CARBONYL COMPOUND

EXERCISE # O-I

Q.1	Arrange these	compounds in	decreasing order	of reactivity for	the nucleophilic attack:
-----	---------------	--------------	------------------	-------------------	--------------------------

- (I) Acid chloride
- (II) Aldehyde
- (III) Ketone
- (IV) Ester

Select the correct answer from the codes given below:

- (A) I > II > III > IV
- (B) IV > III > II > I
- (C) III > II > IV
- (D) I > IV > II > III

CL0001

Q.2 In the given reaction

$$\begin{array}{c} \text{O} \\ \text{II} \\ \text{CH}_3\text{-CH}_2\text{-C}\text{-CH}_2\text{COOC}_2\text{H}_5 \xrightarrow{[X]} \text{(A)} \xrightarrow{\text{(i) LiAlH}_4} \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-OH} + \text{C}_2\text{H}_5\text{OH} \\ \end{array}$$

[X] will be:

$$\begin{array}{ccc} \operatorname{CH_2} - \operatorname{OH} & \operatorname{CH_2} - \operatorname{OH} \\ | & | \\ (\operatorname{B}) \ \operatorname{CH_2} - \operatorname{OH} \ + \ \operatorname{H}^{\oplus} \end{array} (\operatorname{C}) \ \operatorname{CH_2} - \operatorname{OH} \ + \ \operatorname{OH} \end{array}$$

(D) HCN

CL0002

Q.3 In the given reaction:

$$C_6H_5 - C - H \xrightarrow{NH_2OH/H^{\oplus}} [X]$$

$$O$$

- [X] will be:
- (A) Only syn oxime

- (B) Only anti oxime
- (C) Mixture of syn and anti oxime
- (D) Secondary amide

CL0003

- Q.4 Acetophenone can be obtained by the distillation of:
 - $(A) (C_6H_5COO)_2Ca$

- (B) (CH₃COO)₂Ca
- (C) $(C_6H_5COO)_2Ca$ and $(CH_3COO)_2Ca$
- (D) (C₆H₅COO)₂Ca and (HCOO)₂Ca

CL0004

- Q.5 Gem dihalide on hydrolysis gives:
 - (A) Vic diol

(B) Gem diol

(C) Carbonyl compound

(D) Carboxylic acid

CL0005

- Q.6 Acetal or ketal is:
 - (A) Vic dialkoxy compound

(B) α, ω-dialkoxy compound

(C) α-alkoxy alcohol

(D) Gem dialkoxy compound

CL0006

- Q.7 Cross cannizzaro reaction is example of :
 - (A) Redox reaction

(B) Disproportionation

(C) Both (A) and (B)

(D) Only oxidation

CH₂OH

Q.8 Acetaldehyde can be converted into HOCH₂ – C – CH₂OH by which reagent? CH₂OH

(A) KOH

- (B) KOH followed by LAH
- (C) excess of HCHO and KOH
- (D) KCN followed by SBH

CL0008

Q.9 Which one of the combinations will give propanaldehyde on dry distillation?

- (A) (C₆H₅COO)₂Ca and (HCOO)₂Ca
- (B) (CH₃COO)₂Ca and (CH₃CH₂-COO)₂Ca
- (C) (CH₃-CH₂-COO)₂Ca and (HCOO)₂Ca (D) (CH₃COO)₂Ca and (CH₃COO)₂Ca

CL0009

Q.10 In the given reaction:

$$\begin{array}{c|c}
O \\
| \\
CH_3 - C - CH_3 \xrightarrow{Conc.H_2SO_4} & [X]
\end{array}$$

- [X] will be:
- (A) Methyl oxide

(B) Phorone

(C) 1, 3, 5-Trimethylbenzene

(D) 2-Butyne

CL0010

Q.11 Grignard reagents can not give carbonyl compounds with:

- (A) CO₂
- (B) RCOCl
- (C) RCN
- (D) RCOOR

CL0011

Q.12 The product of the reaction:

will be:

(A)
$$C_6H_5$$
-CH =CH-COOH

(B)
$$NO_2$$
 CH=CH-COOH

(C)
$$C_6H_5 - CH = C - COOH$$

 CH_3

(D)
$$NO_2$$
 \leftarrow $CH = C - COOH$
 $C_{\varepsilon}H_{\varepsilon}$

CL0012

Q.13 Cyanohydrin of which compound on hydrolysis will give lactic acid?

