Application of Derivatives

Rate of Change of Quantities

• For a quantity *y* that varies with another quantity *x* and is given by the relation, say y = f(x), the derivative of *y*, $\frac{dy}{dx}$, or f'(x) represents the rate of change of *y* with respect to *x*.

$$x_0, \frac{dy}{dx}\Big|_{x=x_0}$$

- At a particular point, say $dx \rfloor_{x=x_0} \text{ or } f'(x_0)$ represents rate of change of y with respect to x at the point $x = x_0$.
- For example: The rate of change of volume of a cylindrical vessel with respect to its radius *r*, when *r* = 8 cm, can be calculated as:

$$V = \pi r^{2} h$$
$$\frac{dV}{dr} = 2\pi r h$$
$$\frac{dV}{dr} \bigg|_{r=8 \text{ cm}} = 2\pi (8) h = 16\pi h$$

• If two quantities, say x and y, vary with respect to the same variable t, i.e. x = f(t) and y = g(t), then rate of change of y with respect to x is given by chain rule as:

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} \left\{ \text{provided } \frac{dx}{dt} \neq 0 \right\}$$

dy

• If *y* increases as *x* increases, then rate of change, i.e. \overline{dx} , is positive; and if *y* decreases as *x* increases, then rate of change, i.e. $\frac{dy}{dx}$, is negative.

Solved Examples

Example 1:

A balloon spherical in shape is deflating at the rate of $0.7 \text{ cm}^3/\text{s}$. Its surface area is decreasing at the rate of $1.4 \text{ cm}^2/\text{s}$. What is the radius of the balloon at that instant?

Solution:

Let the radius of the balloon be *r* cm.

Now, the balloon is spherical in shape.

$$\therefore V = \frac{4}{3}\pi r^3 \dots (1)$$

$$\frac{dV}{dt} = 0.7 \text{ cm}^3/\text{s}$$

According to the question, dt

Differentiating (1) with respect to *t*, we obtain

$$\frac{dV}{dt} = \frac{4}{3} \times 3\pi r^2 \frac{dr}{dt}$$
$$\Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$$
$$\Rightarrow 0.7 = 4\pi r^2 \frac{dr}{dt}$$
$$\therefore \frac{dr}{dt} = \frac{0.7}{4\pi r^2} \dots (2)$$

Surface area of balloon, *S* = $4\pi r^2$

According to the question,
$$\frac{dS}{dt} = 1.4 \text{ cm}^2/\text{s}$$

$$\Rightarrow \frac{dS}{dt} = 8\pi r \frac{dr}{dt} \dots (3)$$

Substituting the value of \overline{dt} from (2) in (3), we obtain

$$\frac{dS}{dt} = 8\pi r \cdot \frac{0.7}{4\pi r^2}$$
$$\Rightarrow 1.4 = \frac{1.4}{r}$$
$$\therefore r = \frac{1.4}{1.4} = 1 \text{ cm}$$

Thus, the radius of balloon at that instant is 1 cm.

Example 2:

The distance covered by an insect is given as a function of time as $x = at^2 - 3t + 6$.

If the speed of insect at $t = 2 \min is 13 \text{ cm/min}$, then what is the value of *a*?

Solution:

It is given that $x = at^2 - 3t + 6$

$$\frac{dx}{dt} = 2at - 3$$

$$\Rightarrow 13 = 4a - 3$$

$$\begin{cases} \frac{dx}{dt} = \text{speed} = 13 \text{ cm/min} \\ t = 2 \text{ min} \end{cases}$$

$$\Rightarrow 16 = 4a$$

$$\Rightarrow a = 4$$

Thus, the value of *a* is 4.

Increasing and Decreasing Functions

Increasing-Decreasing Functions

• If *f* is a real valued function, *I* is an open interval contained in the domain and $x_1, x_2 \in I$, then *f* is said to be

	Condition	Example	
Increasing on I	$x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$		

• A real valued function f is said to be increasing or decreasing at a point x_0 in the domain of f if there exists an interval $I = (x_0 - h, x_0 + h), h > 0$ such that f is increasing or decreasing in I for $x_1, x_2 \in I$.

