

THE PBLOCK ELEMENTS

SINGLE CORRECT CHOICE TYPE Each of these questions has 4 choices (a), (b), (c) and (d) for its answer, out of which ONLY ONE is correct.

- When KOH reacts with Cl₂, the product is 1.
 - (a) KClO (b) $KClO_4$
 - (c) $KClO_3$ (d) none of these
- In the solid state, SO₃ may have structure 2.

- (c) a & b both
- (d) None of these
- 3. CO₂ is isostructural with

- (b) SnCl₂ (a) HgCl₂
- (c) C_2H_4 (d) NO_2
- Which of the following is an organometallic compound? 4.
 - (a) Sodium ethoxide (b) Potassium acetate
 - (c) Methyl lithium (d) Lithium dimethylamide
- Most reactive form of phosphorus is 5.
 - (a) white (b) red
 - (c) black (d) yellow
- 6. Which acid will you use to dissolve lead (II) oxide?
 - (a) HNO₃ (b) H_2SO_4
 - (d) None of these (c) HCl
- 7. Sulphur dioxide bleaches colouring matter by
 - (a) oxidation (b) reduction
 - (c) dehydrogenation (d) dehydration

- Which of the following is not hydrolysed? 8.
 - (a) PF₃ (b) NF₃
 - (c) SbF₃ (d) AsF₃
- $PbS \xrightarrow{Heat} A + PbS \xrightarrow{High temp.} Pb + SO_2$ 9.
 - Identify A
 - (a) PbO (b) $PbSO_4$
 - (c) None (d) (a) or (b)
- 10. When Sn is treated with conc. HNO₃
 - (a) it is converted into stannous nitrate
 - (b) it is converted into stannic nitrate
 - (c) it is converted into metastannic acid
 - (d) it becomes passive
- 11. Which of the following compounds is converted into the dimer form?
 - (a) BF_3 (b) BH₃

(c)
$$BCl_3$$
 (d) BBr_3

- 12. Which of following is called 'Inorganic Benzene?
 - (a) Boron nitride (b) Graphite
 - (c) Borazine (d) none of these
- 13. Which of the following is a correct statement?
 - (a) S_{α} and S_{β} are monotropic allotropes
 - (b) $O_2 \& O_3$ are enantiotropic allotropes
 - (c) Both a & b
 - (d) $O_2 \& O_3$ are monotropic allotropes
- The number of P–O–P bonds in P_4O_{10} is 14.
 - (a) 4 (h) 5

(a)
$$-7$$
 (b) -5
(c) -6 (d) none

- 15. Which of the following represents the decreasing order of vander waal's forces in halogens?
 - (a) $F_2 > Cl_2 > Br_2 > I_2$ (b) $I_2 > Br_2 > Cl_2 > F_2$

(c)
$$Br_2 > Cl_2 > F_2 > I_2$$
 (d) $Cl_2 > F_2 > I_2$
(e) $Br_2 > Cl_2 > F_2 > I_2$ (f) $Cl_2 > F_2 > I_2 > I_2$

1. abcd 2. abcd 5. 3. abcd4. abcd (a)b)(c)(d) MARK YOUR 8. 10. (a)b)©(d) 6. 7. (a)b)©(d) 9. abcd abcdabcdResponse 11. (a) b) c) d) 12. (a) b) c) d) 13. abcd 14. (a) b) c) d) 15. abcd

16.	Which of the following s	species is not pseudohalide?
	(a) CN ⁻	(b) RCOO ⁻
	(c) OCN ⁻	(d) NNN ⁻
17.	Which of the following i	s highly acidic than others?
	(a) H_3PO_2	(b) H ₃ PO ₄
	(c) H_3PO_2	(d) none
18.	Which of the following l	nalogen has highest bond
	dissociation energy?	
	(a) Cl–Cl	(b) F–F
	(c) Br–Br	(d) I–I
19.	Which of the following h	ydride is the most reducing?
	(a) NH ₃	(b) PH ₃
	(c) SbH ₃	(d) BiH ₃
20.	Which of the following l	has the highest bond length?
	(a) O_{2}^{-}	(b) O ₂
	$(a) O_2$	$(0) 0_2$
	(c) O_2^+	(d) O_2^{++}
21.	Which of the following	has correct increasing order of
	hydrolysis ?	
	(a) $CCl_4 < MgCl_2 < Alc$	$l_3 < SiCl_4 < PCl_5$
	(b) $PCl_5 < MgCl_2 < AlC$	$l_3 < SiCl_4 < CCl_4$
	(c) $PCl_5 < SiCl_2 < MgC$	$l_2 < AlCl_3 < CCl_4$
	(d) none of these	
22.	$B(OH)_3$ is a/an	
	(a) acid	(b) base
	(c) both	(d) none of these
23.	Pyrophosphoric acid is a	
	(a) monobasic	(b) Tribasic
	(c) Tetrabasic	(d) none
24.	Peroxodisulphuric acid is	sa
	(a) Monobasic	(b) Dibasic
	(c) Tribasic	(d) Tetrabasic
25.	Which of the following o	xides is most acidic?
	(a) Ag ₂ O	(b) V ₂ O ₅
	(c) CO	(d) N_2O_5
26.	Predict the relative basic	ity of the following ions F^- , Cl^- ,
	Br ⁻ , I ⁻	
	(a) $F^- > I^- > Br^- > Cl^-$	(b) $Cl^- > F^- > Br^- > I^-$
	(c) $F^- > Cl^- > Br^- > I^-$	(d) none of these
27.	Predict the relative acidic	c strength among the following
	H_2O, H_2S, H_2Se, H_2Te	

	(a) $H_2O < H_2S < H_2Se < H_2Te$ (b) $H_2Te < H_2Se < H_2S < H_2O$	
	(b) $H_2 H < H_2 S < H_2 S < H_2 S$ (c) $H_2 O < H_2 S < H_2 S < H_2 Te$	
	(c) $\Pi_2 O < \Pi_2 S < \Pi_2 S < \Pi_2 Te$ (d) none of these	
20		
28.	$Pb(NO_3)_2$ on heating gives	
	(a) NO (b) N_2O_3	
20	(c) a residue of PbO (d) none of the	
29.	Addition of acetic acid and potassium dichro	
	aqueous solution of Pb(NO ₃) ₂ gives a yellow of	w precipitate
	(a) $Pb(CH_3COO)_2$ (b) $PbCr_2O_7$	
	(a) $Pb(cri_3coo)_2$ (b) $Pb(cro_4)$ (c) $PbCro_4$ (d) none of the function o	iese
30.	The gas produced when ammonium bisulphid	
	an aqueous solution of aluminium sulfate is	e is uuded to
	(a) SO_2 (b) SO_3	
	(c) O_2 (d) H_2S	
31.	NaNO ₂ gives coloured fumes on treatment with	dilute acids.
	The colour of fumes is	
	(a) reddish (b) brown	
	(c) reddish-brown (d) none of the	nese
32.	A certain salt (X) gives the following tests :	
	(i) Its aqueous solution is alkaline to litmus	5.
	(ii) On strongly heating it swells to give a g	glassy bead
	(iii) When concentrated sulphuric acid is ad	ded to a hot
	concentrated solution of (X), crystals	
	separate out. Identify the colour of thes	e crystals.
	(a) White (b) Blue	
	(c) Brown (d) Violet	
33.	When NaNO ₃ is heated with $(NH_4)_2SO_4$ a co	olourless gas
	& a residue is obtained. The colour of residu	e is
	(a) black (b) brown	
	(c) red (d) white	
34.	The strongest reducing agent amongst the fo	ollowing is
	(a) $P_2 O_7^{-4}$ (b) $P_2 O_6^{-4}$	
	2 7 2 0	
	(c) H_3PO_4 (d) $H_2PO_2^-$	
35.	Which of the following is correct order of bo	nd strength?
	(a) $N_2^+ > N_2 > N_2^-$ (b) $N_2^- > N_2$	$> N^+$
	(1) 1 2 >	- 12

(c) $N_2 > N_2^+ > N_2^-$ (d) $N_2^- > N_2^+ > N_2$

— £ 1—					
	16. abcd	17.@bcd	18.@bcd	19. abcd	20. abcd
Mark Your	21.abcd	22. abcd	23. abcd	24. abcd	25. abcd
Response	26. abcd	27. abcd	28. abcd	29. abcd	30. abcd
	31.abcd	32. abcd	33. abcd	34. abcd	35. abcd

The p-Block Elements 36. Red phosphorus is volatile than white phosphorus. (a) less (b) more (c) equally (d) can't say 37. Of the following acids of sulphur which one has more than one oxidation state of sulphur atom ? (a) $H_2S_2O_4$ (b) $H_2S_2O_3$ (c) $H_2S_2O_7$ (d) $H_2S_2O_6$ 38. Of the following which compound is most unstable? IF (a) (b) IF₃ (d) IF₇ (c) IF_5 39. Passing H₂S gas through nitric acid produces (a) rhombic sulfur (b) monoclinic sulfur (c) amorphous sulfur (d) plastic sulfur Which of the following is true? 40. (a) Coke is found in nature (b) Producer gas is a mixture of CO & H_2 (c) CO is used in the extraction of Ni by Mond's process (d) CO_2 can be prepared by dehydration of formic acid. Mn⁺⁺ can be converted into Mn⁺⁷ by reacting with 41. (a) SO_2 (b) Cl₂ (c) PbO₂ (d) SnCl₂ 42. Oxidation state exhibited by sulphur is (a) +6 (b) +4(c) 0 (d) all of the above 43. How many bonding electron pairs are there in white phosphorus? (a) 6 (b) 12 (c) 4 (d) 8 44. Solid iodine is (a) covalent crystal molecular crystal (b) (c) metallic crystal ionic crystal (d) 45. Conc. HNO₃ reacts with I₂ to form (a) HOIO₃ (b) HI (c) HIO₃ (d) HOI 46. From which of the following, SO₂ is formed? (a) Hydrolysis of dil H_2SO_4 (b) Reaction of dil H_2SO_4 with oxygen

- (c) Reaction of Na_2SO_3 with conc. H_2SO_4
- (d) None of these
- **47.** Chlorine cannot displace

(c)

- (a) iodine from NaI (b) bromine from NaBr
 - fluorine from NaF (d) none of these

- Sulphuric acid reacts with PCl₅ to give (a) sulphur tetrachloride
 - (b) sulphur tearaction (b) sulphuryl chloide

48.

- (c) sulphur monochloride
- (d) thionyl chloride
- **49.** The following acids have been arranged in order of decreasing acid strength. Identify the correct order. CIOH (I), BrOH (II), IOH (III)

567

- (a) II > I > III (b) III > II > I
- (c) I > II > III (d) I > III > III
- 50. Which of the following oxides is neutral?(a) SnO₂(b) CO
 - (c) ZnO (d) SiO_2
- **51.** Which of the following halides is least stable and has doubtful existence?
 - (a) CrI_4 (b) SnI_4
 - (c) PbI_4 (d) Cl_4
- **52.** An aqueous solution of a gas shows following reactions :
 - (i) It turns red litmus blue
 - (ii) When added in excess to a copper sulphate solution a deep blue colour is obtained.
 - (iii) On addition to ferric chloride solution a brownish precipitate soluble in HNO₃ is obtained.
 - Identify the gas.
 - (a) SO_2 (b) SO_3 (c) NH_3 (d) CO_2
- **53.** Ammonium dichromate on heating gives
 - (a) chromic acid & ammonia
 - (b) chromium sesquioxide & nitrogen
 - (c) chromium sesquioxide & ammonia
 - (d) chromic acid and N_2
- 54. One gas bleaches the colour of flowers by reduction while the other by oxidation, the two respective gases are
 - (a) CO and Cl_2 (b) H_2S and Br_2
 - (c) NH_3 and SO_3 (d) $SO_2 \& Cl_2$
- **55.** Bromine (molecular mass, 160 amu) boils at 59°C, whereas iodine monochloride (molecular mass, 162 amu) boils at 92°. The best explantion for this difference in b.p. is
 - (a) the I–Cl bond is stronger than Br–Br bond
 - (b) Br_2 is a non-polar molecule, ICl is polar
 - (c) the vander Waal's forces in ICl are stronger than in Br₂
 - (d) the difference in molecular masses

(A) 36.(a)(b)(c)(d) 37. (a) (b) (c) (d) 38. (a) (b) (c) (d) 39. (a)(b)(c)(d) 40. (a)(b)(c)(d) 45. (a)(b)(c)(d) 41.(a)(b)(c)(d) 42. (a) (b) (c) (d) 43. (a) (b) (c) (d) 44. (a) (b) (c) (d) MARK YOUR Response 46.(a)(b)(c)(d) 47. (a) (b) (c) (d) 48. (a) b) c) d) 49. (a) (b) (c) (d) 50. (a)b)©(d) 51.(a)(b)(c)(d) 52. (a) (b) (c) (d) 53. (a) (b) (c) (d) 54. (a) (b) (c) (d) 55. (a)b)c)d)

	(a) silver hydroxide(b) freshly reduced silver v(c) silver oxide	which	is black in colour		(a) (b) (c) (d)	iodine solution chlorine solution sodium chloride potassium iodide		
	(d) a complex compound of			68.			-	oxidation state opposite
57.	Reaction that involves ato promoted by	-			(a)	other halogens, because it is most electronega		
	(a) bacterical activity(c) moisture		low temperatures carbonic acid		(b) (c)	it has no <i>d</i> -orbital its atomic radius is ve	ry smal	11
58.	The yellow colour often s	hown	by nitric acid may be		· · ·	F ⁻ ion is stable and is	•	
	removed by			69.				e washed with materials
	(a) adding a little tin(b) boiling the acid					taining washing soda s		
	(c) passing ammonia throu	ıơh th	e acid in cold		(a) (b)	washing soda is expe washing soda is easil		mposed
	(d) bubbling the air throug	-			(c)	-	-	o form soluble aluminate
59.	What is the name of the com	-	-		(d)	-		Al to form insoluble
	which on heating gives laug		-			aluminium oxide		
	(a) Hydroxylamine(c) Ammonium Nitrite	· · ·	Ammonium Nitrate None of these	70.		the following types of g fficient of thermal expa		he one with the smallest
60.	Silicon carbide is used as a/	an				safety glass		pyrex glass
	(a) abrasive	(b)				soft glass		soda lime glass
	(c) solvent		catalyst	71.	The	e element with the high	est firs	t ionisation potential is
61.	Which one of the following				(a)			carbon
	(a) Br^-	(b)	[- C[-			nitrogen		oxygen
62.	(c) Cl ₂ Which one of the following	· · ·		72.			ne are	used up when it reacts
02.	which one of the following	-			with		(b)	PbS
	(a) I_{3}^{-}	(b)	ICI-			H ₂ O ₂ KI	(d)	SO ₂
	(c) IF ₅	(d)	CN-	73.	· /			chloride from chlorides
63.	Which one is not an acid?					ause		
	(a) NaH_2PO_2		NaH ₂ PO ₃		(a)	it is a stronger acid		
	(c) NaH ₂ PO ₄	(d)	none		(b)	sulphates are less sol	uble th	nan chlorides
64.	Minimum flocculation value		P1 +4			sulphates are more so		
	(a) Na^+ (c) Pb^{+2}	(b) (d)	Pb ⁺⁴ Sr ⁺²			HCl is a gas while H ₂		a liquid
65.	The species that does not co			74.		l conductor of electrici	-	
03.	(a) PbO ₂		SrO ₂			H ₂ F ₂	· · ·	HCl
	(a) 100_2 (c) BaO_2		none of these			HBr		HI
66.	Maximum $p\pi$ - $p\pi$ back bond			75.		non forms compounds	-	
	(a) BCl ₃	-	BF ₃			oxygen & chlorine oxygen & bromine		oxygen and fluorine oxygen and ozone
	(c) BBr_3		BI ₃			oxygen & bronnine	(u)	oxygen and ozone