- (A) C_6H_5CHO
- (B) HCHO
- (C) CH₃CHO
- (D) CH₃-CH₂-CHO

Q.14 In the given reaction:

$$\text{H}_2\text{C} \xrightarrow{\text{NaBH}_4} \text{(X)} \xrightarrow{\text{(i) BH}_3} \text{(ii) H}_2\text{O/H}^+\text{(excess)} \\ \text{(Y)}$$

(X) and (Y) are:

(A)
$$CH_2 = \bigcirc$$
 OH and HO $CH_2 = \bigcirc$ O

(B)
$$CH_3$$
 \bigcirc O and $HO CH_2$ \bigcirc \bigcirc O

(C)
$$CH_2 = \bigcirc OH$$
 and $CH_3 = \bigcirc OH$

(D)
$$CH_2$$
 —OH and CH_3 —OH

CL0014

Q.15 Acetaldehyde cannot give:

- (A) Iodoform test
- (B) Lucas test
- (C) Benedict test
- (D) Tollens test

CL0015

Q.16 Compound
$$\bigcirc$$
 OCH₂CH₃ formed by the reaction of furfural (\bigcirc CHO) with ethanol is :

- (A) an aldol
- (B) an acetal
- (C) a ketal
- (D) a hemiacetal

CL0016

Q.17
$$\underbrace{\begin{array}{c} O \\ \hline (1) \text{ NaBH}_4 \\ \hline (2) \text{ H}_2\text{O} \end{array}} A + I$$

Identify relationship between A & B products?

- (A) Diastereoisomers
- (B) Enantiomers
- (C) Positional isomer (D) Identical

CL0017

Q.18 Which of the following does not form a stable hydrate by the addition of H₂O?

(A)
$$Ph$$
— C — C — C — Ph (B) \bigcirc (C) \bigcirc (D)

Q.19 The conversion

can be effected by using the reagent

(A) Tollen's reagent (B) O₃

$$(C)$$
 Cl CO_2H (D) Cl CO_3H

CL0019

Q.20 (I)
$$\begin{array}{c} O \\ + Cl_2 \\ \hline 1 \\ \text{(mole)} \end{array} \rightarrow P$$

(II)
$$\begin{array}{c} O \\ + Cl_2 \\ \hline 1 \\ \text{(mole)} \end{array} + Cl_2 \xrightarrow{\text{CH}_3\text{COOH}} Q$$

Organic product P & Q are respectively -

$$(B)$$
 Cl Cl Cl

$$(C)$$
 CI CI CI

$$(D) \stackrel{Cl}{Cl} \qquad \qquad Cl \qquad Cl$$

CL0020

Q.21 Total number of stereoisomers of major product (Q) are :

$$\text{CH}_3\text{-CHO} + 4\text{HCHO} \xrightarrow{\text{NaOH}} (\text{P}) \xrightarrow{\text{2CH}_3\text{-CHO}} (\text{Q})$$

(A) 0

(B) 4

(C) 8

(D) 2

Q.22 An organic compound (A), C₅H₁₀O, reacts with hydrazine to form a hydrazone derivative (B). The hydrazone (B) on being heated with KOH at about 180°C, gives n-pentane. The compound (A) does not respond positively to Tollen's reagent and to the iodoform test. The compound (A) is

$$(A) \bigvee_{H} (B) \bigvee_{C} (C) \bigvee_{C} (D) \bigvee_{C} (D)$$

CL0022

Q.23 The compound having the highest dipole moment is:

$$(A) \bigcirc O \qquad (B) \bigcirc O \qquad (C) \bigcirc O \qquad (D) \bigcirc O \qquad CL0023$$

Q.24
$$\xrightarrow{O}$$
 $\xrightarrow{(1) \text{ Excess MeMgCl}}$ (A) $\xrightarrow{\text{conc.}}$ 'B' Identify 'B' product?