First Derivative Test for Increasing and Decreasing Functions

• If *f* is a continuous function in [*a*, *b*] and differentiable in the open interval (*a*, *b*), then

- *f* is increasing in [*a*, *b*] if f'(x) > 0 for each $x \in (a, b)$.
- *f* is decreasing in [*a*, *b*] if f'(x) < 0 for each $x \in (a, b)$.
- *f* is neither increasing nor decreasing in [*a*, *b*] if f'(x) = 0 for each $x \in (a, b)$.

For example, consider the function $f'(x) = x^3 - 6x^2 + 12x + 8$. Now, $f'(x) = 3x^2 - 12x + 12$ = $3(x^2 - 4x + 4)$ = $3(x - 2)^2 \ge 0$ in every interval of **R**. Therefore, *f* is increasing on **R**.

Solved Examples

Example 1

Find the intervals in which $f(x) = x^3 - 2x^2 - 4x + 7$ is increasing or decreasing.

Solution:

 $f(x) = x^{3} - 2x^{2} - 4x + 7$ $f'(x) = 3x^{2} - 4x - 4$ $f'(x) = 3x^{2} - 6x + 2x - 4$ f'(x) = 3x(x - 2) + 2(x - 2) $f'(x) = (3x + 2) (x - 2) \dots (1)$ Putting f'(x) = 0, we obtain $x = -\frac{2}{3}, 2$ $(-\infty, -\frac{2}{3}) \cdot (-\frac{2}{3})$

The points $-\frac{2}{3}$ and 2 divide real line into three intervals $\left(-\infty, -\frac{2}{3}\right), \left(-\frac{2}{3}, 2\right)$ and $(2,\infty)$.

We now find the sign of f'(x) in these intervals.

Interval	Sign of $f'(x)$	Nature of <i>f</i>
----------	-----------------	--------------------

$\left(-\infty,-\frac{2}{3}\right)$	(-) (-) > 0	Increasing
$\left(-\frac{2}{3},2\right)$	(+) (-) < 0	Decreasing
(2,∞)	(+)(+) > 0	Increasing

Thus, f(x) is increasing in the interval $\left(-\infty, -\frac{2}{3}\right) \cup (2, \infty)$ and decreasing in $\left(-\frac{2}{3}, 2\right)$.

Example 2

Find the interval in which $f(x) = -\log x - x^2 + 3x$ is strictly increasing.

Solution:

$$f(x) = -\log x - x^{2} + 3x$$

$$f'(x) = -\frac{1}{x} - 2x + 3$$

$$f'(x) = \frac{-1 - 2x^{2} + 3x}{x} = \frac{-(2x^{2} - 3x + 1)}{x} = \frac{-(2x - 1)(x - 1)}{x}$$
Putting $f'(x) = 0$, we obtain $(2x - 1)(x - 1) = 0$

$$\Rightarrow x = \frac{1}{2}, 1$$

$$\left(-\infty, \frac{1}{2}\right), \left(\frac{1}{2}, 1\right)$$

The intervals obtained are $\left(\frac{1}{2},\frac{1}{2}\right), \left(\frac{1}{2},\frac{1}{2}\right)$ and $(1,\infty)$.

We now find the sign of f'(x) in these intervals.

Interval	Sign of $f'(x)$	Nature of <i>f</i>
----------	-----------------	--------------------

$\left(-\infty,\frac{1}{2}\right)$	(-)(+) = (-) < 0	Decreasing
$\left(\frac{1}{2},1\right)$	(+)(+) = (+) > 0	Increasing
(1,∞)	(+)(+) = (+) > 0	Increasing

Thus, f'(x) is strictly increasing in $\left(\frac{1}{2}, 1\right) \cup (1, \infty)$.

Tangents and Normals to the Curves

- The equation of tangent to the curve y = f(x) at point (x_0, y_0) is given by $y y_0 = f'(x_0) (x x_0)$, where $f'(x_0)$ is the slope of tangent.
- If slope of tangent line is zero, then equation of tangent at point (x_0, y_0) is given by $y = y_0$.