<u> </u>					
	56.abcd	57.abcd	58.@bcd	59. abcd	60. abcd
Mark Your	61.abcd	62. abcd	63. abcd	64. abcd	65. abcd
Response	66. abcd	67. abcd	68. abcd	69. abcd	70. abcd
	71.@bcd	72. abcd	73. abcd	74. abcd	75. abcd

t is recommended that lique pened after cooling then because liquor ammonia a) brings tears to eyes b) has a high vapour pro- c) a corrosive liquid d) is a mild explosive n the manufacture of safe a) white P c) black P Bromine can be liberated from by the action of a) iodine solution c) sodium chloride Phosphine is producd by a a) CaC_2 c) Ca_3P_2 Which of the following show forms ? a) Oxygen	n in ice ressure (b) (d) rom potas (b) (d) adding w (b) (d) w maximu	for sometime. This is hes we use red P selenium ssium bromide solution chlorine water potassium iodide vater to HPO ₃ P_4O_{10}	87. 88. 89. 90.	 (a) (c) Wh (a) (c) Wh pos (a) (c) Elec Her (a) 	ten concentrated HNO_3 ives blue colour green colour tich of the following ssible? OF_4 OF_2	(b) (d) decomp (b) (d) molecu (b) (d) alumina d out aCl	alum? Li Al poses slowly in sun light yellow colour brown colour ule is theoretically no O_2F_2 SF_4 a to aluminium by Hall
because liquor ammonia a) brings tears to eyes b) has a high vapour pro- c) a corrosive liquid d) is a mild explosive n the manufacture of safe a) white P c) black P Bromine can be liberated from by the action of a) iodine solution c) sodium chloride Phosphine is producd by a a) CaC_2 c) Ca_3P_2 Which of the following show forms ? a) Oxygen	ety matcl (b) (d) rom potas (b) (d) adding w (b) (d) w maximu	thes we use red P selenium ssium bromide solution chlorine water potassium iodide vater to HPO ₃ P_4O_{10}	89.	 (c) Whit gif (a) (c) Whit post (a) (c) Elece Herrian (b) 	K en concentrated HNO_3 ives blue colour green colour tich of the following sible? OF_4 OF_2 ctrolytic reduction of a roult process is carried in the presence of Na	(d) (b) (d) (d) (d) (d) (d) (d) alumina d out aCl	Al poses slowly in sun light yellow colour brown colour ule is theoretically no O_2F_2 SF_4
a) brings tears to eyes b) has a high vapour pro- c) a corrosive liquid d) is a mild explosive in the manufacture of safe a) white P c) black P Bromine can be liberated from by the action of a) iodine solution c) sodium chloride Phosphine is producd by a a) CaC_2 c) Ca_3P_2 Which of the following show forms ? a) Oxygen	ety matcl (b) (d) rom potas (b) (d) adding w (b) (d) w maximu	red P selenium ssium bromide solution chlorine water potassium iodide water to HPO_3 P_4O_{10}	89.	Whit gi (a) (c) Wh pos (a) (c) Elec Her (a) (b)	ten concentrated HNO_3 ives blue colour green colour tich of the following sible? OF_4 OF_2 ctrolytic reduction of a roult process is carried in the presence of Na	decomy (b) (d) molecu (b) (d) alumina d out aCl	poses slowly in sun light yellow colour brown colour ule is theoretically no O_2F_2 SF_4
b) has a high vapour pro- c) a corrosive liquid d) is a mild explosive n the manufacture of safe a) white P c) black P Bromine can be liberated from by the action of a) iodine solution c) sodium chloride Phosphine is producd by a a) CaC_2 c) Ca_3P_2 Which of the following show forms ? a) Oxygen	ety matcl (b) (d) rom potas (b) (d) adding w (b) (d) w maximu	red P selenium ssium bromide solution chlorine water potassium iodide water to HPO_3 P_4O_{10}	89.	it gi (a) (c) Wh pos (a) (c) Elec Her (a) (b)	ives blue colour green colour tich of the following sible? OF_4 OF_2 ctrolytic reduction of a roult process is carried in the presence of Na	(b) (d) molect (b) (d) alumina d out aCl	yellow colour brown colour ule is theoretically no O_2F_2 SF_4
c) a corrosive liquid d) is a mild explosive n the manufacture of safe a) white P c) black P Bromine can be liberated fr by the action of a) iodine solution c) sodium chloride Phosphine is producd by a a) CaC_2 c) Ca_3P_2 Which of the following show forms ? a) Oxygen	ety matcl (b) (d) rom potas (b) (d) adding w (b) (d) w maximu	red P selenium ssium bromide solution chlorine water potassium iodide water to HPO_3 P_4O_{10}		 (a) (c) Wh pos (a) (c) Elec Herr (a) (b) 	blue colour green colour tich of the following ssible? OF_4 OF_2 ctrolytic reduction of a coult process is carried in the presence of Na	(d) molecu (b) (d) alumina d out aCl	brown colour ule is theoretically no O_2F_2 SF_4
d) is a mild explosive in the manufacture of safe a) white P c) black P Bromine can be liberated from by the action of a) iodine solution c) sodium chloride Phosphine is producd by a a) CaC_2 c) Ca_3P_2 Which of the following show forms ? a) Oxygen	(b) (d) rom potas (b) (d) adding w (b) (d) w maximu	red P selenium ssium bromide solution chlorine water potassium iodide water to HPO_3 P_4O_{10}		 (c) Wh pos (a) (c) Elec Her (a) (b) 	green colour ich of the following sible? OF_4 OF_2 ctrolytic reduction of a roult process is carried in the presence of Na	(d) molecu (b) (d) alumina d out aCl	brown colour ule is theoretically no O_2F_2 SF_4
in the manufacture of safe a) white P c) black P Bromine can be liberated fr by the action of a) iodine solution c) sodium chloride Phosphine is producd by a a) CaC_2 c) Ca_3P_2 Which of the following show forms ? a) Oxygen	(b) (d) rom potas (b) (d) adding w (b) (d) w maximu	red P selenium ssium bromide solution chlorine water potassium iodide water to HPO_3 P_4O_{10}		Wh pos (a) (c) Elec Her (a) (b)	hich of the following sible? OF_4 OF_2 ctrolytic reduction of a roult process is carried in the presence of Na	(b) (d) alumina d out aCl	ule is theoretically no O_2F_2 SF_4
a) white P c) black P Bromine can be liberated fr by the action of a) iodine solution c) sodium chloride Phosphine is producd by a a) CaC_2 c) Ca_3P_2 Which of the following show forms ? a) Oxygen	(b) (d) rom potas (b) (d) adding w (b) (d) w maximu	red P selenium ssium bromide solution chlorine water potassium iodide water to HPO_3 P_4O_{10}		pos (a) (c) Elec Her (a) (b)	sible? OF_4 OF_2 ctrolytic reduction of a roult process is carried in the presence of Na	(b) (d) alumina d out aCl	O ₂ F ₂ SF ₄
c) black P Bromine can be liberated from the action of a) iodine solution c) sodium chloride Phosphine is producd by a a) CaC_2 c) Ca_3P_2 Which of the following show forms ? a) Oxygen	(d) rom potas (b) (d) adding w (b) (d) w maximu	selenium ssium bromide solution chlorine water potassium iodide vater to HPO_3 P_4O_{10}	90.	pos (a) (c) Elec Her (a) (b)	sible? OF_4 OF_2 ctrolytic reduction of a roult process is carried in the presence of Na	(b) (d) alumina d out aCl	O ₂ F ₂ SF ₄
Bromine can be liberated from the action of (a) iodine solution (c) sodium chloride Phosphine is produced by a (a) CaC_2 (b) Ca_3P_2 Which of the following show forms? (a) Oxygen	(b) (d) adding w (b) (d) w maximu	ssium bromide solution chlorine water potassium iodide vater to HPO_3 P_4O_{10}	90.	(c) Elec Her (a) (b)	OF ₂ ctrolytic reduction of a roult process is carried in the presence of Na	(d) alumina d out aCl	SF ₄
by the action of a) iodine solution c) sodium chloride Phosphine is producd by a a) CaC ₂ c) Ca ₃ P ₂ Which of the following show forms ? a) Oxygen	(b) (d) adding w (b) (d) w maximu	chlorine water potassium iodide vater to HPO_3 P_4O_{10}	90.	(c) Elec Her (a) (b)	OF ₂ ctrolytic reduction of a roult process is carried in the presence of Na	(d) alumina d out aCl	SF ₄
 a) iodine solution c) sodium chloride Phosphine is producd by a a) CaC₂ c) Ca₃P₂ Which of the following show forms ? a) Oxygen 	(d) adding w (b) (d) w maximu	potassium iodide vater to HPO_3 P_4O_{10}	90.	Elec Her (a) (b)	ctrolytic reduction of a roult process is carried in the presence of Na	alumina d out aCl	+
c) sodium chloride Phosphine is producd by a a) CaC_2 c) Ca_3P_2 Which of the following show forms ? a) Oxygen	(d) adding w (b) (d) w maximu	potassium iodide vater to HPO_3 P_4O_{10}		Her (a) (b)	roult process is carried in the presence of Na	d out aCl	
Phosphine is producd by a a) CaC_2 c) Ca_3P_2 Which of the following show forms ? a) Oxygen	adding w (b) (d) w maximu	vater to HPO ₃ P_4O_{10}		(a) (b)	in the presence of Na	aCl	
 a) CaC₂ c) Ca₃P₂ Which of the following show forms ? a) Oxygen 	(b) (d) w maximu	HPO ₃ P ₄ O ₁₀		(b)	-		
c) $Ca_3 \tilde{P}_2$ Which of the following show forms ? (a) Oxygen	(d) w maximu	P_4O_{10}			in the presence of it	norite	
Which of the following show forms ? a) Oxygen	v maximı			(\mathbf{c})	-		which forms a melt with
Forms ? (a) Oxygen		unification of anotropic		. /	lower melting temper	•	vinen forms a men with
a) Oxygen	(1)			(d)			which forms a melt with
	(b)	Sulphur		(u)	higher melting tempe	-	which forms a men whi
c) Selenium		Polonium	91.	The			cyclic metaphosphorie
ron when treated with cor	. /		<i>)</i> 1.	ació		onus m	cyclic inclapitosphore
a) readily reacts		slowly reacts		(a)		(b)	2
c) becomes passive		gives ferrous nitrate		. ,		(d)	
H_3PO_3 is		-	03	. ,		. ,	4
a) neutral	(b)	basic	92.		monia can be dried by		D O
c) a tribasic acid	. ,	a dibasic acid			conc. H_2SO_4		P_4O_{10}
Oxide which can not be a p	reducing	g agent is		. /			anhydrous CaCl ₂
a) NO ₂			93.				-
c) CO_2^2		2			-	0	
Which of the following su	ulphates	has highest solubility		(b)	$HClO_4 < HClO_3 < H$	$ClO_2 < H$	ICIO
n water?				(c)	HClO <hclo<sub>4<hcl< td=""><td>$HO_3 < HO_3$</td><td>ClO₂</td></hcl<></hclo<sub>	$HO_3 < HO_3$	ClO ₂
a) CaSO ₄	(b)	BeSO ₄		(d)	$HClO_4 < HClO_2 < HC$	ClO ₃ <h< td=""><td>ICIO</td></h<>	ICIO
c) MgSO ₄	(d)	BaSO ₄	94.	The	number of S–S bonds	in sulph	ur trioxide trimer (S ₃ O ₉
Strongest reducing agent	is			is			<i>U</i> ,
a) Cl ⁻	(b)	I ⁻		(a)	3	(b)	2
c) F ⁻	(d)	Br ⁻		(c)	1	(d)	0
When alumina is heated wi	ith carbo	on in the atmosphere of	95.	. ,	ntifv the correct order	. ,	
nitrogen then products for	med are						,
	(b)	$Al + CO + N_2$			-	(h)	$ZnS > Na_2S > CuS$
a) Al+CO						(d)	
	Divide which can not be a a) NO_2 c) CO_2 Which of the following so a water? a) $CaSO_4$ c) $MgSO_4$ strongest reducing agent a) Cl^- c) F^- When alumina is heated w itrogen then products for	Divide which can not be a reducing a) NO_2 (b) c) CO_2 (d) Which of the following sulphates in water? a) $CaSO_4$ (b) c) $MgSO_4$ (d) throngest reducing agent is a) CI^- (b) c) F^- (d) When alumina is heated with carbon itrogen then products formed are a) $Al + CO$ (b)	Divide which can not be a reducing agent is a) NO_2 (b) CIO_2 c) CO_2 (d) SO_2 Which of the following sulphates has highest solubility in water? a) $CaSO_4$ (b) $BeSO_4$ c) $MgSO_4$ (d) $BaSO_4$ trongest reducing agent is a) CI^- (b) I^- c) F^- (d) Br^- When alumina is heated with carbon in the atmosphere of itrogen then products formed are	Oxide which can not be a reducing agent is93.a) NO_2 (b) CIO_2 93.a) CO_2 (d) SO_2 Which of the following sulphates has highest solubility93.a) $CaSO_4$ (b) $BeSO_4$ c) $MgSO_4$ (d) $BaSO_4$ c) $MgSO_4$ (d) $BaSO_4$ et trongest reducing agent isa) CI^- (b) I^- c) F^- (d) Br^- When alumina is heated with carbon in the atmosphere of itrogen then products formed area) $AI + CO$ (b) $AI + CO + N_2$	Divide which can not be a reducing agent is a) NO_2 (b) CIO_2 (c) CO_2 (d) SO_2 93.Which of the following sulphates has highest solubility n water? (a) $CaSO_4$ (b) $BeSO_4$ (c) $MgSO_4$ (c) $MgSO_4$ (c) $MgSO_4$ (d) $BaSO_4$ 94.The (c) (c) (c) (c) R^- (c) F^- (c) F^- (c) $Beson = 10^{-1}$ (c)(a)(b) I^- (c) R^- (c) R^- (b) I^- (c)(c) F^- (d) Br^- (a)(c) $Son = 10^{-1}$ (c) R^- (b) I^- (c)(c) $Son = 10^{-1}$ (c) R^- (b) I^- (c)(c) $Son = 10^{-1}$ (c) R^- (c)(c) $Son = 10^{-1}$ (c) R^- (c) R^- (c)(c) $Son = 10^{-1}$ (c) R^- (c) R^- (c)(c) R^- (c) R^-	Divide which can not be a reducing agent is(c) CaOa) NO_2 (b) CIO_2 (c) CO_2 (d) SO_2 Which of the following sulphates has highest solubility(a) $HCIO_4 < HCIO_3 < HCIO_4 < HCIO_4 < HCIO_2 < HCIO_4 < HCIO_4 < HCIO_2 < HCIO_4 < HCIO_4 < HCIO_2 < HCIO_4 < HCIO_2 < HCIO_4 < HCIO_4 < HCIO_2 < HCIO_4 < HCIO_4 < HCIO_2 < HCIO_4 $	Divide which can not be a reducing agent is a) NO_2 (b) CIO_2 (c) CO_2 (d) SO_2 (c) CaO (d) The set with correct order of acid (a) $HCIO_4 < HCIO_3 < HCIO_2 < HCIO_3 < HCIO_1 < (d) HCIO_4 < HCIO_2 < HCIO_3 < HCIO_3$

— <i>k</i> ı—					
	76.@bcd	77. abcd	78. abcd	79. abcd	80. abcd
Mark Your	81.@bcd	82. abcd	83. abcd	84. abcd	85. abcd
Response	86. abcd	87. abcd	88. abcd	89. @bcd	90. abcd
	91.@bcd	92. abcd	93. abcd	94. abcd	95. abcd

- **96.** Polyphosphates are used as water softening agent because they
 - (a) form soluble complexes with anionic species
 - (b) precipitate anionic species
 - (c) form soluble complexes with cationic species
 - (d) precipitate cationic species
- **97.** Identify the correct order of acidic strength of CO₂, CuO, CaO, H₂O
 - (a) $CaO < CuO < H_2O < CO_2$
 - (b) $H_2O < CuO < CaO < CO_2$
 - (c) $CaO < H_2O < CuO < CO_2$
 - (d) $H_2O < CO_2 < CaO < CuO$
- **98.** For H_3PO_3 and H_3PO_4 , the correct choice is
 - (a) H_3PO_3 is dibasic and reducing
 - (b) H_3PO_4 is diabasic and non-reducing
 - (c) H_3PO_4 is tribasic and reducing
 - (d) H_3PO_4 is tribasic and non reducing
- **99.** H₃BO₂ is

d-

- (a) monobasic and weak Lewis acid
- (b) monobasic and weak Bronsted acid
- (c) monobasic and strong Lewis acid
- (d) tribasic and weak Bronsted acid
- 100. Nitrolium is a mixture of
 - (a) $CaCN_2$ and graphite (b) CaC_2 and graphite
 - (c) $Ca(CN)_2$ and graphite (d) $CaCN_2$ & nitrogen
- 101. Identify B in the following sequence of reactions

A + dil. H₂SO₄ + K₂Cr₂O₇ \longrightarrow (B) green colour;

- $A + O_2 \xrightarrow{H_2O} Na_2SO_4$
- (a) Na_2SO_3 (b) K_2SO_4 (c) $Cr(SO_3)$
- (c) CrO_5 (d) $Cr_2(SO_4)_3$
- 102. A is a binary compound of a univalent metal. 1.422 g. of A reacts completely with 0.321 g of sulphur in an evacuated and sealed tube to give 1.734 g of a white crystalline solid, B, which is a sulphate of a univalent metal. Identify A.

(a)
$$Na_2SO_4$$
 (b) K_2SO_4

(c) Li_2SO_4 (d) None of these

- 103. A salt 'R' shows the following characteristics
 - (i) It is soluble in water.
 - (ii) To aqueous solution of salt '*R*' if we add aqueous NaOH, it forms a white precipitate.
 - (iii) The white precipitate formed in (ii) is soluble in excess of aqueous NaOH.
 - (iv) '*R*' when treated with aqueous ammonia gives a white ppt. that is not soluble in excess of aqueous ammonia.

The salt '*R*' is

- (a) $ZnSO_4$ (b) $CaSO_4$
- (c) $Al_2(SO_4)_3$ (d) $BaCl_2$
- **104.** An aqueous solution of hydrated aluminium chloride contains the following set of ions
 - (a) Al^{3+} and Cl^{-}
 - (b) AlCl₃ and H_2O
 - (c) $[Al(H_2O)_6]^{3+}$ and Cl^{-}
 - (d) $\left[AlCl_3(H_2O)_4\right]^+$ and $\left[AlCl_4(H_2O)_2\right]^-$
- **105.** In solid state the colour of oxygen has been observed as **pale blue**. This pale colour of oxygen(s) is due to electronic transitions from
 - (a) the triplet ground state to the excited singlet state
 - (b) the triplet ground state to antibonding $\sigma 2p_z$ molecular orbital
 - (c) the antibonding π -molecular orbitals to the bonding $\sigma 2p_z$ molecular orbital
 - (d) the singlet ground state to the excited triplet state
- **106.** Select the one which on shaking with iodine solution will discharge the colour of iodine solution.
 - (a) Na_2S (b) Na_2SO_4
 - (c) aqueous SO₂ (d) NaBr
- **107.** Select the pair which on treatment with excess of dil HCl gets partly dissolved with evolution of a colourless gas.
 - (a) $CaCO_3$ and $MgSO_4$ (b) $MgCO_3$ and CaO
 - (c) $CaCO_3$ and $BaSO_4$ (d) $Ba(NO_3)_2$ and CaO

	96. abcd	97. abcd	98. abcd	99. abcd	100. abcd
Mark Your Response	101.abcd	102.abcd	103. abcd	104. abcd	105. abcd
	106.abcd	107.@bcd			

- **108.** A yellow metallic powder when burnt in a stream of fluorine produced a colourless, thermally stable and chemically inert gas 'X'. A gas 'Y', which is colourless and consists of the same elements as are present in gas 'X', is obtained by heating together sulphur dichloride and sodium fluoride. Gases 'X' and 'Y' respectively are
 - (a) SF_4 and SF_6 (b) SF_4 and S_2F_2
 - (c) SF_6 and SF_4 (d) none of these
- **109.** The reason for **not** storing XeF_6 in a glass or a quartz vessel is that
 - (a) it forms an explosive having the formula XeO_2F_2
 - (b) it forms an explosive having the formula $XeOF_4$
 - (c) it forms XeO₂ which is explosive substance
 - (d) it forms XeO_6^{4-} which is explosive in nature
- **110.** Due to which one of the following processes is "vortex rings" formed ?