$$(A) \bigcirc O \qquad (B) \bigcirc O \qquad (C) \bigcirc O \qquad (D) \bigcirc O$$

CL0024

Question No. 25 to 27 (3 questions)

An alkene (A) $C_{16}H_{16}$ on ozonolysis gives only product (B) C_8H_8O . (B) also can be obtained by hydrolysis of the product obtained by reaction between cyano benzene and CH_3MgBr . (A) can show geometrical isomerism and it can decolourise Br_2 water. (B) on treatment with SeO_2 produces (C)

- Q.25 Which is not correct about (A)?
 - (A) A is optically inactive
 - (B) On catalytic hydrogenation 'trans' form of A produces racemic mixture
 - (C) A can be prepared by Witting reaction on acetophenone with $Ph_3P = C(CH_3)Ph$.
 - (D) On treatment with per acid followed by hydrolysis 'trans' form of A produces racemic mixture

CL0025

- Q.26 Which is not correct about B?
 - (A) It gives iodoform test
 - (B) On treatment with LiAlH₄, H₂O it produces a compound which also responds to iodoform test.
 - (C) It gives Tollen's test
 - (D) On treatment with $\mathrm{NH_2NH_2}$ followed by alc. KOH at high temperature, it produces ethyl benzene

CL0026

- Q.27 Which is not correct about C?
 - (A) On treatment with NaBH₄ it will produce a diol.
 - (B) On treatment with OH⁻ (conc.) followed by acidification racemic mixture of a carboxylic acid is obtained
 - (C) It gives Tollen's test
 - (D) It can take part in aldol condensation

(Question No. 28 & 29)

Questions given below consist of two statements each printed as Assertion (A) and Reason (R); while answering these questions you are required to choose any one of the following four responses:

- (A) If both (A) and (R) are true and (R) is the correct explanation of (A)
- (B) If both (A) and (R) are true but (R) is not correct explanation of (A)
- (C) If (A) is true but (R) is false
- (D) If (A) is false and (R) is true
- Q.28 **Assertion**: Benzaldehyde with HCN gives two isomeric compounds

Reason: Both nitrile and isonitrile compounds are possible when HCN reacts with carbonyl group.

CL0028

Q.29 **Assertion :**
$$Cl_3C - C - H \xrightarrow{NaOH} Cl_3C - CH_2OH + Cl_3C - COONa$$

Reason : There are no α -H in this compound, so it can't give aldol.

EXERCISE # O-II

- Q.1 Two isomeric ketones, 3-pentanone and 2-pentanone can be distinguished by:
 - (A) I_2 / NaOH
- (B)NaSO₃H
- (C) NaCN / HCl
- (D) 2,4-DNP

CL0030

- Q.2 An optically inactive alcohol (A) C₆H₁₂O is oxidized by MnO₂ to produce optically inactive carbonyl compound while reduction of (A) by H₂/Ni produces optically active compound. Possible structure(s) of alcohol is/are
 - (A) Hex-2-ene-1-ol

- (B) Hex-3-ene-2- ol
- (C) 2-Methyl pent-2 ene-1-ol
- (D) 3-Methyl pent-2 ene-1-ol

CL0031

Q.3 Consider the structure of given alcohol:

$$\begin{matrix} \text{OH} \\ \text{C}_{6}\text{H}_{5} - \overset{|}{\text{C}} - \text{CH}_{3} \\ \text{C}_{2}\text{H}_{5} \end{matrix}$$

This alcohol can be prepared from:

CL0032

- Q.4 Which of the following compounds will not give ald ol condensation:
 - (A) Acetaldehyde
- (B) Formaldehyde
- (C) Pivaldehyde
- (D) Crotonaldehyde

CL0033

Q.5 (A)
$$\xrightarrow{\text{(i) Ph}_3P}$$
 CH-CH₃

In above reaction (A) and (B) will respectively be

(A)
$$\langle CI \rangle$$
 CI & CH₃CHO

(B)
$$CH_3CH_2Cl$$
 &

(C)
$$\left\langle \begin{array}{c} \text{Cl} \\ \text{CH}_3 \end{array} \right\rangle$$
 & HCHO