If slope of tangent line is not defined, then equation of tangent at point (x_0, y_0) is given by $x = x_0$.

• The equation of normal to the curve y = f(x) at point (x_0, y_0) is given by:

$$y - y_0 = -\frac{1}{f'(x_0)} (x - x_0)$$
 or $(y - y_0) f'(x_0) + (x - x_0) = 0$, where $\frac{-1}{f'(x_0)}$ is the slope of normal.

Solved Examples

Example 1:

Find the equation of tangent to the curve $y = 3x^3 - 2x + 6$ at the point x = -1.

Solution:

$$y = 3x^{3} - 2x + 6$$

$$y' = 9x^{2} - 2$$

$$y']_{x=-1} = 9(-1)^{2} - 2 = 7$$

The equation of tangent to the curve y = f(x) at point (x_0, y_0) is given by:

$$(y - y_0) = f'(x_0) (x - x_0)$$

At $x = -1, y = 3 (-1)^3 - 2(-1) + 6 = 5$
 \therefore Equation of tangent at (-1, 5) is:
 $(y - 5) = 7\{x - (-1)\}$
 $y - 5 = 7(x + 1)$
 $\Rightarrow y - 5 = 7x + 7$

 \Rightarrow 7x - y + 12 = 0 is the required equation of the tangent.

Example 2:

Find the equation of normal to the curve $y = \cos x - 2\sin x$ at point $x = \frac{\pi}{2}$.

Solution:

 $y = \cos x - 2\sin x$

 $y' = -\sin x - 2\cos x$

$$y']_{x=\frac{\pi}{2}} = -1$$

The equation of normal to the curve y = f(x) at point (x_0, y_0) is given by:

$$(y - y_0) f'(x_0) + (x - x_0) = 0$$

At $x = \frac{\pi}{2}$, we obtain $y = \frac{\cos \frac{\pi}{2} - 2\sin \frac{\pi}{2}}{= -2}$
 \therefore Equation of normal at the point $\left(\frac{\pi}{2}, -2\right)$ is given by:
 $\{y - (-2)\}(-1) + \left(x - \frac{\pi}{2}\right) = 0$
 $\Rightarrow (y + 2)(-1) + x - \frac{\pi}{2} = 0$
 $\Rightarrow x - y - \left(\frac{\pi}{2} + 2\right) = 0$ is the required equation of the normal.

Approximations Using Differentials

• For function y = f(x), an increment in $y(\Delta y)$ corresponding to an increment in $x(\Delta x)$ is given by:

 $\Delta y = f(x + \Delta x) - f(x)$

The following are defined for the increment:

- The differential of *x*, denoted by dx, is defined by $dx = \Delta x$.
- The differential of *y*, denoted by *dy*, is defined by $dy = f'(x)dx = \left(\frac{dy}{dx}\right)_{\Delta x}$.
- The approximate values of certain quantities can be calculated using differentials.

For example, consider
$$\sqrt{25.8}$$
.
 $y = \sqrt{x} \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}$
We take
Let $x = 25$ and $\Delta x = 0.8$
 $\therefore \Delta y = \sqrt{x + \Delta x} - \sqrt{x} = \sqrt{25.8} - \sqrt{25} = \sqrt{25.8} - 5$
 $\Rightarrow \sqrt{25.8} = 5 + \Delta y$... (1)
Now, dy is approximately equal to Δy and is given by,
 $dy = \left(\frac{dy}{dx}\right)\Delta x = \frac{1}{2\sqrt{x}}\left(\Delta x\right) = \frac{0.8}{2 \times 5} = 0.08$

Thus, using (1), we obtain the approximate value of $\sqrt{25.8}$ as $5 + \Delta y = 5 + 0.08 = 258$

Solved Examples

Example 1:

Find the approximate value of $\sqrt{0.0048}$.