"Vortex rings" is formed due to oxidation of

(a) PH ₃	(b) P ₂ H ₄
---------------------	-----------------------------------

- (c) NO_2 (d) N_2O
- **111.** P_2H_4 can be removed from phosphine containing traces of it :
 - (a) by passing impure PH_3 gas through a freezing mixture
 - (b) by passing the impure PH₃ gas through HI and then its treatment with KOH (aq)
 - (c) by both (a) and (b)
 - (d) by none of these
- 112. We know that farmers use CaO to reduce the acidity of soil and they use ammonium sulphate $[(NH_4)_2SO_4]$ as a nitrogenous fertilizer. Why is it not possible to use a mixture of CaO and ammonium sulphate ?
 - (a) The dry mixture is quite explosive in nature
 - (b) $CaSO_4$ formed on mixing may cause hardness in water
 - (c) $NH_3(g)$ may be given out when the mixture is dampened
 - (d) the constituents of mixture may react to form H_2SO_4
- 113. Which one is correct :

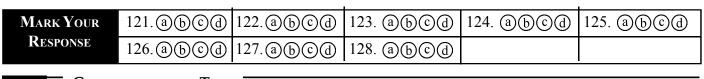
An

- (a) White phosphorus glows in dark because of its slow combustion in air
- (b) The energy of oxidation of white phosphorus (i.e., slow combustion in air) is emitted as light

- (c) Red phosphorus glows in dark because of its slow combustion in air.
- (d) **Cold fire** can be produced by combustion of white phosphorus
- **114.** "Holme's signals" are used for ships to know about position of rocks in the sea. For this purpose a mixture of which of the following substances is taken in a ship ?
 - (a) CaC_2 and Ca_3P_2 (b) CaC_2 and $Ca_3(PO_4)_2$
 - (c) NaN_3 and Ca_3P_2 (d) none of these
- **115.** One of the important uses of phosphine is to prepare smoke screens in warfare. The smoke screen is formed due to
 - (a) action of phosphine with moisture in air
 - (b) action of phosphine with oxygen in air
 - (c) action of phosphine with CO_2 in air
 - (d) action of phosphine with N_2 in air
- 116. Select the incorrect statement about NO (nitric oxide)
 - (a) It is an odd electron molecule
 - (b) It is blue coloured in liquid state
 - (c) It is a colourless gas
 - (d) It has red colour in solid state
- **117.** Select the incorrect statement.
 - (a) HNO_3 is called aqua fortis
 - (b) As_4O_6 is called white arsenic
 - (c) As_4O_6 is poisonous in nature
 - (d) HNO_4 (per nitric acid) is not explosive in nature
- 118. Amatol that is used as an explosive has the composition
 - (a) 80% of NH₄NO₃ + 20% TNT
 - (b) $20\% \text{ of } \text{NH}_4 \text{NO}_3 + 80\% \text{ TNT}$
 - (c) $30\% \text{ of } \text{NH}_4 \text{NO}_2 + 20\% \text{ TNT}$
 - (d) $20\% \text{ of } \text{NH}_4 \text{NO}_2 + 80\% \text{ TNT}$
- 119. Which of the following is used in photoelectric cells ?
 - (a) Oxygen (b) Sulphur
 - (c) Selenium (d) Tellurium
- **120.** Which of the following is obtained by the reaction of sulphur(S) with CoF₃?
 - (a) SF_4 (b) SF_6
 - (c) S_2F_2 (d) none of these

	108.abcd	109.abcd	110. abcd	111. abcd	112. abcd
Mark Your Response	113. abcd	114. abcd	115. abcd	116. abcd	117. abcd
MESTONSI	118. abcd	119. abcd	120. abcd		

121. Which of the following is true?

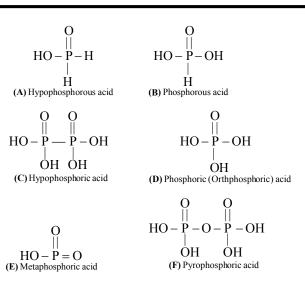

- (a) minute quantities of boron are used in hardening of steel
- (b) boron is also a trace element in plants and serves as significant nutrient factor
- (c) boron occupies the top rank of all elements as neutron absorber
- (d) All of the above are true
- 122. Corrundum is
 - (a) α -Al₂O₃ (b) γ -Al₂O₃
 - (c) both the above (d) none of these
- 123. The form of BN which is as hard as diamond is
 - (a) hexagonal form
 - (b) Cubic form with ZnS structure
 - (c) both of these
 - (d) none of these
- **124.** Carbon sub-oxide (C_3O_2)

B

- (a) is a foul smelling gas
- (b) is obtained by dehydrating malonic acid with P_2O_5
- (c) is a linear molecule
- (d) all the above are correct

Animals die when they inhale nitrous oxide in excess because

- (a) it is poisonous
- (b) it cause laughing hysteria
- (c) it deactivates haemoglobin
- (d) it reacts with organic tissues
- **126.** NH_4Cl is used to clear metal surfaces because
 - (a) it dissociates in ammonia and HCl
 - (b) ammonia forms a soluble complex with metal
 - (c) HCl forms a volatile chloride
 - (d) none of the above
- 127. When conc. HNO₃ acts on our skin, the skin becomes yellow, because
 - (a) HNO₃ acts as an oxidising agent
 - (b) HNO₃ acts as a dehydrating agent
 - (c) Nitro-cellulose is formed
 - (d) The proteins are converted into xanthoproteins
- **128.** Of the interhalogen AX_3 compounds, ClF_3 is most reactive but BrF_3 has higher conductance in liquid state. This is because
 - (a) BrF₃ has higher molecular mass
 - (b) ClF_3 is more volatile
 - (c) BrF_3 dissociates into BrF_2^+ and BrF_4^- most easily
 - d) Electrical conductance does not depend on concentration



Comprehension Type \equiv

This section contains groups of questions. Each group is followed by some multiple choice questions based on a paragraph. Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONLY ONE is correct.

PASSAGE-1

In all the oxyacids of phosphorus, each phosphorus atom is in sp^3 hybrid state, i.e., it is tetrahedrally bonded to neighbouring four atoms. All these acids contain P – OH bonds, the hydrogen atom of which are ionisable imparting acidic nature to the compound. The *ous acids* (oxidation state of P = +1 or +3) also have P – H bonds in which hydrogens are not ionisable (P and hydrogen have nearly same electronegativity). The presence of P – H group in these acids imparts reducing properties. The structure of the various acids are drawn below (note that the tetrahedral shape of phosphorus is not shown only for convenience of representation).

- 1. In which of the above structures, the oxidation state of P is +5.
 - (a) D & E (b) F & E
 - (c) C, D & E (d) D, E & F
- **2.** Among the above acids, the acids having basicity 4 are :
 - (a) A & E (b) C & D
 - (c) C & F (d) D & F
- 3. There is very little difference in acid strength in the series H_3PO_4 , H_3PO_3 and H_3PO_2 because
 - (a) phosphorus in these acids exists in different oxidation states
 - (b) the hydrogen in these acids are not all bonded to phosphorus
 - (c) phosphorus is not a highly electronegative element
 - (d) phosphorus oxides are less basic
- 4. Which of the acids show reducing properties?
 - (a) A & C (b) A & B
 - (c) A, B & E (d) A only
- 5. Although metaphosphoric acid is written as a monomer, it exists as a polymer, $(HPO_3)_n$. The number of P O P bonds in cyclic tri-metaphosphoric acid is
 - (a) zero (b) two
 - (c) three (d) four
- 6. Metaphosphoric acid (E) can be prepared by heating
 - (a) D & F (b) C & F
 - (c) C & D (d) B, C & F
 - PASSAGE-2

It is well known that there are two major forms of carbon, that is, carbon has two main allotropes; graphite and diamond. These differ greatly from each other with respect to their physical properties as shown in Table-1. The physical properties of silicon are also shown in Table-1 for comparison as carbon and silicon belong to the same group in the periodic table.

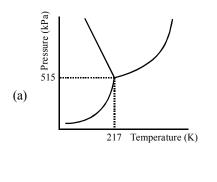
Table 1

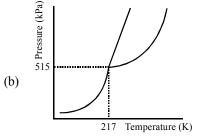
Physical properties	Graphite	Diamond	Silicon
Density $(g cm^{-3})$	2.26	3.51	2.33
Enthalpy of combustion to yields oxide (ΔH) kJ mol ⁻¹	-393.3	-395.1	-910
Melting point °C	2820	3730	1410
Boiling point °C		4830	2680
Conductivity (electrical)	Fairly good	Non - conductor	Good
Conductivity (thermal)	Fairly good	Non - conductivity	Good

Graphite possesses what is commonly known as a layer structure: carbon atoms form three covalent bonds with each other to yield layers of carbon assemblies parallel with each other. Theses layers are held together via weak Vander Waal's forces which permit some movement of the layers relative to one another.

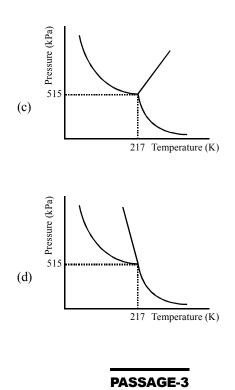
The most common compound of carbon is carbon dioxide which makes up 0.03% of the atmosphere. The triple point of carbon dioxide occurs at 217 K and 515 kPa.

One of the unique properties of carbon is that it can form multiple bonds between itself and other atoms, including other carbon atoms. Thus, large polymers involving carbon atoms are possible.


- 7. The properties of the layer-like structure of solid graphite stated in the passage would lend to it which of the following industrial uses?
 - (a) Insulator (b) Structural
 - (c) Corrosive (d) Lubricant
- **8.** Using the information in the table, calculate the enthalpy change for the following process :


$$C_{\text{graphite}} = C_{\text{diamond}}$$

- (a) $+1.8 \text{ kJ mol}^{-1}$ (b) -1.8 kJ mol^{-1}
- (c) $+1.0 \text{ kJ mol}^{-1}$ (d) -1.0 kJ mol^{-1}


— <i>(</i>					
Mark Your	1. abcd	2. abcd	3. abcd	4. abcd	5. abcd
Response	6. abcd	7. abcd	8. abcd		

- **9.** It is possible to convert graphite into diamond via various chemical processes. Based on the information in the passage, which of the following would facilitate increased amounts of diamond assuming that the system is in equilibrium?
 - (a) High pressures (b) High temperature
 - (c) A catalyst (d) None of the above
- **10.** Diamond consists of tetrahedral arrangements of carbon atoms, with each atom covalently bound to four others to yield a giant molecular structure. What is the hybridization state of carbon in diamond?
 - (a) It is not hybridized (b) sp
 - (c) sp^2 (d) sp^3
- 11. C-C bond length is than (to) C-C bond length in diamond.
 - (a) greater (b) shorter
 - (c) equal (d) can't say
- **12.** Diamond is a bad conductor of current whereas graphite is a good conductor. Why?
 - (a) Diamond has a very high Boiling Point
 - (b) Diamond has a higher density
 - (c) In diamond each C has its octet completely filled and hence no mobile electrons
 - (d) Graphite uses sp^2 hybridisation and has free π -electrons
- **13.** Which of the following is a correct representation of the phase diagram for carbon dioxide?

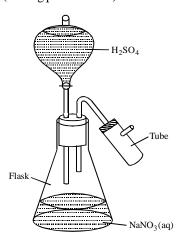
Ø

Several features of sulfuric acid are given below :

Preparation of Sulfuric Acid : Sulfuric acid is commonly prepared by the combustion of elemental sulfur to sulfur dioxide, followed by the catalytic oxidation of sulfur dioxide to sulfur trioxide. Sulfur trioxide is then absorbed into a 98% aqueous solution of H_2SO_4 ,

and water is added to maintain a 98% concentration. SO_3 reacts with the water in the aqueous solution according to Reaction-1.

$$SO_3(g) + H_2O(\ell) \longrightarrow H_2SO_4(\ell)$$
; Reaction - 1


Properties : Concentrated sulfuric acid is $98\% H_2SO_4$ and 2% water by mass. It has a density of 1.84 g/mL and a boiling point of 338°C. **Preparation of other Acids :** HCl (g) and HNO₃(ℓ) may be prepared by the reaction between sulfuric acid and the sodium salt of the

corresponding conjugate base (Cl⁻ or NO₃⁻, respectively).

Formation of SO₂: Sulfuric acid forms SO₂ gas when it reacts with several compounds. For example, I₂ and SO₂ are formed when I⁻ reacts with concentrated H₂SO₄; Br₂ and SO₂ are formed when Br⁻ reacts with concentrated H₂SO₄. Cu⁺ and SO₂ are formed in hot solutions of Cu(s) in H₂SO₄. This last reaction is unusual, because most metals react with solution of H₂SO₄ to form hydrogen gas and a metal sulfate.

Mark Your Response	9. abcd	10.abcd	11. abcd	12. abcd	13. abcd

- **14.** When sulfuric acid reacts with copper, how does the oxidation number of the sulfur change?
 - (a) From + 4 to + 6 (b) From + 6 to + 4
 - (c) From + 6 to + 8 (d) From + 8 to + 6
- 15. The apparatus shown below can be used to prepare HNO_3 (boiling point = 86°C).

The yield of HNO_3 collected in the tube can be maximized by maintaining the temperatures of the flask and tube, respectively, at :

- (a) 0° C and 100° C (b) 100° C and 0° C
- (c) 350° C and 150° C (d) 350° C and 100° C
- **16.** Which of the following is the balanced equation describing the combustion of elemental sulfur?
 - (a) $2H_2S \quad 3O_2 \longrightarrow 2SO_2 \quad 2H_2O$
 - (b) $H_2S \ 2O_2 \longrightarrow SO_3 \ H_2O$
 - (c) $2SO_3 \longrightarrow 2S \quad 3O_2$
 - (d) S $O_2 \longrightarrow SO_2$

 \mathcal{A}_{n}

17. In the second step of preparing H₂SO₄ from elemental sulfur (the catalytic oxidation of SO₂), which strategy is most likely to increase the yield of SO₃ formed?

- (a) Reducing the reaction temperature
- (b) Reducing the reaction pressure
- (c) Removing SO_3 from the reaction mixture
- (d) Removing O_2 from the reaction mixture

18. Which of the following expressions can be used to determine the number of moles of water in 1 mL of concentrated H_2SO_4 ?

(a)
$$\frac{(1.84)(0.98)}{98} \frac{(1.84)(0.02)}{18}$$

(b) $\frac{(1.84)(0.2)}{18}$ (c) $\frac{(1.84)(0.98)}{18}$

(d)
$$\frac{(1.84)(0.98)(18.0)}{98.0}$$

19. If $H_2(g)$ is formed from the reaction of Fe(s) with dilute H_2SO_4 (aq), which species acts as the reducing agent?

- (a) Fe (b) FeSO₄
- (c) SO_4^{2-} (d) H_3O
- **20.** Which of the following species has the smallest concentration in 98% H₂SO₄ ?
 - (a) SO_4^{2-} (b) H_2SO_4
 - (c) H_3O (d) HSO_4^-

PASSAGE-4

The pronounced change from non-metallic behaviour as also the increase in basicity of oxides form N, P, As, Sb to Bi is principally due to the increasing size of the atoms. The ionization potential indicate that it is much more difficult to pull electrons of small nitrogen atom than the larger bismuth atom. It is interesting to note that nitrogen obtained from the decomposition of compounds such as NH_4NO_2 is of lower density than the residual gas obtained from the atmosphere by removal of oxygen, carbon dioxide and water.

21. Which of the following oxides is most acidic ?

(a)	As ₂ O ₃	(b)	Bi ₂ O ₃
(c)	Sb ₂ O ₃	(d)	P_2O_3

22. Which of the following hydrides would be most basic ?

(a) PH_3 (b) AsH_3 (c) NH_3 (d) SbH_3

Mark Your	14.@bcd	15.abcd	16. abcd	17. abcd	18. abcd
Response	19.@bcd	20. abcd	21. abcd	22. abcd	

- The residual nitrogen obtained from air after removal of 23. oxygen, carbon dioxide and water vapour has a greater density than that obtained from chemical compounds because
 - (a) it is an allotrophic modification of nitrogen
 - (b) it is mixed with some heavier gas
 - it is rich in heavier isotopes of nitrogen (c)
 - (d) Nitrogen obtained from chemical sources contains some light gas.

PASSAGE-5

Aluminium is so reactive and its oxide is so stable that the preparation of metal by reduction of Al₂O₃ or by carbon or by carbon monoxide is not feasible. Electro-depositon of the melt from an aqueous solution of its salts will not work because it reacts with water. Molten aluminium chloride is a poor conductor of electricity and Al₂O₃ melts at a prohibitively high temperature. The method universally used for obtaining aluminium is by electrolysis of a solution of Al₂O₃ in molten cryolite which is a low melting compound.

Al₂O₃ has a high heat of formation. A finely divided mixture of Al and Fe₂O₃. When ignited, the following reaction will proceed with evolution of heat

$$Fe_2O_3 + 2Al \longrightarrow 2Fe + Al_2O_3$$

The heat evolved in the above reaction is so much that the temperature rises to 2500°C, which turns the whole product into molten state. Similar reaction occur with $\rm MnO_2$ and $\rm Cr_2O_3$ but in their case the amount of heat evolved is less than that in case of Fe₂O₃.

