. x - 2y + 4 = 0 is a common tangent to $y^2 = 4x & \frac{x^2}{4} + \frac{y^2}{b^2} = 1$. Then the value of b and the other common tangent are given by:

(A)
$$b = \sqrt{3}$$
; $x + 2y + 4 = 0$

(B)
$$b = 3$$
; $x + 2y + 4 = 0$

(C)
$$b = \sqrt{3}$$
; $x + 2y - 4 = 0$

(D)
$$b = \sqrt{3}$$
; $x - 2y - 4 = 0$

10. Consider the particle travelling clockwise on the elliptical path $\frac{x^2}{100} + \frac{y^2}{25} = 1$. The particle leaves the orbit at the point (-8, 3) and travels in a straight line tangent to the ellipse. At what point will the particle cross the y-axis?

$$(A)\left(0,\frac{25}{3}\right)$$

(B)
$$\left(0, \frac{23}{3}\right)$$

(D)
$$\left(0, \frac{26}{3}\right)$$

11. The line $x\cos\alpha + y\sin\alpha = p$ will be a tangent to the conic $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, if-

(A)
$$p^2 = a^2 \sin^2 \alpha + b^2 \cos^2 \alpha$$

(B)
$$p^2 = a^2 + b^2$$

(C)
$$p^2 = b^2 \sin^2 \alpha + a^2 \cos^2 \alpha$$

12.	(a) Which of the following is an equation of the ellipse with centre (-2, 1), major axis running from (-2, 6) to
	(-2,-4) and focus at $(-2,5)$?

(A)
$$\frac{(x-2)^2}{25} + \frac{(y+1)^2}{16} = 1$$

(B)
$$\frac{(x+2)^2}{25} + \frac{(y-1)^2}{9} = 1$$

(C)
$$\frac{(x-2)^2}{9} + \frac{(y+1)^2}{25} = 1$$

(D)
$$\frac{(x+2)^2}{9} + \frac{(y-1)^2}{25} = 1$$

- (b) Which of the following statement(s) is/are correct for the ellipse of 8(a)?
 - (A) auxiliary circle is $(x + 2)^2 + (y 1)^2 = 25$ (B) director circle is $(x + 2)^2 + (y 1)^2 = 34$
 - (C) Latus rectum $=\frac{18}{5}$

(D) eccentricity $=\frac{4}{5}$

[MULTIPLE CORRECT TYPE]

- 13. If a number of ellipse be described having the same major axis 2a but a variable minor axis then the tangents at the ends of their latus rectum pass through fixed points which can be -
 - (A) (0,a)
- (B) (0,0)
- (C) (0,-a)
- (D) (a.a)
- 14. If a tangent having slope of -4/3 to the ellipse $\frac{x^2}{18} + \frac{y^2}{32} = 1$ intersects the major and minor axes in points A and B respectively, then the area of the $\triangle OAB$ is equal to-
 - (A) 12 sq. units
- (B) 48 sq. units
- (C) 64 sq. units
- (D) 24 sq. units
- 15. Extremities of the latus rectum of the ellipses $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) having a given major axis 2a lies on-

$$(A) x^2 = a(a - y)$$

(B)
$$x^2 = a(a + y)$$

$$(C) y^2 = a(a + x)$$

(D)
$$y^2 = a(a - x)$$

Paragraph for question nos. 16 to 18

Consider the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the parabola $y^2 = 2x$. They intersect at P and Q in the first and fourth quadrants respectively. Tangents to the ellipse at P and Q intersect the x-axis at R and tangents to the parabola at P and Q intersect the x-axis at S.

- 16. The ratio of the areas of the triangles PQS and PQR, is
 - (A) 1 : 3
- (B) 1 : 2
- (C) 2:3
- (D) 3:4

- 17. The area of quadrilateral PRQS, is
 - (A) $\frac{3\sqrt{15}}{2}$
- (B) $\frac{15\sqrt{3}}{2}$
- (C) $\frac{5\sqrt{3}}{2}$
- (D) $\frac{5\sqrt{15}}{2}$
- 18. The equation of circle touching the parabola at upper end of its latus rectum and passing through its vertex, is
 - (A) $2x^2 + 2y^2 x 2y = 0$

(B) $2x^2 + 2y^2 + 4x - \frac{9}{2}y = 0$

(C) $2x^2 + 2y^2 + x - 3y = 0$

(D) $2x^2 + 2y^2 - 7x + y = 0$

Answers

RACE # 59

1. y = 3, x + y = 5 2. $\left(\frac{16}{5}, \frac{-9}{5}\right)$ 3. ± 5 4. $y = 2x \pm 4$

5. $4x^2 + 3y^2 - 12xy + 4x + 6y - 5 = 0$ 6. $\theta = \tan^{-1}\left(\frac{12}{\sqrt{5}}\right)$ 7. (A) 8. (B) 9. (A) 10. (A) 11. (C) 12. (a) D; (b) A,B,C,D 13. (AC) 14. (D) 15. (AB) 16. (C) 17. (B)

18. (D)