Solution:

$$y = \sqrt{x} \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}$$

Let

Let x = 0.0049 and $\Delta x = -0.0001$

$$\therefore \Delta y = \sqrt{x + \Delta x} - \sqrt{x} = \sqrt{0.0048} - \sqrt{0.0049}$$
$$\Delta y = \sqrt{0.0048} - 0.07$$
$$\Rightarrow \sqrt{0.0048} = 0.07 + \Delta y \dots (1)$$

Now, *dy* is approximately equal to Δy and is given by:

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{\Delta x}{2\sqrt{x}} = \frac{-0.0001}{2 \times 0.07} = -0.00071$$

Thus, from (1), we obtain $\sqrt{0.0048} = 0.07 - 0.00071 = 0.06929$

Example 2:

Find the approximate value of f(0.31), where $f(x) = 2x^2 + 3x - 5$.

Solution:

Let
$$x = 0.3$$
 and $\Delta x = 0.01$
 $f(0.31) = f(x + \Delta x) = 2(x + \Delta x)^2 + 3(x + \Delta x) - 5$
Now, $\Delta y = f(x + \Delta x) - f(x)$
 $\therefore f(x + \Delta x) = \Delta y + f(x) \approx f(x) + f'(x)\Delta x$ { $\because dy = \Delta y$ }
 $\Rightarrow f(0.31) \approx (2x^2 + 3x - 5) + (4x + 3)\Delta x$
 $= \{2(0.3)^2 + 3(0.3) - 5\} + \{4(0.3) + 3\} (0.01)$
 $= \{2 \times 0.09 + 0.9 - 5\} + \{1.2 + 3\} (0.01)$
 $= \{0.18 + 0.9 - 5\} + (4.2) (0.01)$
 $= (1.08 - 5) + 0.042$
 $= -3.92 + 0.042$
 $= -3.878$

Thus, the approximate value of f(0.31) is -3.878.

Maximum and Minimum Values of Functions Using Graphs

- Let *f* be a function defined on interval *I*, then
- f is said to have a maximum value in I if there exists a point c in I such that f(c) > f(x), for all $x \in I$. f(c) is the maximum value of f and c is the point of maximum value of f in I.
- f is said to have a minimum value in I if there exists a point c in I such that f(c) < f(x) for all $x \in I.f(c)$ is the minimum value of f and c is the point of minimum value of f in I.
- *f* is said to have an extreme value in *I* if there exists a point *c* in *I* such that *f*(*c*) is either the maximum value or the minimum value of *f* in *I*. *f*(*c*) is the extreme value and *c* is known as the extreme point.
- The maximum and minimum values of functions can be found using graphs.

For example, consider the following graph.

In this graph, f(6) is the maximum value of f(x) and 6 is the point of maximum value; and f(-4) is the minimum value of f(x) and -4 is the point of minimum value.

Solved Examples

Example 1

Plot the graph of function $f(x) = x^2 + x$, $x \in [-2, 2]$ and find the maximum and minimum value of f(x).

Solution:

We start by plotting the graph of $f(x) = x^2 + x$ for different values of x in [-2, 2].

<i>f</i> (<i>x</i>)	2	0	0	2	6
X	-2	-1	0	1	2

It can be seen that the maximum value of f(x) is at x = 2 i.e., f(x) = 6; and the minimum value is at x = -1, i.e., f(-1) = 0.

Example 2

From the following graph of f(x), identify the maximum and minimum values of f(x).

Solution:

It can be seen that the graph gets closer to the *x*-axis as the value of *x* increases. The maximum value attained is 10 (at x = 2), whereas f(x) has a minimum value of -4 (at x = 4.5).

First and Second Derivative Tests for Finding Points of Local Maxima and Minima

Local Maxima and Local Minima

- If *f* is a real valued function and *c* is an interior point in the domain of *f*, then
- c is the point of local maxima if there exists h > 0 such that f(c) > f(x) for all x in (c h, c + h). f(c) is called the maximum value of f.
- c is the point of local minima if there exists h > 0 such that f(c) < f(x) for all x in (c h, c + h). f(c) is called the minimum value of f.
- Geometrically, local maxima and local minima can be obtained as
- If x = c is a point of local maxima, then function f will be increasing (f'(x) > 0) in the interval (c h, c) and decreasing (f'(x) < 0) in the interval (c, c + h).