- 24. In the extraction of aluminium by electrolysis, the solvent is
 - (a) Molten Al_2O_3 (b) water
 - (c) $Fe_2O_3 + Al$ (d) Molten cryolite
- 25. Which one of the following metals has the greatest affinity for oxygen ?
 - (a) Mn (b) Al
 - (d) Fe (c) Cr
- 26. The melting point of Al_2O_3 is about 300°C
 - about 1200°C (b)
 - (c) about 2100°C

(a)

- same as that of cryolite (d)

— <i>k</i> ı—					
Mark Your Response	23.abcd	24. abcd	25. abcd	26. abcd	
C (a) Bo (b) Bo (c) St	SONING TYPE following questions in has 4 choices (a), (the es from the following both Statement-1 and State both Statement-1 and State atement-1 is false but State atement-1 is false but State	a), (c) and (d) for it options: tement-2 are true and tement-2 are true and atement-2 is false.	s answer, out of w lStatement-2 is the c	vhich ONLY ONE i	s correct. Mark your Statement-1.
 Statement-1 Statement-2 Statement-1 	 Although PF₅, PCI known, the pentahalio not been observed. Phosphorus has low than nitrogen. F atom has a less negathan Cl atom. Additional electrons effectively by 3p electory 2p electrons in F-a 	5 and PBr ₆ are des of nitrogen have er electronegativity tive electron affinity are repelled more trons in Cl atom than	 Statement-1 Statement-2 Statement-1 Statement-2 Statement-2 Statement-1 Statement-1 	 Al–O and O–H be equal ease in Al(C) Between SiCl₄ and with water. SiCl₄ is ionic and Boric acid behave acid. 	onds can be broken with DH) ₃ . d CCl ₄ , only SiCl ₄ reacts
Response	1. abcd	2. abcd	3. abcd	4. abcd	5. abcd

6.	Statement-1	: Hydrazine functions as a monodentate ligand.	17.	
	Statement-2	: There are lone pairs of electrons on N		;
		atoms in hydrazine.		
7.	Statement-1	: Ozone in the upper atmosphere (stratosphere) is beneficial but it is harmful	18.	
		in the lower atmosphere.		
	Statement-2	: Ozone absorbs UV light and is a strong oxidising agent.		
8.	Statement-1	: On cooling, the brown colour of nitrogen		
		dioxide disappears.	19.	
	Statement-2	: On cooling, N_2 undergoes dimerisation		
		resulting in the pairing of odd electrons in NO ₂ .		
9.	Statement-1	: Tl^{3+} acts as an oxidising agent.		
	Statement-2	: Due to inert pair effect, Tl ⁺ is more stable		
		than Tl ³⁺ .	20.	
10.	Statement-1	: Alums are isomorophous crystalline		
		double salts which are soluble in water.		
	Statement-2	: Due to hydrolysis, the aqueous solutions		
11	64 - 4 4 - 1	of alums have acidic character. Pl^{2+} is more stable than Pl^{4+}	21.	1
11.	Statement-1 Statement-2	: Pb ²⁺ is more stable than Pb ⁴⁺ .		
12		: Inert pair effect is more prominent in Pb.		
12.	Statement-1	: CO_2 is gas and SiO_2 is solid at room temperature.		
	Statement-2	: CO_2 contains C = O bonds but SiO ₂ does not contain Si = O bonds.		
13.	Statement-1	: White phosphorus is more reactive than	22.	1
100		red phosphorus.		
	Statement-2	: Red phosphorus consists of P_4 tetrahedral	23.	•
		units linked to one another to form linear chains.	20.	
14.	Statement-1	: SO ₂ acts as a Lewis base.		
	Statement-2	: S atom in SO ₂ contains one lone pair of		
		electrons.		
15.	Statement-1	: SO_3 has a planar structure.	24.	
	Statement-2	: S atom in SO ₃ is sp^2 -hybridized and O–S–		
		O bond angle is 120°.		
16.	Statement-1	: Salts of ClO_3^- and ClO_4^- are well known		
		but those of FO_3^- and FO_4^- are non- existent.		
	Statement-2	: F is more electronegative than O while Cl		
	Succinent 2	is less electronegative than O.		
	d-	-		
		6. abcd 7. abcd	8. (8	ā
				_

- **Statement-1** : HClO is stronger acid than HBrO.
 - Statement-2 : Greater is the electronegativity of the halogen, greater will be attraction of electron pair towards it and hence more easily the H⁺ ion will be released.
- **Statement-1** : Solubility of noble gases in water decreases with increasing size of the gas.
 - **Statement-2** : Solubility in water is due to dipole induced dipole interaction.
- **5.** Statement-1 : Xenon fluorides are well known and stable but the corresponding chlorides have not been reported.
 - **Statement-2** : Xe–F bond is more strong than Xe–Cl bond and F_2 molecule has low bond dissociation energy than that of Cl_2 molecule.
- Statement-1 : An aqueous solution of orthoboric acid behaves as a weak monobasic acid.
 - Statement-2 : As its aqueous solution orthoboric acid acts as a proton donor.
- 1. Statement-1 : When a metal is treated with conc. HNO₃ it generally yields a nitrate, NO₂ and H₂O.

Statement-2 : Conc. HNO₃ reacts with metal and first produces a metal nitrate and nascent hydrogen. The nascent hydrogen then further reduces HNO₃ to NO₂.

- 2. Statement-1 : A solution of aluminium chloride is acidic. Statement 2 U^+ U^+
 - **Statement-2** : H⁺ and Cl⁻ ions are present in a solution of aluminium chloride.
 - Statement-1 : We can prepare anhydrous aluminium chloride by heating hydrated aluminium chloride (AlCl₃.6H₂O)
 - Statement-2 : When heated hydrated aluminium chloride cause hydrolysis.
 - **Statement-1** : When urea is added to a reaction mixture, where HNO₃ is acting as an oxidising agent, the oxidising action of HNO₃ reduces.
 - **Statement-2** : The NO₂ formed in the reaction is

consumed by urea
$$\begin{pmatrix} O \\ \| \\ NH_2 - C - NH_2 \end{pmatrix}$$

Jen Li					
	6. abcd	7. abcd	8. abcd	9. abcd	10. abcd
Mark Your	11. abcd	12. abcd	13. abcd	14. abcd	15. abcd
Response	16. abcd	17. abcd	18. abcd	19. abcd	20. abcd
	21.abcd	22. abcd	23. abcd	24. abcd	

25.	Statement-2 Statement-1	 Si – Si bonds are much to Si – O bonds. Silicon forms double H₃PO₃ is a dibasic reducing character. H₃PO₃ contains two 0 one H-atoms is direct 	bonds with itself. acid. It also shows DH ⁻ groups and in it	27. 28.	Statement-2 Statement-1	 reaction. XeF₆ when hydroxeO₂F₂. Both CIF₃ and SF but CIF₃ is T-sha In CIF₃, there are and out of these 	F_6 is an example of a redox object of a redox by a redox set of a redox by a redox of a redox F_4 and F_4 show same hybridization ped. e five pairs of electrons five pairs, two pairs are ree are bond pairs.
l	Mark Your Response	25.@bcd	26.@b©d	27.(abcd	28. abcd	
I	Each of the Which of the	FIPLE CORRECT CH ese questions has 4 cho following is/are false ? ists as Al ₂ Cl ₆ in vapour	bices (a), (b), (c) and ((d) for i 7.	Which of th	e following is/are pro	MORE is/are correct. duced when lead dioxide of manganous sulphate
	 (b) All the A (c) Borax w ammonia (d) AlF₃ is a volatile s 	$l-Cl$ bonds in Al_2Cl_6 ar hen heated with ammonism tetraborate high m.pt. solid while solid.	e equivalent nium chloride forms AlCl ₃ is a low m.pt.	8.	correct ?	(b) (d) (d) (d) (d)	HMnO ₄ none of these nts regarding silicon are
2.	correct?(a) It is an a(b) In liquid(c) The stab	ving statements regardi nhydride of nitrous acid form, it has intense blu le form has a strong N v dissociates to give NO	l e colour – N bond	9.	(b) liquid s(c) silicon(d) siliconof 100–500	silicon units	ts
3. 4.	(a) N ₂ (c) CO ₂	following is/ are green (b) C((d) C) e following oxides, 'P-at- es?	Cl_4 F_2Cl_2	10.	(a) I [−] is a [•]		
5.	(a) P_4O_6 (c) P_4O_{10} Which of the (a) Lead is a (b) Lead read (c) Lead form (d) Lead read	(b) P ₂ (d) P ₂ following statements is metal which can show cts with conc. HCl to for ms a powerful oxidising cts with NaOH to form H	O ₈ /are correct ? +2 valency rm PbCl ₂ agent PbCl ₄	11.	(c) OH ⁻ is (d) F_3C^- is Which of the agents for a (a) Conc. I (c) P_4O_{10}	a stronger base than a stronger base than a stronger base than a following cannot mmonia? H_2SO_4 (b) (d)	NH_2^- Cl_3C^- be used as dehydrating anhydrous $CaCl_2$ None of these
6.	There is no S- (a) $S_2O_4^{2-}$ (c) $S_2O_3^{2-}$		₂ O ₅	12.	is heated wi obtained are (a) a green	th excess of Na_2O_2 at e (b) residue (b)	${}_{2}(SO_{4})_{3}$ and chrome alum and filtered. The materials a yellow filtrate a colourless filtrate
	- 🏝 ——						
	Mark Your	1. abcd	2. abcd	3. (abcd	4. abcd	5. abcd

 11.@bcd
 12.@bcd

	HF is not preserved in gla	as bottlas baseusa	21.	Which of the following statements is (are) true 2
13.	(a) it reacts with the alumi		21.	Which of the following statements is (are) true ?(a) Claude's apparatus can be used for the isolation of
	(b) it reacts with SiO_2 of			helium and argon
	(c) it reacts with the visib			(b) Helium cannot be adsorbed by coconut charcoal
	(d) it reacts with sodium	•		(c) CaC_2 can remove both Nitrogen & Oxygen
14.		tains a metal nitrate. A little		(d) None of these
		e is added to it when a cloudy	22.	In the electrolysis of alumina, cryolite is added to :
	white precipitate appears.			(a) lower the melting point of alumina
	(a) $PbCl_2$	(b) AgCl (d) None of the these		(b) increase the electrical conductivity
15	(c) Hg_2Cl_2	(d) None of the these		(c) minimise the anode effect
15.		further if the precipitate turns		(d) remove impurities from alumina
	black with NH ₄ OH, it is (a) PbCl ₂	(b) AgCl	23.	Nitrogen(I) oxide is produced by :
	(a) Hg_2 (c) Hg_2 Cl ₂	(d) None of these		(a) thermal decomposition of ammonium nitrate
16.		/are correct statement(s) about		(b) disproportionation of N_2O_4
201	boric acid, H ₃ BO ₃ ?			(c) thermal decomposition of ammonium nitrite
	5 5	n which BO ₃ units are linked by		(d) interaction of hydroxylamine and nitrous acid.
	H-bonds	5	24.	The compounds used as refrigerant are
	(b) It is a strong tribasic a	acid		(a) NH_3 (b) CCl_4
	(c) It is prepared by acidi	fying borax solution		(c) CF_4 (d) CF_2Cl_2
	(d) None of these			(e) CH_2F_2
17.	Phosphine is obtained, wh	ien	25.	The major role of fluorspar (CaF_2), which is added in small
	(a) red P is heated with N			quantities in the electrolytic reduction of alumina dissolved
	(b) white P is heated with	NaOH		in fused cryolite (Na_3AlF_6) , is
	(c) Ca_3P_2 reacts with wat	er		(a) as a catalyst
	(d) phosphorus trioxide i			(b) to make the fused mixture very conducting
18.	Sulphur trioxide, when dis	ssolved in 98% sulphuric acid		(c) to lower the temperature of the melt
	gives			(d) to decrease the rate of oxidation of carbon at the
	(a) SO ₂	(b) Oleum		anode.
	(c) H_2S	(d) none of these	26.	The material used in the solar cells contains.
19.	Anhydrous ferric chloride			(a) Cs (b) Si
		c chloride at a high temperature		(c) Sn (d) Ti
	in a stream of air		27.	Sodium nitrate decomposes above 800° C to give
	-	in a stream of dry chlorine gas		(a) N_2 (b) O_2
		on with hydrochloric acid	••	(c) NO_2 (d) Na_2O
• •	(d) none of these		28.	White phosphorus (P_4) has
20.	Which of the following is t			(a) six P-P single bonds
	_	diatomic gaseous molecules at		(b) four P-P single bonds
	ordinary temperatures			(c) four lone pairs of electrons
		hloroform imparting blue colour	20	(d) PPP angle of 60°
		evolved when KClO ₃ is treated	29.	Ammonia, on reaction with hypochlorite anion, can form
	with conc. H_2SO_4			(a) NO (b) NH_4Cl
	(d) Chloride ion is confirm	med by chromyl chloride test		(c) N_2H_4 (d) HNO_2
	£1			
			15 (
	13. a (t	$\bigcirc \bigcirc $	15.(abcd 16.abcd 17.abcd

579

The p-Block Elements

	13.abcd	14. abcd	15. abcd	16. abcd	17. abcd
MARK YOUR	18. abcd	19. abcd	20. abcd	21. abcd	22. abcd
RESPONSE	23. abcd	24. abcd	25. abcd	26. abcd	27. abcd
	28. abcd	29. abcd			

- **30.** Which of the following substances are soluble in concentrated HNO₃?
 - (a) $BaSO_4$ (b) CuS (a) PbS (d) Has
 - (c) PbS (d) HgS Which of the following form dimeric halides ?
- 31. Which of the following form dimeric halides (a) Al (b) Mg

$$\begin{array}{ccc} (a) & AI \\ (b) & Mg \\ (c) & In \\ (d) & Ga \end{array}$$

- **32.** Which of the following substances are not soluble in hot caustic soda, containing an excess of concentrated solution of bromine in water ?
 - (a) $Cr(OH)_3$ (b) $Mn(OH)_2$
 - (c) $Al(OH)_3$ (d) $Fe(OH)_3$
- **33.** Which statements about anhydrous aluminium chloride is correct :
 - (a) it exists as Al_2Cl_6 molecules in solid state
 - (b) it is easily hydrolysed
 - (c) it sublimes at 180°C
 - (d) it reacts with air
- **34.** Which of the following staements are correct ?
 - (a) lead salts are slow poisons
 - (b) lead metal is used in accumulators
 - (c) Plumbo-solvency increases by the presence of carbonates, sulphates, phosphates, etc.
 - (d) lead is a soft metal

d'n

- **35.** The difference in properties of CH_4 and SiH_4 is due to :
 - (a) large difference in the electronegativity of carbon and silicon.
 - (b) large difference in size of carbon and silicon atoms
 - (c) the inability of carbon to expand its octet
 - (d) the inability of silicon to form double bonds
- **36.** Which of the following is/are added to remove acid pollution from water that has been polluted due to decomposition of organic refuse which produces carboxylic acids on oxidation. Such a polluted acidic water is harmful to aquatic life and so such a pollution need to be removed
 - (a) KNO_3 (b) $CaCl_2$
 - (c) $Ca(OH)_2$ (d) $CaCO_3$
- **37.** The correct reason (s) for the acidic nature of an aqueous solution of aluminium chloride is that

(a) For aluminium ions the,
$$\frac{\text{charge}}{\text{surface area}}$$
, ratio is large

- (b) The O H bonds in $[Al(H_2O)_6]^{3+}$ are weaker as compared to the O H bonds in water.
- (c) Aluminium chloride is covalent compound and its aqueous solution is acidic.
- (d) Chloride ions (Cl⁻) react with water to form hydrochloric acid.

- **38.** Xe can be obtained from XeF₆ by treating it with _____
 - (a) HCl (b) H₂
 - (c) $OH^{-}(conc)$ (d) NH_{3}
- **39.** HNO₂ is used as _____
 - (a) an oxidising agent (b) a complexing agent
 - (c) a reducing agent (d) a bleaching agent
- **40.** Which of the following is/are correct for the characteristics indicated against each ?
 - (a) $HClO < HClO_2 < HClO_3 < HClO_4$ (oxidising power)
 - (b) $ClO_4^- < BrO_4^- < IO_4^-$ (oxidising power)
 - (c) $ClO^- < BrO^- < IO^-$ (disproportionation)
 - (d) $HClO < HClO_2 < HClO_3 < HClO_4$ (Acidic strength)
- **41.** The peroxolinkage is found in which of the following
 - (a) $H_2S_2O_3$ (b) $H_2S_2O_8$ (c) H_2SO_5 (d) $H_2S_2O_7$
- 42. Consider the reaction, given below which indicates the conversion of SO_2 (present in polluted atmosphere) to SO_3 by the action of nitrogen dioxide (present in polluted atmospheres)

$$NO_2 + SO_2 \longrightarrow NO SO_3$$

$$2NO + O_2 \longrightarrow 2NO_2$$

In this case the role of NO_2 is that of

- (a) an acid (b) a reducing agent
- (c) an oxidising agent (d) a homogeneous catalyst
- **43.** Why is it **not** suitable to add conc. H_2SO_4 to KI (s) for preparation of HI because
 - (a) I^- (iodide ions) are oxidized to I_2
 - (b) The product formed gets contaminated by compounds of sulphur.
 - (c) Both the acids (i.e., H₂SO₄ and HI) are strong acids
 (d) All the above
- **44.** Which of the following are sub-oxides ?
 - (a) C_3O_2 (b) N_2O
 - (c) PbO_2 (d) CO_2
- **45.** Which reagent does not give oxygen as one of the products during its oxidation with ozone ?
 - (a) KNO₂ (b) SnCl₂/HCl

(c)
$$SO_2(g)$$
 (d) H_2O_2

- **46.** Which of the following are interstitial carbides ?
 - (a) ZrC (b) MgC_2
 - (c) Al_3C_4 (d) VC

	30.@bcd	31.@bcd	32. abcd	33. abcd	34. abcd
Mark Your	35. abcd	36. abcd	37. abcd	38. abcd	39. abcd
Response	40. abcd	41. a bcd	42. abcd	43. abcd	44. abcd
	45.@bcd	46. abcd			

(C) N ₂ & NH ₃ r. Ammonical Cuprous 5. Column I Column II		ני	answers to these ques	tions es are	in Column-II. The appr have to be darkened as illu A–p, s and t; B–q and r; ook like the given.	strate	d in tl	he following example:		C D Q T S T
Column IColumn II(II)Harmanp.Harman(A) $N_2 \& CO$ p.Water(B)Duraluminq.Mg(B) $N_2 \& O_2$ q. H_2SO_4 (C)Nickeloyr.Ni(B) $N_2 \& O_2$ q. H_2SO_4 (D)Y-Alloys.Used in making piston(C) $N_2 \& NH_3$ r.Ammonical Cuprous5.Column IIColumn II	1.	Mat	tch the following mixtu	res wi	th the respective solution	4.		Column I		Column II
(A) $N_2 \& CO$ p. Water(C) Nickeloyr. Ni(B) $N_2 \& O_2$ q. H_2SO_4 (D) Y-Alloys. Used in making piston(C) $N_2 \& NH_3$ r. Ammonical Cuprous5. Column IColumn II		useo	d for their separation :				(A)	Magnalium	p.	Al
(B) $N_2 \& O_2$ q. H_2SO_4 (D) Y-Alloys. Used in making piston(C) $N_2 \& NH_3$ r. Ammonical Cuprous5. Column IColumn II			Column I		Column II		(B)	Duralumin	q.	Mg
(C) $N_2 \& NH_3$ r. Ammonical Cuprous 5. Column I Column II		(A)	N ₂ & CO	p.	Water		(C)	Nickeloy	r.	Ni
chloride		(B)	$N_2 \& O_2$	q.	H_2SO_4		(D)	Y-Alloy	s.	Used in making pistons
chioride (A) BE p Colourless		(C)	2 5	r.	Ammonical Cuprous	5.		Column I		Column II
		~					(A)	BF ₃	p.	Colourless
(D) $PH_3 \& NH_3$ s. Pyrogallol (B) BCl_3 q. Solid		(D)	$PH_3 \& NH_3$	s.	Pyrogallol		(B)	BCl ₃	q.	Solid
(C) BI ₃ r. Liquid							(C)	BI ₃	r.	Liquid
2. Column I Column II s. Gas	2.		Column I		Column II				s.	Gas
(A) Explosive p. NaN ₃ 6. Column I Column II		(A)	Explosive	p.	NaN ₃	6.		Column I		Column II
(B) Artificial gem q. Fe_3O_4 (A) $Na_2B_4O_7 + NH_4Cl \longrightarrow p. B_2O_3$		(B)	Artificial gem	q.	Fe ₃ O ₄		(A)	$Na_2B_4O_7 + NH_4Cl$	\rightarrow	p. B ₂ O ₂
(C) Self reduction r. Sn		(C)	Self reduction	r.	Sn		()			2 5
(D) Magnetic material s. Al_2O_3 (B) $NaH + B_2O_3 \longrightarrow q. NaBO_2$		(D)	Magnetic material	s.	Al ₂ O ₃		(B)	$\operatorname{NaH} + \operatorname{B}_2\operatorname{O}_3 \longrightarrow$	q.	NaBO ₂
t. $Pb(N_3)_2$ (C) $B + NaOH \longrightarrow r. Na_3BO_3$				t.	$Pb(N_3)_2$		(C)	$B + NaOH \longrightarrow$	r.	Na ₃ BO ₃
u. Fe_2O_3 (D) $Na_2B_4O_7 \xrightarrow{\Delta}$ s. $NaBH_4$				u.			(D)	$Na_2B_4O_7 \xrightarrow{\Delta}$	s.	NaBH ₄
v Sn w SiC 7. Column I Column II				v		7.		Column I		Column II

- 3. Column I (A) B(OH)₃
 - (B) Al(OH)₃ (C) Ga(OH)₃
 - (D) Tl(OH)₃

r.