• If x = c is a point of local minima, then function f will be decreasing (f'(x) < 0) in the interval (c - h, c) and increasing (f'(x) > 0) in the interval (c, c + h).

- Let *f* be a function defined on open interval *I* and $c \in I$ be any point. If *f* has local maxima or local minima at x = c, then either f'(c) = 0 or *f* is not differentiable at *c*.
- Point *c* in the domain of *f* at which either f'(c) = 0 or *f* is not differentiable is known as the critical point of *f*.

First Derivative Test

• Let *f* be a function defined on an open interval *I* and let it be continuous at critical point *c* on *I*. Then,

• If f'(x) changes sign from positive to negative as x increases through c i.e., if f'(x) > 0 at every point close to and to the left of c, and f'(x) < 0 at every point close to and to the right of c, then c is the point of local maxima.

• If f'(x) changes sign from negative to positive as x increases through c i.e., if f'(x) < 0 at every point close to and to the left of c, and f'(x) > 0 at every point close to and to the right of c, then c is the point of minima.

- .
- If *f*(*x*) does not change sign as *x* increases through *c*, then *c* is neither the point of local maxima nor the point of local minima.

Then, *c* is called the point of inflection.

• For example: Consider $f(x) = x^3 - 12x + 7$ $f'(x) = 3x^2 - 12 = 3(x^2 - 4)$ $\Rightarrow f'(x) = 0$ at x = 2 and x = -2Consider point x = 2 Let two points near x = 2 be 2.1 and 1.9. $f'(2.1) = 3\{(2.1)^2 - 4\} = 3\{4.41 - 4\} = 1.23$ $f'(1.9) = 3\{(1.9)^2 - 4\} = 3\{3.61 - 4\} = -1.19$ $\therefore f'(x)$ changes sign from negative to positive at x = 2. Thus, x = 2 is the point of local minima. At point x = -2, consider points -2.1 and -1.9. f'(-2.1) = 3(-2.1 - 2)(-2.1 + 2) > 0 f'(-0.9) = 3(-1.9 - 2)(-1.9 + 2) < 0 $\therefore f'(x)$ changes sign from positive to negative at x = -2. Thus, x = -2 is the point of local maxima.

Second Derivative Test

- Let f be a function defined on an interval I and let $c \in I$. Let the second order derivative of f exist at c. Then,
- If f'(c) = 0 and f''(c) < 0, then c is the point of local maxima and f(c) is the local maximum value.
- If f'(c) = 0 and f'(c) > 0, then c is the point of local minima and f(c) is the local minimum value.
- If f'(c) = 0 and f''(c) = 0, then the test fails.
- For example: Consider $f(x) = 2x^3 9x^2 + 12x + 5$

$$f'(x) = 6x^{2} - 18x + 12$$

= 6 (x² - 3x + 2)
= 6 (x - 1) (x - 2)
$$f'(x) = 0$$

 $\Rightarrow 6(x - 1) (x - 2) = 0$
 $\Rightarrow x = 1 \text{ or } x = 2$
$$f''(x) = 12x - 18$$

Now, $f''(1) = 12(1) - 18$
= -6
$$f''(2) = 12(2) - 18 = 6$$

Thus, x = 1 is the point of local maxima and x = 2 is the point of local minima.

Solved Examples

Example 1

Find all the points of local maxima and local minima of the function $f(x) = \frac{2}{3}x^3 + 2x - 2x^2 + 7$ by first derivative test.

Solution

$$f(x) = \frac{2}{3}x^3 + 2x - 2x^2 + 7$$

$$\Rightarrow f'(x) = 2x^2 + 2 - 4x$$

For local maxima or minima, we have f'(x) = 0

$$\Rightarrow 2x^{2} + 2 - 4x = 0$$
$$\Rightarrow 2(x - 1)^{2} = 0$$
$$\Rightarrow x = 1$$

Let two points near 1 be 0.9 and 1.1.

$$f'(0.9) > 0$$
 and $f'(1.1) > 0$

Since, f'(x) does not change sign as x increases through 1. Hence x = 1 is neither a point of local maxima nor a point of local minima. In fact, x = 1 is a point of inflection.

Example 2

The cost of transportation of goods from a company to a market is given by f(x)

 $= \frac{x^3}{3} - 19x^2 - 80x + 100$. What is the minimum cost of transporting the goods?

Solution:

The cost of transportation is given by

$$f(x) = \frac{x^3}{3} - 19x^2 - 80x + 100$$

$$f'(x) = x^2 - 38x - 80$$

$$f'(x) = 0$$

$$\Rightarrow x^2 - 38x - 80 = 0$$

$$x^2 - 40x + 2x - 80 = 0$$

$$x(x - 40) + 2x - 80 = 0$$

$$x(x - 40) + 2(x - 40) = 0$$

$$x = -2 \text{ and } x = 40$$

$$f''(x) = 2x - 38$$

$$f''(-2) = -4 - 38 = -42$$

$$f''(40) = 80 - 38 = 42$$

 \therefore *x* = 40 is the point of minima.

$$\Rightarrow \text{Minimum value is} \left. f(40) = \left| \frac{(40)^3}{3} - 19(40)^2 - 80(40) + 100 \right| = 12166.67$$

Thus, the minimum cost of transportation is Rs. 12166.67.

Absolute Maximum and Minimum Values of Functions in Closed Intervals

- The maximum or minimum value attained by a function in a closed interval is known as its absolute maximum or minimum value.
- For example, consider f(x) = 3x 2 on [-1, 0]

At x = -1, f(-1) = -5 i.e., it has the minimum value at x = -1 and its absolute minimum value is -5 (also called global minimum or least value).

At x = 0, f(0) = -2 i.e., it has the maximum value at x = 0 and its absolute maximum value is -2 (also called global maximum or greatest value).

- Let *f* be a continuous function on an interval *I* = [*a*, *b*], then the absolute maximum and minimum value of *f* exist and *f* attains it at least once in *I*.
- Let *f* be a differentiable function on a closed interval *I* and let *c* be any interior point of *I*, then *f* '(*c*)
 = 0, if *f* attains its absolute maximum or minimum value at *c*.
- To find absolute maximum or minimum value of a differentiable function,
- find all the critical points of *f*
- take the end points of interval
- calculate the value of *f* at all these points
- identify the maximum or minimum value out of the function values at these points
- For example, consider $f(x) = 3x^2 2x 1$ on [0, 1]

Being a polynomial function, f is differentiable everywhere.

$$f'(x) = 6x - 2$$

$$f'(x) = 0 \Rightarrow x = \frac{1}{3}$$

Thus, the only critical point is $x = \frac{1}{3}$.

$$f(0) = -1$$

$$f\left(\frac{1}{3}\right) = 3 \times \left(\frac{1}{3}\right)^2 - 2 \times \frac{1}{3} - 1 = \frac{-4}{3}$$

$$f(1) = 3 - 2 - 1 = 0$$

Therefore, the absolute maximum value of *f* is 0 at *x* = 1 and absolute minimum value of *f*

Therefore, the absolute maximum value of *f* is 0 at *x* = 1 and absolute minimum value of *f* is $\frac{-4}{3}$ at *x* = $\frac{1}{3}$.

To know the concept in a better way, consider the function f(x) = 4x³ - 5x² - 2x - 6 on [-3, 4].
 Being f(x) a polynomial function, it is differentiable anywhere.

$$f'(x) = \frac{d}{dx} (4x^3 - 5x^2 - 2x - 6) = 12x^2 - 10x - 2 = 2(6x^2 - 5x - 1)$$

$$f'(x) = 0$$

$$\Rightarrow 6x^2 - 5x - 1 = 0$$

$$\Rightarrow (6x + 1)(x - 1) = 0$$

$$\Rightarrow x = -\frac{1}{6}, 1$$

Thus, the only critical point are $x = -\frac{1}{6}$ and 1

Thus, the only critical point are $x = -\frac{1}{6}$ and 1. These critical points lie in the interval [-3, 4].