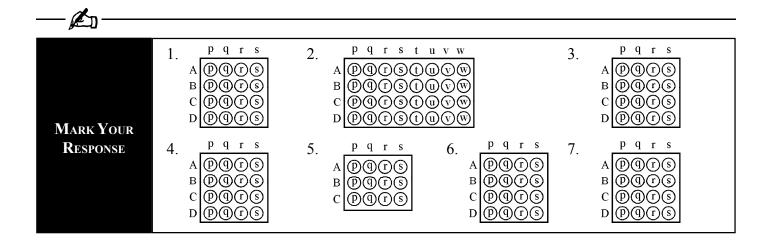
s.

SiC W. Column II Acidic p. Amphoteric q.

Basic

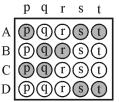
Insoluble in water

Column I (A) H₂S


(B) SO₂

- (C) NO₂
- (D) HNO₂

Column II


p. decolourises acidified sol. of KMnO₄

- Disproportionation q. reaction
- Bleaching action r.
- V-shaped structure s.

MATRIX-MATCH TYPE \blacksquare

Each question contains statements given in two columns, which have to be matched. The statements in Column-I are labeled A, B, C and D, while the statements in Column-II are labelled p, q, r, s and t. Any given statement in Column -I can have correct matching with ONE OR MORE statement(s) in Column-II. The appropriate hubbles corresponding to the

8.		Column I		Colum
	(A)	F ₂	p.	decomp
	(B)	Cl ₂	q.	formati
	(C)	Br ₂	r.	extracti
				platinu
	(D)	I ₂	s.	Germici
9.		Column I		Colum
		Product		Reacta
	(A)	H ₃ PO ₃	p.	H ₃ PO ₄
		H ₃ PO ₄	q.	H ₄ P ₂ O ₇
	(C)	$H_4P_2O_7$	r.	P_4O_{10}
	(D)	HPO ₃	s.	H ₃ PO ₃
			t.	PCl ₃
10 .		Column I		Colum
	(A)	Orthosilicate	p.	Oxyger
				<2
	(B)	Pyrosilicate	q.	Oxyger
				<u>></u> 2
	(C)	Single chain silicate	r.	Net cha
	(D)	Ring silicate	s.	Net cha
11.		Column I		Colum
	(A)	LiNO3	p.	N ₂
	(B)	NaNO ₃	q.	H ₂ O
	(C)	NH ₄ NO ₃	r.	NO ₂
	(D)	NH ₄ NO ₂	s.	O ₂
			t.	N ₂ O
12.		Column - I		Colum
	А.	$H_4P_2O_7$	p.	Reduci
	B.	H ₃ PO ₄	q.	Contair
				one P –
	C.	H ₃ PO ₃	r.	Contair
				linkage
	D.	H ₃ PO ₂	s.	Gives r
				acid on
				a tempe
				600°C

	Column II	13.
p.	decomposition of water	
q.	formation of polyhalides	
r.	extraction of gold &	
	platinum	
5.	Germicide	
	Column II	
	Reactant	
p.	H ₃ PO ₄	
q.	$H_4P_2O_7$	
r.	P_4O_{10}	
5.	H ₃ PO ₃	
t.	PCl ₃	14.
	Column II	
p.	Oxygen atoms shared	
	<2	
q.	Oxygen atoms shared	
•	≥2	15.
r.	Net charge = -2	
s.	Net charge = -6	
	Column II	
p.	N ₂	
q.	H ₂ O	
r.	NO ₂	
5.	0 ₂ ²	16.
t.	N ₂ O	
	Column - II	
p.	Reducing agent	
q.	Contains a minimum of	
1	one P – H bond	
r.	Contains P – O – P	
	linkage	
5.	Gives metaphosphoric	
	acid on being heated to	
	a temperature above	
	(0000	

13.		Column - I		Column - II
	(A)	$Li + HN_3 \longrightarrow$	p.	One of the p
		5		formed is par
	(B)	Mg + dil.HNO ₃ $\xrightarrow{\text{cold}}$	q.	One of the p
				formed is dia
	(C)	$NH_4Cl(aq) +$	r.	It is a redox 1
		$NaNO_2(aq) \longrightarrow$		
	(D)	$HNO_2(aq) \longrightarrow$	s.	One of the p
				formed gives
				test
14.		Column - I		Column - II
	(A)	MgO	p.	Amphoteric
	(B)	Al ₂ O ₃	q.	Basic
	(C)	SiO ₂	r.	Covalent
	(D)	P_4O_{10}	s.	Ionic
15.		Column - I		Column - II
	(A)	Silicates	p.	Chemically in
	(B)	Silicons	q.	Exists in plar
	(C)	Trimethyl amine	r.	Nitrogen is s
				hybridised
	(D)	Trisilyl amine	s.	Contains Si -
				bonds
16.		Column - I		Column - II
	(A)	$H_3PO_3 \xrightarrow{Heat}$	p.	Hydrogen
	(B)	$PCl_5 + H_2O \xrightarrow{Heat}$	q.	Disproportic
	(C)	$P_2O_5 + H_2O \xrightarrow{\text{Heat}}$	r.	One of the p
				formed has t

(D) $P_4 + \underset{(Conc.)}{\text{NaOH}} H_2O \xrightarrow{\text{Heat}} s.$

).	One of the products
	formed is paramagnetic
.	One of the products
-	formed is diamagnetic
	It is a redox reaction
	One of the products
	formed gives brown ring
	test
	Column - II
).	Amphoteric
ŀ	Basic
	Covalent
	Ionic
	Column - II
).	Chemically inert
ŀ	Exists in planar form
	Nitrogen is sp ³
	hybridised
	Contains Si – O – Si
	bonds
	Column - II
).	Hydrogen
ŀ	Disproportionation
	One of the products
	formed has tetrahedral
	hybridization
	One of the products
	formed has pπ-dπ bonding

— <i>k</i> ı—				
Mark Your	8. P q r s A @ Q r s B @ Q r s C @ Q r s D @ Q r s	А	q r s 11. p q r s Q r s A Q Q r s Q r s B Q Q r s Q r s B Q Q r s Q r s C Q Q r s Q r s D D Q r s	
Response	12. <u>pqrs</u> A @@(r(s) B @@(r(s) C @@(r(s) D @@(r(s)	13. p q r s 14. p q A P q A P B P q A P C P q B P D P q C P	q r s 15. p q r s D C S A D O C S D C S B D O C S D C S C D O C S D C S D D O C S	16. P q r s A P Q C S B P Q C S C P Q C S D P Q C S

The <i>p</i> -Block Elements								583
17.	Column - I		Column - II	18.		Column - I		Column - II
A.	NO	p.	Paramagnetic in nature		А.	ClF ₃	p.	sp ³ d ²
B.	N ₂ O ₃	q.	Anhydride of nitric acid		B.	XeF ₂	q.	sp ³ d
C.	NO ₂	r.	can act as an oxidising		C.	XeOF ₂	r.	linear
			agent		D.	XeOF ₄	s.	square pyramidal
D.	N_2O_5	s.	formed when copper					
— @	5 1		reacts with HNO ₃					
	rk Your sponse	17. pq A@@(B@@(C@@(D@@(s 18. p q 6 A P Q 6 B P Q 6 C P Q 6 C P Q 6 D P Q) () () () () () () () () () () () () ()				

neverkey

 \mathbf{A} Single Correct Choice Type =

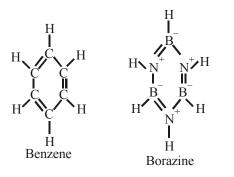
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\frac{41}{51} = \frac{c}{c} + \frac{42}{2} = \frac{4}{c} + \frac{43}{3} = \frac{44}{c} + \frac{b}{b} + \frac{45}{5} = \frac{c}{c} + \frac{46}{c} = \frac{47}{c} + \frac{c}{c} + \frac{48}{c} + \frac{b}{c} + \frac{9}{c} = \frac{50}{c} + \frac{b}{60} + \frac{a}{a} + \frac{65}{51} + \frac{56}{56} + \frac{57}{57} + \frac{58}{58} + \frac{d}{59} + \frac{50}{60} + \frac{a}{70} + \frac{58}{71} + \frac{1}{20} + \frac{58}{20} + \frac{1}{20} + \frac{73}{20} + \frac{73}{20} + \frac{74}{24} + \frac{a}{75} + \frac{75}{56} + \frac{56}{76} + \frac{57}{77} + \frac{58}{58} + \frac{59}{59} + \frac{56}{60} + \frac{57}{77} + \frac{58}{58} + \frac{59}{79} + \frac{58}{c} + \frac{59}{20} + \frac{58}{20} + \frac{59}{20} + \frac{51}{20} + \frac{58}{20} + \frac{59}{20} + \frac{51}{20} + \frac{58}{20} + \frac{59}{20} + \frac{51}{20} + \frac{58}{20} + \frac{58}{20} + \frac{59}{20} + \frac{51}{20} + \frac{58}{20} + \frac{58}{20} + \frac{58}{20} + \frac{59}{20} + \frac{51}{20} + \frac{58}{20} + \frac{58}{20} + \frac{59}{20} + \frac{51}{20} +$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$121 \ d \ 122 \ a \ 123 \ b \ 124 \ d \ 125 \ b \ 126 \ c \ 127 \ d \ 128 \ c \ c \ 128 \ c \ c \ 128 \ c \ c \ c \ c \ c \ c \ c \ c \ c \ $						
$B = COMPREHENSION TYPE$ $\frac{1}{1} (d) 6 (a) 11 (b) 16 (d) 21 (d) 26 (a) (a) (a) (a) (a) (a) (a) (a) (a) (a)$						
$\frac{1}{2} (d) 6 (a) 11 (b) 16 (d) 21 (d) 26 (a) \\ \hline 2 (c) 7 (d) 12 (c,d) 17 (c) 22 (c) \\ \hline 3 (b) 8 (a) 13 (a) 18 (b) 23 (b) \hline \\ 4 (b) 9 (a) 14 (a) 19 (a) 24 (d) \hline \\ 5 (c) 10 (d) 15 (b) 20 (a) 25 (b) \hline \\ \hline$						
$\frac{1}{2} (d) 6 (a) 11 (b) 16 (d) 21 (d) 26 (a) \\ \hline 2 (c) 7 (d) 12 (c,d) 17 (c) 22 (c) \\ \hline 3 (b) 8 (a) 13 (a) 18 (b) 23 (b) \\ \hline 4 (b) 9 (a) 14 (a) 19 (a) 24 (d) \\ \hline 5 (c) 10 (d) 15 (b) 20 (a) 25 (b) \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \\ \hline \hline$						
$\frac{1}{2} (d) 6 (a) 11 (b) 16 (d) 21 (d) 26 (a) \\ \hline 2 (c) 7 (d) 12 (c,d) 17 (c) 22 (c) \\ \hline 3 (b) 8 (a) 13 (a) 18 (b) 23 (b) \hline \\ 4 (b) 9 (a) 14 (a) 19 (a) 24 (d) \hline \\ 5 (c) 10 (d) 15 (b) 20 (a) 25 (b) \hline \\ \hline$						
$\frac{2}{3} (c) 7 (d) 12 (c,d) 17 (c) 22 (c) a a a a a a a a a $						
$\frac{3}{(b)} \ 8 \ (a) \ 13 \ (a) \ 18 \ (b) \ 23 \ (b) \ 10 \ (c) \ 16 \ (c) \ 23 \ (b) \ 16 \ (c) \ 16 \ (c) \ 17 \ (c) \ 10 \ (d) \ 15 \ (b) \ 20 \ (a) \ 25 \ (b) \ 10 \ (c) \ 15 \ (c) \ 10 \ (d) \ 15 \ (b) \ 20 \ (a) \ 25 \ (b) \ 10 \ (c) \ 15 \ (c) \ 10 \ (c) \ 25 \ (c) \ 10 \ (c) \ 25 \ (c) \ 10 \ (c) \ 25 \ (c) \ 10 \ (c) \ 15 \ (c) \ 10 \ (c) \ 15 \ (c) \ 10 \ (c) \ 25 \ (c) \ 10 \ (c) \ 15 \ (c) \ 10 \ (c) \ 25 \ (c) \ 10 \ (c) $						
$\frac{4}{(b)} \frac{9}{9} \frac{(a)}{(a)} \frac{14}{(a)} \frac{(a)}{19} \frac{19}{(a)} \frac{24}{24} \frac{(d)}{(d)} \frac{1}{(a)} \frac{1}{(a)} \frac{1}{(a)} \frac{1}{(b)} \frac{1}{(c)} \frac{1}{(c)}$						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\frac{1 (b) 6 (a) 11 (a) 16 (a) 21 (a) 26 (a)}{2 (c) 7 (a) 12 (a) 17 (a) 22 (b) 27 (d)}{3 (a) 8 (a) 13 (b) 18 (d) 23 (d) 28 (a)}{4 (c) 9 (a) 14 (a) 19 (a) 24 (a) $						
5 10 15 13 20 10 25 10 D MULTIPLE CORRECT CHOICE TYPE 1 b, c 2 a, b, d 3 c, d 4 b, d 5 a, b, c 6 d 7 a, b, c 8 a, b, c 9 d 10 a, b, d 1 b, c 2 a, b, d 3 c, d 4 b, d 5 a, b, c 6 d 7 a, b, c 8 a, b, c 9 d 10 a, b, d 1 a, b, c 12 b, c 13 b 14 a, b, c 15 c 16 a, c, d 17 b, c, d 18 b 19 b 20 d 21 a, b, c 22 a, b 23 a, d 24 a, d 25 b, c 26 b 27 a, b, d 28 a, c, d 29 c 30 a, b, c 31 a, c, d 32 b, d 33 c, d 34 a, b 45 a,						
Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system Image: Description of the second system						
11 a, b, c 12 b, c 13 b 14 a, b, c 15 c 16 a, c, d 17 b, c, d 18 b 19 b 20 d 21 a, b, c 22 a, b 23 a, d 24 a, d 25 b, c 26 b 27 a, b, d 28 a, c, d 29 c 30 a, b, c 31 a, c, d 32 b, d 33 c, d 34 a, b, d 35 a, c 36. c, d 37. a, b 38. a, b, d 39. a, b, d b, d b, d 41. b, c 42. c, d 43. a, c 44. a, b 45. a, c 46. a, d a b a b, d a b a b a b a b a b a a b a b a b a a b a b a b a b a b a <td< th=""></td<>						
21 a, b, c 22 a, b 23 a, d 24 a, d 25 b, c 26 b 27 a, b, d 28 a, c, d 29 c 30 a, b, c 31 a, c, d 32 b, d 33 c, d 34 a, b, d 35 a, c 36. c, d 37. a, b 38. a, b, d 39. a, b, d b, d 41. b, c 42. c, d 43. a, c 44. a, b 45. a, c 46. a, d a b a b, d a b, d a b a b a b a b a b a b a b a b a b a b a b b a b a b a b a b a b a b a b a b a b b b b b b b b b a b b						
31 a, c, d 32 b, d 33 c, d 34 a, b, d 35 a, c 36. c, d 37. a, b 38. a, b, d 39. a, b, c 40. b, d 41. b, c 42. c, d 43. a, c 44. a, b 45. a, c 46. a, d						
41. b, c 42. c, d 43. a, c 44. a, b 45. a, c 46. a, d						
 1. A-r; B-s; C-q; D-p 2. A-t; B-w; C-r; D-u						
1. A-r, b-s, C-q, D-p 2. A-r, b-w, C-1, D-u 3. A-p; B-q, r; C-q, r; D-r, s 4. A-p, q, s; B-p, q; C-p, r; D-p, q, r, s						
5. $A-p, s; B-p, r; C-q$ 4. $A-p, q, s; D-p, q; C-p, r; D-p, q; r; s$ 5. $A-p, s; B-p, r; C-q$ 6. $A-p; B-q, s; C-r; D-p, q$						
5. A-p, s, b-p, 1, C-q 0. A-p, b-q, s, C-1, D-p, q 7. A-p, s; B-p, q, r, s; C-p, s; D-p, s 8. A-p; B-p, q, r, s; C-p, q, s; D-q						
9. A-t: B-r: C-n: D-n.a. r. s 10. A-n: B-n. s: C-a. r: D-a. r						
9. A-t; B-r; C-p; D-p, q, r, s 10. A-p; B-p, s; C-q, r; D-q, r 11. A-r, s; B-s; C-a, t; D-p, a 12. A-r, s; B-s; C-p, a; D-p, a						
9. A-t; B-r; C-p; D-p, q, r, s 10. A-p; B-p, s; C-q, r; D-q, r 11. A-r, s; B-s; C-q, t; D-p, q 12. A-r, s; B-s; C-p, q; D-p, q 13. A-q, r; B-p, r, s; C-q, r D-q, r, s 14. A-q, s; B-q, r; C-r; D-q						

15. A-p, q; B-p, q, s; C-r; D-q 17. A-p, r, s; B-s; C-p, r, s; D-q, r

- 16. A-q, r, s; B-p, r, s; C-p, q, r, s; D-p, q, r, s
 18. A-q; B-q, r; C-q; D-p, s

Solutions

20.


22.

23

- **3.** (a) CO₂ is isostructural with HgCl₂ because both have linear structure.
- 4. (c) In an organometallic compound, a metal is directly attached to carbon.
- 6. (a) Nitric acid. This is because lead nitrate formed is soluble in water. If H_2SO_4 is used, an insoluble layer of $PbSO_4$ is deposited on the surface of powder and prevents the further reaction. Likewise, $PbCl_2$ prevents the reaction with HCl.
- (c) It is the due to reduction of SO₂ to S which produces bleaching effect.
- 8. (a) NF_3 is not hydrolysed because it does not have empty d-orbital.

10. (c)
$$Sn + 4HNO_3 \longrightarrow H_2SnO_3 + 4NO_2 + H_2O_{metastannic acid}$$

- 11. (b) In all the cases octet is not fulfilled for B-atom. So in monomer form all of them are Lewis acids. In BF₃ the Lewis acidity is internally compensated by 'B-F' π bond (back bonding) formation which is not possible for BCl₃ or BBr₃ due to the size dissimilarity between 'B-Cl' or 'B-Br'. So BCl₃ and BBr₃ have the tendency to form dimer. But due to steric factor, four 'Cl-atoms' or 'Br-atoms' cannot be arranged around 'B-atom' and they remain as monomer. But BH₃ forms B₂H₆ to satisfy Lewis acidity by the formation of 2-electrons -3-centred bond (banana bonding).
- 12. (c) The structure of borazine is almost similar to benzene. Borazine is called inorganic benzene.

- 17. (d) All have nearly similar acidic strength.
- 18. (a) As we know, that the smaller the bond length, stonger the bond, and so, it has higher bond dissociation energy. However, in case of :F F:, F being of extremely small size, there is a lone pair-lone pair repulsion between F-F in F₂. So F-F bond becomes weaker, and its bond-dissociation becomes lesser than that of Cl-Cl bond. So Cl-Cl bond has highest bond dissociation energy
- 19. (d) On going down, the metal hydride bond becomes longer i.e., weaker. So release of H becomes easier. So reducing character increases.

(a) Higher the bond-order, lower the bond-length and vice-versa.

Molecule/ion	O_2^-	O ₂	O_2^+	O_{2}^{++}
Bond order	1.5	2	2.5	3.0

 O_2^- has minimum bond - order. So, it has the highest bond length.

21. (a) CCl₄ having no vacant *d*-orbital does not undergo hydrolysis

In a particular period, on going left to right the order of extent of hydrolysis increases.

(a) Boric acid is a Lewis acid with basicity equal to one

 $B(OH)_3 + H_2O \implies [B(OH)_4]^- + H^+$ (Boric acid)

. (c) HO
$$P$$
 O P P O H OH OH $[H_4P_2O_7]$ tetrabasic

24. (b)

Peroxodisulphuric acid $[H_2S_2O_8]$

- 25. (d) The oxide with the highest positive oxidation state on the element other than O should be most acidic. Oxidation state of V in V_2O_5 and N in N_2O_5 are +5. But the electronegativity of N is higher, making N_2O_5 the most acidic oxide.
- (c) Volume available for the charge is increasing from left to right. So charge density is decreasing from left to right. That is why, basicity of the ions decreases from left to right.
 F⁻>Cl⁻>Br⁻>l⁻

27. (a) Assume that each has lost a proton . So we get : HO⁻, HS⁻, HSe⁻, HTe⁻

It can be easily seen that the volume available for the negative charge is increasing from $\rm HO^-$ to $\rm HTe^-$, therefore

(i) volume available for the negative charge is increasing from left to right

(ii) charge density is decreasing from left to right

(iii) basicity is decreasing from left to right

(iv) acidity of conjugate acids is increasing from left to right

$$H_2O < H_2S < H_2Se < H_2Te$$

28. (c)
$$2Pb(NO_3)_2 \xrightarrow{\text{heat}} 2PbO + 4NO_2 \uparrow +O_2 \uparrow$$

29. (c)
$$Pb(NO_3)_2 + 2CH_3COOH \longrightarrow$$

 $Pb(CH_3COO)_2 + 2HNO_3$

$$2Pb(CH_{3}COO)_{2} + K_{2}Cr_{2}O_{7} + H_{2}O \longrightarrow$$
$$2PbCrO_{4} \downarrow + 2CH_{3}COOK + 2CH_{3}COOH$$
yellow

30. (d)
$$Al_2(SO_4)_3 + 3NH_4HS + 6H_2O \longrightarrow$$

 $3NH_4HSO_4 + 2Al(OH)_3 + 3H_2S$

31. (c) NaNO₂
$$\xrightarrow{\text{dilute acid, heat}}$$
 NO₂ (reddish-brown gas)

32. (a) (X) is borax, $Na_2B_4O_7.10H_2O$

(

(i)
$$Na_2B_4O_7 + 7H_2O \implies 2NaOH + 4H_3BO_3$$

(Strong)
Base (Weak)
acid

Due to presence of NaOH, the aqueous solution is alkaline to litmus.

ii)
$$Na_2B_4O_7.10H_2O \xrightarrow{Heat} Na_2B_4O_7$$

(swells)

$$+10H_2O \longrightarrow 2NaBO_2 + B_2O_3$$

Glassy bead

(iii)
$$Na_2B_4O_7 + H_2SO_4 + 5H_2O \longrightarrow$$

 $Na_2SO_4 + 4H_3BO_3$
white crystals

33. (d)
$$2NaNO_3 + (NH_4)_2SO_4 \longrightarrow Na_2SO_4$$

white residue
 $+ 2N_2O\uparrow + 4H_2O$

34. (d) The oxidation state of P is least (+1) in H₂PO₂⁻⁻ and thus it is the strongest reducing agent.

35. (c)

 N_2 N_2^+ N_2^- Bond energy in KJ mole⁻¹ 942 841 765 In case of N_2 to N_2^+ we expect the bond length to increase when an e⁻ is removed from the bonding π molecular orbitals. Actually it decreases slightly. This may be rationalised when we notice that removal of an e⁻ from a diatomic specis tends to decrease inter e⁻ repulsion and thereby shortens bond lengths.

37. **(b)**
$$H_2S_2O_3 = HO - S - OH$$
, Oxidation state of sulphur

are +6 and -2

$$\begin{array}{c} O & O \\ \parallel & \parallel \\ H_2S_2O_4 = OH - S - S - OH , S = +3 \\ H_2S_2O_6 = HO - S - S - OH , S = +6 \\ \parallel & \parallel \\ O & O \\ H_2S_2O_7 = HO - S - O - S - OH , S = +6 \\ \parallel & \cup \\ O & O \\ \end{array}$$

- **38.** (a) The compound IF is most unstable. It disproportionates rapidly into IF_5 and I_2
 - (c) Option (a) is false as Coke is not found in nature. It is an artificial product. Option (d) is also false as CO_2 cannot be formed by dehydration of formic acid.

$$\text{HCOOH} \xrightarrow[\text{H2SO}_4]{\text{Conc.}} \text{CO} + \text{H}_2\text{O}$$

40.

44.

48.

52.

Option (b) is also false as Producer gas is a mixture of CO and N_{2} .

41. (c) PbO_2 oxidises Mn^{++} to Mn^{+7} . The reaction is as follows

 $2MnCl_2 + 5PbO_2 + 6HNO_3 \longrightarrow 2HMnO_4$

 $+2PbCl_2+3Pb(NO_3)_2+2H_2O$

- 42. (d) Sulphur shows +6, 0, and +4 oxidation states in H_2SO_4 , S_8 and SF_4 respectively.
- **43.** (a) The structure of white phosphorus (P_4) is

Hence bonding electron pairs are 6.

- (b) In molecular crystals, the lattice positions are occupied by molecules which do not carry any charge.
- 45. (c) Concentrated nitric acid forms HIO_3 with I_2

 $I_2 + 10HNO_3 \longrightarrow 2HIO_3 + 10NO_2 + 4H_2O_3$

46. (c)
$$Na_2SO_3$$
 is treated with conc. H_2SO_4 to form SO_2

$$Na_2SO_3 + H_2SO_4(conc.) \longrightarrow Na_2SO_4 + SO_2 + H_2O_4(conc.)$$

47. (c) Because fluorine is more electronegative than chlorine.

(b) HOSO₂OH
$$\xrightarrow{PCl_5}$$
 ClSO₂Cl Sulphuryl chloride

- **49.** (c) The order will depend upon the electronegativity of halogen
- **50.** (b) SiO_2 is acidic, SnO_2 is more or less basic while ZnO is amphoteric.
- **51.** (c) Lead exists as PbI_2 because of the oxidising power of Pb^{+4} and reducing power of I^-
 - (c) The gas (X) is NH_3 . Its aqueous solution is NH_4OH which turns red litmus to blue. Step (ii),

$$CuSO_4 + 2NH_4OH \longrightarrow Cu(OH)_2 + (NH_4)_2SO_4$$
$$Cu(OH)_2 + (NH_4)_2SO_4 + 2NH_4OH$$

$$\longrightarrow \begin{bmatrix} Cu(NH_3)_4 \end{bmatrix} SO_4 + 4H_2O \\ Tetrammine copper (II) \\ sulphate (blue colour) \end{bmatrix}$$

$$FeCl_3 + 3NH_4OH \longrightarrow Fe(OH)_3 + 3NH_4Cl$$

Brownish ppt.

$$Fe(OH)_3 + 3HNO_3 \longrightarrow Fe(NO_3)_3 + 3H_2O$$

Soluble

53. (b)
$$(NH_4)_2 Cr_2 O_7 \xrightarrow{\text{heat}} Cr_2 O_3 + 4H_2 O + N_2$$

$$56. \quad (b) \quad 2Ag + O_3 \longrightarrow Ag_2O + O_2$$

 $Ag_2O + O_3 \longrightarrow 2Ag + 2O_2$ (black)

57. (b) Nitric oxide is obtained at a very high temperature by the atmospheric oxygen and nitrogen

 $N_2 + O_2 \longrightarrow 2NO$

- **58.** (d) Dissolved oxides of nitrogen are removed
- **59.** (b) Ammonium Nitrate (NH_4NO_3) forms laughing gas (N_2O) ;

 $NH_4NO_3 \xrightarrow{heat} NO_2 \uparrow + 2H_2O$

- 60. (a) Abrasive is tough material used for sharpening and grinding the uneven surfaces and silicon carbide is used for grinding glass
- **61.** (c) Cl_2 is the best oxidising agent. It is reduced to HCl

 $Cl_2 + H_2O \longrightarrow 2HCl + H_2O$

- **62.** (c) It behaves like halogen giving white ppt. with silver nitrate.
- 63. (a) NaH_2PO_2 is the salt of hypophosphorous acid, O
 - H P OH, a monobasic acid. The two H-atoms in H

 NaH_2PO_2 are not replacable.

- **64.** (b) Pb⁺⁴ ion, having maximum +ve charge, will have minimum flocculation value.
- 65. (a) SrO_2 and BaO_2 are the peroxides of highly electropositive elements. They are made up of

 $Sr^{+2}O_2^{2-}$ and $Ba^{+2}O_2^{2-}$ ions. PbO₂ is not peroxide.

- 66. (b) In BF₃, boron atom has vacant $2p_z$ A.O. and fluorine atom has electron pair in 2p A.O. so, maximum overlapping is possible between vacant $2p_z$ A.O. of boron and fully filled 2p A.O. of fluorine due to similar size of A.O's.
- 67. (b) Chlorine water will liberate bromine from KBr $Cl_2 + H_2O \longrightarrow 2HCl + O$

 $2Br^{-} + 2H^{+} + O \longrightarrow Br_{2} + H_{2}O$

- **70. (b)** Glass containing boron has very small coefficient of expansion
- 71. (c) Nitrogen has stable half filled electronic configuration, hence it has highest first ionisation potential.
- 72. (d) In other reactions, oxygen is evolved but in reaction with SO₂, all oxygen is used up in the process of oxidation and no oxygen gas is evolved. $3SO_2 + O_3 \longrightarrow 3SO_3$
- **73.** (d) H_2SO_4 being less volatile than HCl displaces HCl from chloride salt, e.g,

 $NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl$

- 74. (a) H₂F₂ is bad conductor of electricity due to its greater stability. Further H–F is strongest, hence it does not ionise easily in aqueous solution.
- 75. (b) Xenon forms compounds only with oxygen & fluorine due to their small sizes and high electronegativity.
- **76.** (b) Liquor ammonia has high vapour pressure so gas rushes out vigorously and the bottle may get burst.
- 77. (b) Red phosphorous is used in safety maches, white P due to its low ignition temperature is not used for this purpose.

78. **(b)**
$$2KBr + Cl_2 \longrightarrow 2KCl + Br_2$$

79.

81.

82.

This is because chlorine is more reactive than bromine and displaces bromine from its salt solution.

. (c)
$$Ca_3P_2 + 6H_2O \longrightarrow 3Ca(OH)_2 + PH_3$$

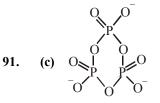
Phosphine

 80. (b) Oxygen - Ordinary oxygen and ozone Sulphur - Rhombic, monoclinic, plastic, amorphous Selenium - Red form, grey form Polonium - α & β. Thus sulphur shows maximum number of allotropic forms.

(d) Fe + 2HNO₃
$$\longrightarrow$$
 Fe(NO₃)₂ + H₂O

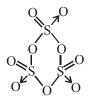
0

- 83. (c) CO_2 can not act as a reducing agent because in this molecule carbon has highest (+4) oxidation state.
- 84. (b) $BeSO_4$ has highest hydration energy hence maximum solubility in water.
- 85. (b) Reducing capacity of halide ion increases in a group on going downwards. $F^- < Cl^- < Br^- < I^-$


86. (d)
$$Al_2O_3.2H_2O + 3C + N_2 \xrightarrow{1800^{\circ}C}$$

 $2A\ell N + 3CO + 2H_2O$

- 87. (b) Li does not form alum because Li⁺ is too small to have a coordination number of six.
- 88. (b) The HNO_3 decomposes slowly in sunlight forming NO_2 , which dissolves in HNO_3 to make it yellow


colour, $4HNO_3 \longrightarrow 2H_2O + 4NO_2 + O_2$

89. (a) O does not show valency more than two due to lack of vacant orbitals in valenc shell

No. of P-O-P bonds = 3. It is the most stable among all the cyclic metaphosphates

- 92. (c) NH_3 does not react with CaO, while it reacts with the other three.
- **93.** (a) For oxyacids containing similar central atom, the acid strength increases with the increase in the number of oxygen atoms attached to the central atom and not attached to any other atom.
- 94. (d) S_3O_9 (also called α sulphur trioxide) is an ice like solid with the following molecular structure.

There is no S–S bond is S_3O_9

96. (c)
$$2Ca^{++} + Na_2[Na_4(PO_3)_6] \longrightarrow$$

 $4Na^+ + Na_2[Ca_2(PO_3)_6]$ water soluble complex

- 97. (a) Non metallic oxides are acidic and metallic oxides are basic. Thus the order is $CaO < CuO < H_2O < CO_2$
- 98. (a) The structure of H₃PO₃ is as given below. There are only two –OH groups and hence it is dibasic. The oxidation number of P in this acid is +3, whereas P may have +5 oxidation state also. Therefore, H₃PO₃ can be oxidised which means H₃PO₃ is a reducing agent.

99. (a) The boron atom in boric acid, H_3BO_3 is electron deficient i.e., boric acid is a Lewis acid with one *p*-orbital vacant. There is no *d*-orbital of suitable energy in boron atom. So, it can accommodate only one additional electron pair in its outermost shell.

101. (d)
$$Na_2SO_3 + O_2 \longrightarrow Na_2SO_4$$

 $Na_2SO_3 + H_2SO_4 + K_2Cr_2O_7 \longrightarrow Cr_2(SO_4)_3$
(dil.) (Green)
102. (b) As the solid R forms a hydrated double solt with

102. (b) As the solid B forms a hydrated double salt with $Al_2(SO_4)_3$, it should be a sulphate of a univalent metal, M_2SO_4 .

One molecule of sulphate contains one sulphur atom, i.e., the mass of the sulphate which contains 32.1 g sulphur should be its molecular mass.

0.321 g sulphur is present in (1.422 + 0.321 = 1.743 g) of B.

32.1 g of sulphur is present in

$$=\frac{1.743}{0.321}\times32.1=174.3$$
 g

Let the atomic mass of the univalent metal be x.

 \therefore M₂SO₄= 2x + 32.1 + 64 = 174.3 or 2x = 78.2 and x = 39.1, which corresponds to Potassium.

- **103.** (c) Since the salt '*R*' gives a white precipitate with aqueous NaOH and the white precipitate formed is soluble in excess of aqueous NaOH so the salt '*R*' contains an **amphoteric cation** i.e, it is either $Al_2(SO_4)_3$ and $ZnSO_4$. Since '*R*' gives a white ppt. with aqueous ammonia and the white precipitate is not soluble in excess of aqueous ammonia so it is not zinc salt. Thus '*R*' is $Al_2(SO_4)_3$.
- **104.** (d) Hydrated aluminium chloride is AlCl₃.6H₂O. It is ionic in nature and its aqueous solution contains

$$[AlCl_2(H_2O)_4]^+$$
 and $[AlCl_4(H_2O)_2]^-$ ions
AlCl_3.6H_2O $\xrightarrow{ionisation} \rightarrow$

 $[AlCl_2(H_2O)_4]^+ + [AlCl_4(H_2O)_2]^-$

105. (d) The colour of solid oxygen is due to electronic transition from the triplet ground state (i.e., $\pi^* 2p_x^1 \pi^* 2p_y^1$) to the excited singlet state (i.e., $\pi^* 2p_x^2 \pi^* 2p_y^2$).