Now, the value of the function at the extremities and the critical points can be calculated as:

$$f(-3) = 4 \times (-3)^3 - 5 \times (-3)^2 - 2(-3) - 6 = -108 - 45 + 6 - 6 = -153$$

$$f\left(-\frac{1}{6}\right) = 4 \times \left(-\frac{1}{6}\right)^3 - 5 \times \left(-\frac{1}{6}\right)^2 - 2\left(-\frac{1}{6}\right) - 6 = -\frac{1}{54} - \frac{5}{36} + \frac{1}{3} - 6 = -\frac{629}{108}$$

$$f(1) = 4 \times 1^3 - 5 \times 1^2 - 2 \times 1 - 6 = 4 - 5 - 2 - 6 = -9$$

$$f(4) = 4 \times 4^3 - 5 \times 4^2 - 2 \times 4 - 6 = 256 - 80 - 8 - 6 = 162$$

Among -153, $-\frac{629}{108}$, -9, and 162; 162 and -153 are the greatest and the smallest values respectively.

Therefore, the absolute maximum value of *f* is 162 at x = 4 and the absolute minimum value of *f* is -153 at x = -3.

Solved Examples

Example 1:

What is the absolute maximum and minimum values of the function $f(x) = 2x^3 + 5x^2 - 4x - 3$ on the interval [-4, 0]?

Solution:

$$f(x) = 2x^{3} + 5x^{2} - 4x - 3$$

$$f'(x) = 6x^{2} + 10x - 4$$

$$f \text{ is differentiable everywhere.}$$

$$f'(x) = 0$$

$$\Rightarrow 6x^{2} + 10x - 4 = 0$$

$$\Rightarrow 3x^{2} + 5x - 2 = 0$$

$$3x^{2} + 6x - x - 2 = 0$$

$$3x(x+2) - 1(x+2) = 0$$

$$\Rightarrow x = \frac{1}{3}, -2$$

Thus, the critical points are $x = \frac{1}{3}$ and x = -2

$$f(-4) = 2(-4)^3 + 5(-4)^2 - 4(-4) - 3 = -35$$

$$f(-2) = 2(-2)^3 + 5(-2)^2 - 4(-2) - 3 = 9$$

$$f\left(\frac{1}{3}\right) = 2\left(\frac{1}{3}\right)^3 + 5\left(\frac{1}{3}\right)^2 - 4\left(\frac{1}{3}\right) - 3 = \frac{-110}{27}$$

$$f(0) = 2(0)^3 + 5(0)^2 - 4(0) - 3 = -3$$

Thus, *f* has absolute maximum value at x = -2 and the absolute maximum value is 9. The absolute minimum value is -35 at x = -4

Example 2:

Find the absolute maximum and minimum value of function

$$f(x) = \frac{x^2}{64} + \frac{2}{\sqrt{x}} + 2$$
on [1, 36]

Solution:

$$f(x) = \frac{x^2}{64} + \frac{2}{\sqrt{x}} + 2$$

$$f'(x) = \frac{2x}{64} - \frac{2}{2x^{\frac{3}{2}}}$$

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow \frac{2x}{64} - \frac{2}{2x^{\frac{3}{2}}} = 0$$

$$\Rightarrow \frac{2x}{64} = \frac{2}{2x^{\frac{3}{2}}}$$

$$\Rightarrow x^{\frac{5}{2}} = 32$$

$$\Rightarrow x = (32)^{\frac{2}{5}}$$

$$\Rightarrow x = 4$$

$$f(1) = \frac{1}{64} + 2 + 2 = \frac{257}{64}$$

$$f(4) = \frac{(4)^2}{64} + \frac{2}{\sqrt{4}} + 2 = \frac{13}{4}$$

$$f(36) = \frac{(36)^2}{64} + \frac{2}{\sqrt{36}} + 2 = \frac{271}{12}$$

271

Thus, the absolute maximum value of *f* is 12 at *x* = 36 and absolute minimum value is

 $\frac{13}{4}$ at x = 4