106. (c) When aqueous SO_2 is shaken with iodine solution the colour of iodine solution is discharged because I_2 is reduced to I^- .

$$I_2 + SO_2 + 2H_2O \longrightarrow 2HI + H_2SO_4$$

Violet)

107. (c) BaSO₄ remains insoluble where as $CaCO_3$ dissolves in HCl evolving CO_2 (colourless) gas.

$$CaCO_3 + 2HCl(aq) \longrightarrow CaCl_2 + H_2O + CO_2 \uparrow$$

108. (c) S $(\text{Yellow powder}) + 3F_2 \xrightarrow{\text{heat}} SF_6$

$$3SCl_2 + 4NaF \xrightarrow{heat} SF_4 + S_2Cl_2 + 4NaCl_{YY}$$

[Note : SF₆ and SF₄ consist of sulphur and fluorine]

109. (b)
$$2XeF_6 + SiO_2 \longrightarrow 2XeOF_4 + SiF_4$$

(glass) (explosive nature)

$$2XeOF_4 + SiO_2 \longrightarrow 2XeO_2F_2 + SiF_4$$

$$2XeO_2F_2 + SiO_2 \longrightarrow 2XeO_3 + SiF_4$$
(explosive)

110. (b) Generally PH_3 (phosphine) is associated with traces of P_2H_4 (phosphorus dihydride). Phosphorus dihydride (P_2H_4) catches fire spontaneously forming rings of smoke known as "vortex rings". [Note : P_2H_4 is highly inflamable]

$$2P_2H_4 + 7O_2 \longrightarrow 4HPO_3 + 2H_2O$$

(Metaphosphoric acid)

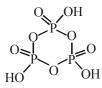
111. (c) Both the methods (a) and (b) can be used. When passed through freezing mixture the P_2H_4 present condenses and pure PH_3 is obtained.

When passed through HI, PH_3 is absorbed forming $PH_4I.PH_4I$ when treated with KOH (aq) yields pure phosphine.

$$PH_{3} + HI \longrightarrow PH_{4}I$$

$$PH_{4}I + KOH(aq) \longrightarrow KI + H_{2}O + PH_{3} \uparrow$$

112. (c) $CaO + (NH_4)_2SO_4 \longrightarrow CaSO_4 + 2NH_3 + H_2O$ Because of above reaction both CaO and $(NH_4)_2SO_4$ get depleted and now CaO fails to reduce acidity of soil and $(NH_4)_2SO_4$ fails to act as fortilizer.


- **113.** (c) Red phosphorus does **not** glow in air.
- 114. (a) The ship carries a mixture of CaC_2 and Ca_3P_2 . When a hole is made and the ship is immersed in sea water, phosphine and acetylene gets formed. Phosphine catches fire in air and lights up acetylene. This acts as a signal for the approaching ship.

$$CaC_2 + H_2O \longrightarrow Ca(OH)_2 + C_2H_2$$

(acetylene)

$$Ca_3P_2 + 6H_2O \longrightarrow 2Ca(OH)_2 + 2PH_3$$

(Phosphine)

B \equiv Comprehension Type

- 1. (d) Oxidation state of P is +1 in A, +3 in B, +4 in C & +5 in D, E & F.
- (c) The basicity is determined by the number of OH groups attached to the P atom.
- 3. (b) In the above three acids although the number of -OH groups (ionisable hydrogen increases, yet the acidity does not increase very much. This is due to the fact that *the number of unprotonated oxygen, responsible for the enhancement of acidity due to inductive effect, remains the same* with the result dissociation constant also remains nearly same.
- 4. (b) It is clear from the 3rd & 4th sentence of the passage that the *ous acids* show reducing properties.
- 5. (c) Number of P–O–P bonds in cyclic tri-metaphosporic acid is three.

6. (a) $H_3PO_4 \longrightarrow HPO_3 + H_2O;$ (D) ortho- meta-

$$\begin{array}{c} H_4 P_2 O_7 \longrightarrow 2 H P O_3 + H_2 O \\ (F) pyro- meta- \end{array}$$

- **115.** (b) Phosphine burns in air to give clouds of P_2O_5 which act as smoke screen.
- **116.** (d) It has blue colour in solid state.
- **117.** (d) HNO_4 is explosive in nature
- **118.** (a) Amatol is 80% NH₄NO₃ + 20% TNT
- **119.** (c) Electrical conductivity of Selenium (Se) is negligible in dark but increases on exposure to light. Due to this property Se is used in photoelectric cells.
- 120. (a) $S + 4CoF_3 \longrightarrow SF_4 + 4CoF_2$
- **121.** (d) The statements (a), (b) and (c) are true.
- **122.** (a) Corrundum is α -Al₂O₃
- **123.** (b) The cubic form of BN with ZnS structure is as hard as diamond.
- **124.** (d) All the above statements are correct.
- 125. (b) It causes laughing hysteria.
- **126.** (c) NH_4Cl is used to clear metal surfaces because HCl (obtained from NH_4Cl) forms a volatile chloride.
- **127.** (d) It is the correct answer.

7.

8.

128. (c) In liquid state BrF_3 dissociates into BrF_2^+ and BrF_4^- ions most easily.

- (d) As the two adjacent layers can easily slide over each other (mentioned in the second paragraph), it makes graphite soft (it marks paper), greasy and hence has a lubricant character and a low density.
- (a) $C_{(Diamond)} + O_2(g) \longrightarrow CO_2(g); \Delta H_1 = -395.1 \text{ kJ/mol}$

 $C_{(\text{graphite})} + O_2(g) \longrightarrow CO_2(g); \Delta H_2 = -393.3 \text{ kJ / mol}$ Required equation : $C_{\text{graphite}} = C_{\text{diamond}}$

:.
$$\Delta H = \Delta H_2 - \Delta H_1 = -393.3 - (-395.1) = 1.8 \text{ kJ mol}^{-1}$$

9. (a) $C_{(graphite)} \rightleftharpoons C_{(diamond)}$

Density of diamond = 3.51, Density of graphite = 2.26As per Le Chatelier principle,

(i) increase of temperature will shift the reaction towards left in case of exothermic reactions and to right in case of endothermic reactions

(ii) increase of pressure (decrease in volume) will shift the reaction to the side having fewer moles of the gas; while decrease of pressure (increase is volume) will shift the reaction to the side having more moles of the gas.

(iii) if no gases are involved in the reaction, higher pressure favours the reaction to shift towards higher density solid or liquid.

So from point (iii), the equilibrium will shift towards right (more dense) only at high pressures as there is no gas involved. Both graphite and diamond are solids.

- 10. In diamond each carbon atom is in sp^3 hybridised (d) state and is linked to 4 other neighbouring carbon atoms held at the corners of a regular tetrahedron by covalent bonds.
- Graphite has sp² hybridization and C-C bond 11. **(b)** involves sp²–sp² hybridized carbon. Diamonds has sp³ hybridization and C-C bond involves sp³-sp³ hybridization. Furthermore, more is s character (in sp^2) in hybridized atoms, smaller is size of hybridized orbital, more is overlapping, shorter is bond length.
- (c,d) All valence electrons of each carbon are used in bond 12. formation with four neighbouring atoms and there is no mobile electron in the system and hence the diamond crystal is bad conductor of current. Graphite has sp² hybridized carbons with layer structure along with π electrons (p-p bond) free to move throughout the entire layers hence graphite is good conductor of current.
- 13. **(a)** The figure in option(a) represents the phase diagram of CO_2 . The various curves in the diagram show the equilibrium between two phases and the areas represent different phases. The point, called triple point, describing the equilibrium between the three phases and has specific values of temperature and pressure (217 K, 515 kPa). The area to the left of the point O represents the solid phase, to the top of the point O represents the liquid phase and to the right represents the gaseous phase.
- 14. The passage states that sulfuric acid reacts with Cu(*s*) (a) to produce Cu⁺ and SO₂. Thus, sulfuric acid is converted into sulfur dioxide, or $H_2SO_4 \rightarrow SO_2$. O.S. of S in $H_2SO_4 = +6 [2 \times (+1) + S + 4 \times (-2) = 0]$ O.S. of S in SO₂ = +4 $[S + 2 \times (-2) = 0]$
- 15. The boiling point of HNO₃ is given in the question as **(b)** 86°C. Because HNO₃ must boil out of the flask and be trapped in the tube, the temperature of the flask must be above the boiling point of HNO₃ (i.e., < 86°C) and the temperature of the tube must be less than the boiling point of HNO₃ (i.e, <86°C). Answer (b) meets these criteria; the other answers do not.
- 16. The combustion of elemental sulfur involves a reaction (d) between oxygen (O_2) and sulfur (S). [Note: Though sulfur exists as S₈ molecules, its reactions are normally written in terms of its empirical formula S.]
- 17. The reaction involves the formation of gaseous SO_2 (c) from gaseous O₂ and gaseous SO₂.

$$O_2(g) + 2 SO_2(g) \rightarrow 2 SO_3(g)$$

According to Le Châtelier's principle, any action that causes the reaction to shift toward the right will cause O_2 and SO_2 to react and increase the yield of SO_3 . Of the four possible actions, the removal of SO₃ as it forms will shift the reaction toward the right and is the most likely action to increase the yield of SO_3 .

18. The passage states that concentrated H_2SO_4 is 98% **(b)** H_2SO_4 and 2% water by mass and that the density of concentrated H_2SO_4 is 1.84 g/mL.

$$\frac{(1.84 \text{ g conc. H}_2\text{SO}_4)}{(1 \text{ mL solution})} \times \frac{(2 \text{ g H}_2\text{O})}{(100 \text{ g conc. H}_2\text{SO}_4)}$$

 $\times \frac{(1 \text{ mol } \text{H}_2\text{O})}{(18 \text{ g } \text{H}_2\text{O})} = \frac{(1.84)(0.02)}{18}$

19. The problem hypothesizes the liberation of hydrogen (a) in accordance with the unbalanced equation : F

$$\operatorname{Fe}(s) + \operatorname{H}_2\operatorname{SO}_4 \to \operatorname{H}_2(g)$$

In the conversion, hydrogen goes from an oxidation state of +1 in sulfuric acid to 0 (zero) in H₂. Thus, the hydrogen in H₂SO₄ is reduced (i.e., it undergoes an algebraic decrease in oxidation state). Fe(s) is the reducing agent (i.e., it causes the reduction).

20. The first ionization of sulfuric acid, H₂SO₄, is normally **(a)** 100% in water. However, under conditions of low water content, all of the H_2SO_4 cannot ionize. Qualitatively, the only source of SO_4^{2-} is HSO_4^{-} . The K_{a} for the second ionization step of a parent acid is a few orders of magnitude smaller than that of the first step; therefore, SO42- must be the least abundant species, because it is only formed in the second ionization step.

Quantitatively, the mass relationship in 100 g of 98% H₂SO₄ is 98 g H₂SO₄ and 2 g H₂O. The molar mass of H₂SO₄ is 98 g/mol and of water is 18 g/mol. Thus, in 100 g of 98% H₂SO₄ there is one mole of H₂SO₄ and 2/18 or 1/9 mole of H₂O. In excess water, H₂SO₄ would ionize completely. However, in this case (i.e., very low water content), only about 1/9 of a mole can react stoichiometrically with water to form H_3O^+ and HSO_4^- . Of this 1/9 mol, only a small fraction of the HSO_4^- further ionizes to H_3O^+ and SO_4^{2-} , because HSO_4^{2-} is a weak acid. Therefore, SO_4^{2-} is the chemical with the lowest concentration. Thus, answer choice (a) is the best answer.

- 21. Acidic character of oxides decreases as we move (d) down the group (group 15). P is above all others.
- 22. (c) NH₃ is most basic of the given hydrides.
- 23. It contains Argon (or inert gas) as impurity. **(b)**
- In this process molten cryolite acts as solvent. 24. (d)
- 25. The greatest affinity for oxygen is shown by Al. **(b)**
- It is about 2100°C. 26. (a)

C Reasoning Type \equiv

- (b) Nitrogen cannot form pentahalides because it cannot expand its octet due to non-availability of d-orbitals. So E is not correct explanation of S.
- (c) F has slightly less electron affinity than chlorine because F has very small atomic size (only two shells). Hence there is a tendency of electron-electron repulsion, which results in less evolution of energy in the formation of F⁻ ion. Assertion correct but reason incorrect.
- (a) Both assertion and reason are correct and reason explains assertion.
- 4. (c) SiCl₄ undergoes hydrolysis due to the presence of empty *d*-orbitals in the valence shell of Si, while C has no vacant *d* orbitals to accommodate electron pairs donated by water molecules during hydrolysis.
- (b) Correct explanation : Boric acid does not act as a proton-donor but behaves as a Lewis acid i.e., it accepts a pair of electrons from OH⁻ ion of H₂O and releases a proton in solution.
- 10. (b) Correct explanation : Alums exist only in the solid state and lose their identity when dissolved in water.
- 13. (b) Correct explanation : White phosphorus exists as P₄ tetrahedral molecule having P-P-P bond angle 60°. Hence the molecule is under strain and more reactive. On the other hand red phosphorus exists as P₄ tetrahedra which are joined together through covalent bonds giving polymeric structure.
- 18. (d) Correct R : Solubility of noble gases in water increasees with increasing size of the gas.
- 20. (c) Assertion is true. Reason is false (orthoboric acid acts a lewis acid). It is not a proton donor.

MULTIPLE CORRECT CHOICE TYPE

1. (b, c) In Al_2Cl_6 , four chlorine atoms (terminal) are equivalent and two chlorine atoms form bridges through coordination between two aluminium atoms. These are different from terminal chlorine atoms. Borax when heated with NH₄Cl forms boron nitride and boric anhydride. Anhydrous AlCl₃ hydrolyses in moist air and gives fumes of HCl.

$$AlCl_3 + 3H_2O \longrightarrow Al(OH)_3 + 3HCl \uparrow$$

3. (c, d) Certain molecules absorb strongly in the infrared region and its presence in the atmosphere decreases the loss of heat from the earth by radiation. This global warming is called green house effect. Gases causing such effect are CO₂

21. (a) Both assertion and reason are true and reason is the correct explanation of assertion.

 $\begin{array}{c} M \\ (metal) \end{array} + \begin{array}{c} HNO_3 \\ (conc.) \end{array} \longrightarrow \begin{array}{c} MNO_3 \\ (metal nitrate) \end{array} + \begin{array}{c} H \\ (nascent hydrogen) \end{array}$

$$2\text{HNO}_3 + \frac{2\text{H}}{(\text{nascent hydrogen})} \longrightarrow 2\text{NO}_2 + 2\text{H}_2\text{O}$$

 $[Al(H_2O)_5]^{3+} + H_2O \longrightarrow [Al(H_2O)_5(OH)]^{2+} + H^+$

23. (d) Anhydrous aluminium chloride can not be prepared by heating dehydrated aluminium chloride $(AlCl_3 \cdot 6H_2O)$. Assertion is incorrect, Reason is correct.

$$2AlCl_3.6H_2O \longrightarrow 2Al(OH)_3 + 6HCl$$

$$2Al(OH)_3 \longrightarrow Al_2O_3 + 3H_2O$$

- 24. (a) Both assertion and reason are correct and reason is the correct explanation of assertion.
- (c) Assertion is correct, reason is incorrect. Si Si double bonds are not formed.
- 26. (a) Both assertion and reason are correct and reason is the correct explanation of assertion.
- 27. (d) Assertion is incorrect. Hydrolysis of XeF_6 is not an example of redox reaction, reason is correct.
- 28. (a) Both assertion and reason are correct and reason is the correct explanation of assertion.

and freons (CF_2Cl_2)

- (b, d) In P_4O_6 the oxidation state of P atom is (+3). In $P_4O_7 \& P_4O_8$, P atoms have (+3) & (+5) oxidation states. In P_4O_{10} , oxidation state of P atom is only (+5)
- 6. (d) As can be seen from the structure of $S_2O_7^{2-}$, there is no S–S bond. All bonds are S–O–S bonds.

(a, b, c) $2MnSO_4 + 5PbO_2 + 6HNO_3$

4.

7.

9.

 \rightarrow 2HMnO₄+3Pb(NO₃)₂+2PbSO₄+2H₂O

(d) Pb(IV) is a strong oxidising agent and I[−] is a strong reducing agent. Hence they cannot co-exist together. **11.** (**a**, **b**, **c**) Conc. H_2SO_4 , anhydrous $CaCl_2$ and P_4O_{10} directly reacts with ammonia.

$$H_2SO_4 + 2NH_3 \longrightarrow (NH_4)_2SO_4;$$

 $CaCl_2 + 8NH_3 \longrightarrow CaCl_2.8NH_3;$

$$P_4O_{10} + 12NH_3 + 6H_2O \longrightarrow 4(NH_4)_3PO_4$$

12. (b, c) When treated with Na_2O_2 , $FeSO_4$ yields brown residue $Fe(OH)_3$, $Al_2(SO_4)_3$ yields soluble $NaAlO_2$, while chrome alum gives yellow filtrate of Na_2CrO_4 .

13. (b)
$${\rm SiO}_2 + 2{\rm H}_2{\rm F}_2 \longrightarrow {\rm SiF}_4 + 2{\rm H}_2{\rm O};$$

 $SiF_4 + H_2F_2 \longrightarrow H_2SiF_6$

14. (a, b,c) The chloride ions have combined with the metal ions to give the precipitate of a chloride as sodium nitrate is soluble.

Metal nitrate + NaCl
$$\longrightarrow$$
 Metal chloride + NaNO₃
(Insoluble) (Soluble)

The metal chloride may be $PbCl_2$ or AgCl or Hg_2Cl_2 .

- 15. (c) If the precipitate dissolves in NH_4OH , it is AgCl and if the precipitate turns black with NH_4OH , it is Hg_2Cl_2 .
- 16. (a, c, d) Boric acid behaves like a weak monobasic acid. It does not lose a proton, but behaves like a Lewis acid. It accepts e⁻ pair from hydroxide ion of water molecule whose proton is set free in solution.

$$B(OH)_3 + H^+OH^- \longrightarrow [B(OH)_4]^- + H^+$$

17. (b, c, d) Red P does not react with alkali

18. (b)
$$SO_3 + H_2SO_4 \longrightarrow H_2S_2O_7(oleum)$$

- **19.** (b) $2Fe + 3Cl_2 \longrightarrow FeCl_3$
- 20. (d) The first statement is false because F_2 and Cl_2 are gases, Br_2 is liquid while I_2 is a solid. Bromine dissolves in chloroform imparting reddish-brown colour. Chlorine dioxide is evolved when KClO₃ is treated with conc. H_2SO_4 .
- **21.** (a, b, c) All the three are true. A & B need no explanation. For C,

$$CaC_2 + N_2 \longrightarrow CaCN_2 + C$$

Calcium cyanamide

$$2C + O_2 \longrightarrow 2CO; 2CO + O_2 \longrightarrow 2CO_2;$$

$$C + O_2 \longrightarrow CO_2$$

22. (a,b) Because of high melting point (2050°C), pure alumina cannot be electrolysed. Hence a mixture of alumina, cryolite (m.p. 1000°C) and calcium

fluoride (to lower the temperature of the melt) is electrolysed at about 900°C. The function of cryolite is to increase the electrical conductivity of the electrolyte, and to lower the temperature of the melt.

23. (a,d)
$$NH_4NO_3 \xrightarrow{heat} N_2O + 2H_2O$$

 $NH_2OH.HCl + NaNO_2 \longrightarrow N_2O + NaCl + 2H_2O$
24. (a,d) NH_3 and CF_2Cl_2 (freon-12) are used as refrigerants.

25. (b, c) to make the fused mixture very conducting and to reduce the temperature of the melt.

- 26. (b) Silicon is used in solar cells.
- 27. (a, b, d) Sodium nitrate on decomposition upto 500°C gives NaNO₂ and oxygen.

$$2NaNO_3 \xrightarrow{\Delta} 2NaNO_2 + O_2$$

While at higher temperature (i.e. above to 800° C), NaNO₂ further decomposes into Na₂O, N₂ and O₂.

 $2NaNO_2 \xrightarrow{800^{\circ}C} Na_2O + 3/2O_2 \uparrow + N_2 \uparrow$

28. (a, c, d) The four atoms in a P₄ molecule are situated at the corners of a tetrahedron. There are six P - P single bonds with PPP bond angle equal to 60°. Each phosphorus has a lone pair of electrons.

29. (c)
$$2NH_3 + OCI^- \rightarrow NH_2 \cdot NH_2 + H_2O + CI^-$$

- 30. (a, b, c) PbS, CuS and BaSO₄ will dissolve in conc. HNO₃. HgS will not dissolve in HNO₃; it is solube in aqua regia (aqua regia is a mixture of HCl and HNO₃ in the ratio of 3 : 1)
 ∴ (a), (b), (c) are correct.
- **31.** (a, c, d) Halides of Al, In and Ga form dimeric halides, e.g. Dimeric halide of Al is

$$AICl_{3} + AICl_{3} \rightarrow \begin{array}{c} Cl \\ Cl \\ Cl \\ Cl \\ (Al_{2}Cl_{6}) \end{array} \begin{array}{c} Cl \\ Cl \\ Cl \\ (Al_{2}Cl_{6}) \end{array}$$

32. (b,d) $Cr(OH)_3$ and $Al(OH)_3$ are soluble in hot caustic soda containing an excess of concentrated solution of water, while $Mn(OH)_3$ and $Fe(OH)_3$ are insoluble in the same solution.

 \therefore (b, d) are correct

33. (c, d) Anhydrous $AlCl_3$ hydrolyses in moist air and gives fumes of HCl.

$$AlCl_3 + 3H_2O \longrightarrow Al(OH)_3 + 3HCl \uparrow$$

Anhydrous aluminium chloride is a white, deliquescent solid which fumes in air. On heating it sublimes at 180° C and the vapour density corresponds to the formula Al₂Cl₆.

34. (a, b, d) It is a bluish grey metal with bright metallic lustre when freshly cut and leaves a black mark on paper.

It is soft in nature and can be cut with knife It is a heavy metal (sp. gr. 11.35g/cm³) and melts at

327°C. Compound of lead are poisonous.

The dissolution of lead in water is known as Plumbo-Solvency. Plumbo-Solvency increases if the water contains nitrates, organic acids and ammonium salts and decreases in the presence of soluble sulphates, phosphates, carbonates etc., due to formation of a protective thin layer of insoluble lead salts.

- 35. (a, c) The difference in stability between alkanes and silanes has been explained on the basis of difference in the elecronegativity values (C = 2.5, H=2.1, Si = 1.8)
- **36.** (c,d) Since the pollution is due to presence of carboxylic acids we are required to remove the acidity of water. It can be achieved by adding either $Ca(OH)_2$ or $CaCO_3$ which produce basic solution and so help in removing the acidity.

The aqueous solutions of KNO_3 and $CaCl_2$ are neutral and will not help to reduce acidity of polluted water.

37. (a,b) There is a high charge (+3) on aluminium ion (Al³⁺)

and the ratio, $\frac{\text{charge}}{\text{surface area}}$, is high (i.e., charge density

is high) so it polarises the H_2O (ligand) and H^+ ions are removed. Due to this (i.e., polarisation of Al^{3-} ion) there occurs a drift of electron density towards Al^{3+} ion and thus the O - H bond weakens i.e., the O - H bond in $[Al(H_2O)_6]^{3+}$ is weaker than in water.

$$(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{Al}^{3+} \leftarrow \underset{H}{O} \underset{H}{\overset{H}{\longrightarrow}} \mathrm{H} \longrightarrow [(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{Al}(\mathrm{OH})_{2}]^{2+} + \mathrm{H}^{+}$$

$$XeF_6 + 6HCl \longrightarrow Xe + 6HF + 3Cl_2$$
$$XeF_6 + 3H_2 \longrightarrow Xe + 6HF$$

$$XeF_6 + 8NH_3 \longrightarrow Xe + 6NH_4F + N_2$$

40. (b,d) In case of oxy-acids of halogens, acidic strength increases with increase in number of oxygen atom. Thus the correct acidic strength is $HCIO < HCIO_2 < HCIO_3 < HCIO_4$. For the given ions the correct order of oxidising power

is $ClO_4^{-} < BrO_4^{-} < IO_4^{-}$

41. (**b**,**c**)
$$H_2S_2O_8$$
 is $HO - S - O - O - S - OH$

(-O-O-is peroxo linkage)

42. (c,d) NO₂ acts as an oxidising agent and it oxidises SO₂ to SO_3 .

The NO₂ consumed in oxidation of SO₂ is regenerated in the second reaction and so NO₂ remains unconsumed. Thus NO₂ acts as a catalyst since the catalyst (NO₂) is in same phase (gasseous) as other reactants, so it is homogeneous catalyst.

- 43. (a,c) I⁻ is a strong reducing agent and so it is oxidised by H₂SO₄ (conc.) to I₂. The products obtained by reduction of H₂SO₄ are SO₂, S and H₂S (compounds of sulphur) and so they act as contaminants for the product.
- 44. (a,b) Both these are sub-oxides.
- 45. (a,c) In their reaction no oxygen is formed.
- **46.** (a,d) These are interstitial carbides.

🖸 📃 MATRIX-MATCH TYPE 🛾

1. A-r; B-s; C-q; D-p

 $CO \& N_2$ can be separated by bubbling through ammonical cuprous chloride in which CO is absorbed but not N_2 . $N_2 \& O_2$ can be separated by bubbling through alkaline solution of pyrogallol in which oxygen is absorbed but not N_2 . $NH_3 \& N_2$ can be separated by bubbling through H_2SO_4 when NH_3 is absorbed but not N_2 . Ammonia is recovered by heating the solution of $(NH_4)_2SO_4$ with excess of NaOH. $PH_3 \& NH_3$ can be separated by bubbling through water in which NH_3 dissolves but not PH_3 .

2. A-t; B-w; C-r; D-u

 Fe_2O_3 (Fe³⁺) is paramagnetic as it has unpaired electrons.

 $Pb(N_3)_2$ is used as an explosive. Cu is reduced from its sulphide Cu₂S by auto (self) reduction.

3. A-p; B-q, r; C-q, r; D-r, s

The acidic nature of oxides and hydroxides changes from acidic to basic through amphoteric (Al₂O₃, Ge₂O₃) from B to Tl.

Acidic nature B_2O_3 Al_2O_3 Ga_2O_3 In_2O_3 Tl_2O_3 nature $B(OH)_3$ Al(OH)₃ Ga(OH)₃ In(OH)₃ Tl(OH)₃ (acidic) (amphoteric) (amphoteric) (basic) (strong basic) Boric acid, $B(OH)_3$ is soluble in water as it accepts lone pair of electron to act as Lewis acid. Rest all hydroxides of group 13 are insoluble in water and form a gelatinous precipitate.

$$B(OH)_3 + H_2O \longrightarrow B(OH)_4^- + H^+$$

4. A-p, q, s; B-p, q; C-p, r; D-p, q, r, s

Name of the alloy	Approximate Composition	Uses
1. Magnalium	95% Al + 5% Mg	In the construction of airships,
		balances and pistons of motor
		engines.
2. Duralumin	95% Al + 4% Cu + 0.5% Mg	Aeroplanes and automobile parts,
	+ 0.5% Mn	as its strength of toughness is
		comparable to mild steels.
3. Nickeloy	95% Al + 4% Cu + 1% Ni	Aircrafts parts
4. Y-alloy	93% Al + 4% Cu + 2% Ni + 1% Mg	For making pistons and machinery
		parts.

5. A-p, s; B-p, r; C-q

BF₃ is a colourless gas, BCl₃ is a colourless fuming liquid (b.pt. 13°C) while BI₃ is a white fusible solid (m.pt. 310°C).

6. A-p; B-q, s; C-r; D-p, q

- (A) $Na_2B_4O_7 + NH_4Cl \longrightarrow 2BN + B_2O_3 + 2NaCl + 4H_2O_3$
- (B) $4NaH + 2B_2O_3 \longrightarrow NaBH_4 + 3NaBO_2$
- (C) $2B + 6NaOH \longrightarrow 2Na_3BO_3 + 3H_2 \uparrow$
- (D) $Na_2B_4O_7 \xrightarrow{\Delta} NaBO_2 + B_2O_3$

7. A-p, s; B-p, q, r, s; C-p, s; D-p, s

 $A \rightarrow H_2S$ decolourises acidified solution of KMnO₄

$$2KMnO_4 + 3H_2SO_4 + 5H_2S \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5S$$

The shape of the H_2S molecule is similar to that of the water molecule i.e. V-shaped structure with bond length (H–S) 1.35Å and bond angle (H–S–H) 92.5° involving sp³ hybridization of S atom.

 $B \rightarrow SO_2$ undergoes disproportionation (oxidation of two molecules of the same compound at the expense of the third which is reduced) reaction.

$$3SO_2 \xrightarrow{\text{Heat}} 2SO_3 + S$$

Decolourises KMnO₄

$$5SO_2 + 2KMnO_4 + 2H_2O \longrightarrow K_2SO_4 + 2MnSO_4 + 2H_2SO_4$$

Sulphur dioxide acts as bleaching agent in the following way :

In the presence of water, it is oxidised with the liberation of nascent hydrogen which reduces the colouring matter to colourless.

$$SO_2 + 2H_2O \longrightarrow H_2SO_4 + 2[H]$$

Colouring matter
$$+ 2[H] \longrightarrow$$
 Colourless compound

Sulphur dioxide has a **planar triangular (V-shaped) structure** involving sp² hybridisation of the sulphur atom (sp² hybridisation occurs between $3s^23p_x^{-1}$ and $3p_y^{-1}$ electrons).

 $C \rightarrow NO_2$ undergoes decolourisation of KMnO₄

$$2KMnO_4 + 3H_2SO_4 + 10NO_2 + 2H_2O \longrightarrow K_2SO_4 + 2MnSO_4 + 10HNO_3$$

 NO_2 molecule has angular structure (V-shape) with O–N–O bond angle of about 132° and N–O distance of about 1.19Å which is intermediate between a single and a double bond.

 $D \rightarrow HNO_2 \text{ decolourises } KMnO_4: 2KMnO_4 + 3H_2SO_4 + 5HNO_2 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5HNO_3$

X-ray and Raman spectral studies indicate an angular structure for nitrite ion (NO_2^{-}) with O–N–O angle of 132° and bond length (N–O) of 1.13 Å.

8. A-p; B-p, q, r, s; C-p, q, s; D-q

Fluorine reacts with water readily even at low temperature and in dark forming mixture of O_2 and O_3 , Cl_2 decomposes water in presence of sunlight while bromine decomposes water very slowly in presence of sunlight. Iodine does not decompose water. Fluorine does not form poly halides while other halogens form poly halide e.g. I_3^- , Br_3^- and Cl_3^- ions. This is due to absence of d-orbitals in valence shell of fluorine and thus it cannot expand its octet.

595

 ${\rm Cl}_2$ helps in the extraction of Gold and Platinum.

9. A-t; B-r; C-p; D-p, q, s, r

$$PCl_{3} + 3H_{2}O \longrightarrow H_{3}PO_{3} + 3HCl$$

$$P_{4}O_{10} + 6H_{2}O \longrightarrow 4H_{3}PO_{4}$$

$$2H_{3}PO_{4} \longrightarrow H_{4}P_{2}O_{7} + H_{2}O$$

$$H_{3}PO_{4} \longrightarrow HPO_{3} + H_{2}O$$

$$meta-$$

$$H_{4}P_{2}O_{7} \longrightarrow 2HPO_{3} + H_{2}O$$

$$meta-$$

$$P_{4}O_{10} + 2H_{2}O \longrightarrow 4HPO_{3}$$

$$H_{2}PO_{2} + Br_{2} \longrightarrow HPO_{2} + 2HBr$$

10. A-p; B-p, s; C-q, r; D-q, r

Types of silicate	Structural formula	Number of oxygen atom(s) shared	Net charge
Island (Orthosilicate)	(SiO ₄) ⁴⁻	0	$Si = +4$ $O = -8$ $\overline{Net = -4}$
Island (Pyrosilicate)	(Si ₂ O ₇) ^{6–}	1	$Si = +8$ $O = -14$ $\overline{Net = -6}$
Single chain	(SiO ₃) ²⁻	2	Si = +4 O = -6
Ring	(SiO ₃) ²⁻	2	$\overline{Net = -2}$ $Si = +4$ $O = -6$ $\overline{Net = -2}$

11. A-r, s; B-s; C-q, t; D-p, q

$4\text{LiNO}_3 \xrightarrow{\Delta} 2\text{Li}_2\text{O} + 4\text{NO}_2 + \text{O}_2$	$2 \text{NaNO}_3 \xrightarrow{\Delta} 2 \text{NaNO}_2 + \text{O}_2$
$\rm NH_4NO_3 \xrightarrow{\Delta} \rm N_2O + 2H_2O$	$NH_4NO_2 \xrightarrow{\Delta} N_2 + 2H_2O$

12. A-r, s; B-s; C-p, q; D-p, q

(A) $H_4P_2O_7 \xrightarrow{\text{Heat}} 2HPO_3 + H_2O$. It also contains P - O - P bond.

(B)
$$H_3PO_4 \xrightarrow{\text{Heat}} HPO_3 + H_2O$$
 (C) $H - O - \overset{H}{\overset{}}_{\overset{}}{\overset{}}_{O}O - H$

(D) H_3PO_2 acts as a reducing agent.

13. A-q, r; B-p, r, s; C-q, r D-q, r, s

Hints: $4Li + 6HN_3 \longrightarrow 4LiN_3 + 2NH_3 + 2N_2$

In it one of the products (i.e., N_2) is diamagnetic . It is a redox reaction.

 $Mg + 2HNO_3 \xrightarrow{\text{cold}} Mg(NO_3)_2 + H_2$ (Dil)

In it H₂ (one of the products) is diamagnetic. It is a redox reaction.

 NO_3^{-} [present in Mg(NO₃)₂] gives ring test.

 $NH_4Cl(aq) + NaNO_2(aq) \longrightarrow N_2(g) + NaCl(aq) + 2H_2O(\ell)$

 N_2 (one of the products) is diamagnetic. It is a redox reaction.

 $3HNO_2 \longrightarrow HNO_3 + 2NO + H_2O$

NO (one of the products is paramagnetic)

It is a redox reaction.

NO₃⁻ (in HNO₃) gives brown ring test.

14. A-q, s; B-q, r; C-r; D-q

- (A) MgO is ionic in nature and has basic character.
- (B) Al_2O_3 is covalent in nature and is an amphoteric oxide.
- (C) SiO_2 is covalent compound
- (D) P_4O_{10} is covalent compound

[Note : Both SiO₂ and P₄O₁₀ are acidic in nature]

15. A-p, q; B-p, q, s; C-r; D-q

Silicates are chemically inert and they also exist in planar form silicons are chemically inert, exist in planar form and contain Si-O-Si bond.

In trimethylamine nitrogen is sp³ hybridised.

Trisilylamine exists in planar form.

16. A-q, r, s; B-p, r, s; C-p, q, r, s; D-p, q, r, s

 H_3PO_3 shows disproportionation and one of the products formed has tetrahedral hybridization where as the other product contains $p\pi$ -d π -bonding. PCl₅ gets hydrolysed in moist air.

17. A-p, r, s; B-s; C-p, r, s; D-q, r

NO is paramagnetic due to presence of unpaired electrons. It can act as an oxidising agent. It is formed when copper reacts with dil. HNO₃.

 $3Cu + 8HNO_3(dil) \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$

 N_2O_3 is formed when copper reacts with conc. HNO₃

 NO_2 is paramagnetic in nature as it contains seventeen electrons. It can act as an oxidising agent and is formed when copper reacts with conc. HNO₃.

 $Cu + 4HNO_3(conc.) \rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O_3$

 N_2O_5 is anhydride of HNO₃. It is formed when copper reacts with conc. HNO₃.

18. A-q; B-q, r; C-q; D-p, s

ClF₃ shows sp³d hybridisation of Cl.

 XeF_2 is linear molecule. In it Xe shows sp³d hybridisation.

 $XeOF_2$ shows sp³d hybridisation.

XeOF₄ shows sp³d² hybridisation and has square pyramidal shape.

 $\diamond \diamond \diamond$