Q.6 Stability of hydrates of carbonyl compounds depends on:

(A) Steric hindrance

- (B) Presence of –I group on gemdiol carbon
- (C) Intramolecular hydrogen bonding
- (D) angle strain in carbonyl compound

CL0035

Q.7 Which of the following can be used for protection of carbonyl group

(A) $CH_2OH-CH_2OH / H^{\oplus}$

(B) $CH_2OH-CH_2-CH_2OH / H^{\oplus}$

(C) $HS-(CH_2)_3-SH$

(D) CH₂OH-CH₂-CHO

CL0036

Q.8 Which of the following(s) will form stable hemiketal:

$$\begin{matrix} O \\ || \\ (A) \ Ph - C - Ph \end{matrix}$$

O
$$| | |$$
(B) $HO-(CH_2)_3-C-CH_3$

$$\begin{array}{c} O \\ || \\ (C) \ CH_2OH - C - (CHOH)_3 - CH_2 - OH \end{array}$$
 (D) $H_3C - O - CH_2 - CH_2 - CH_2 - C - CH_3$

CL0037

Q.9 Mixture of Ph–CHO & HCHO is treated with NaOH then Cannizzaro reaction involves:

(A) Oxidation of HCHO

(B) Reduction of HCHO

(C) Oxidation of Ph-CHO

(D) Reduction of Ph-CHO

CL0038

Q.10 Final product in the given reaction sequence is:

$$CH_{3}-C \equiv CH \xrightarrow{PhMgBr} \bigcirc + [A] \xrightarrow{i) H-C-H} [B] \xrightarrow{H_{2}} [C]$$

$$(A) \underset{H}{\longrightarrow} OH \qquad (B) \underset{H}{\longrightarrow} OH \qquad (C) \underset{H}{\longrightarrow} OH \qquad (D) \underset{H}{\longrightarrow} OH$$

CL0039

Q.11 Consider the following sequence of reactions.

The major product (B) is:

CL0040

Q.12 In the reaction

$$(CH_3)_2CHNO_2 + HCHO \xrightarrow{NaOH}$$

the major product is

(B)
$$(CH_3)_2C$$
 NO_2
 CH_2OH

(C)
$$(CH_3)_2CH$$
— $CHNO_2$

CL0041

Q.13 Consider the following sequence of reactions.

Ketone A
$$\xrightarrow{1. C_2H_5MgBr}$$
 B $\xrightarrow{H_2SO_4, \text{ heat}}$ C $\xrightarrow{1. O_3}$ $\xrightarrow{H_2O}$

The ketone (A) is:

CL0042

Q.14 Which of the following reactions will give(s) 2° alcohol as a major product:

(A)
$$CH_3$$
— CH_2 — C — NH_2 $\xrightarrow{(i)}$ LAH (B) H — C — OR $\xrightarrow{(i)}$ $CH_3MgX(excess)$ $\xrightarrow{(ii)}$ H

(B) H—C—OR
$$\xrightarrow{\text{(i) CH}_3\text{MgX(excess)}}$$

(C)
$$H_3C$$
— HC — $CH_2 \xrightarrow{(i) RMgX}$

(D)
$$CH_3$$
— C — $Cl \xrightarrow{CH_3MgX \text{ (excess)}} H^+$

CL0043

Q.15 Match list-I with list-II:

List - I

$$(A) \xrightarrow{O} \xrightarrow{NaBH_4}$$

(B)
$$C_6H_5CHO + Ph-NH_2 \xrightarrow{H^{\oplus}}$$

(C)
$$C_6H_5COCH_3+CH_3-CH_2-NH_2 \xrightarrow{H^{\oplus}}$$

(D) RCHO + 2RCH₂OH
$$\xrightarrow{H^{\oplus}}$$

(S) Imine

EXERCISE # S-I

Q.1 Column - I

$$(A) \xrightarrow[\text{traces of KOH}]{} \xrightarrow[\text{traces of KOH}]{} (A) \xrightarrow[\text{LiAlH}_4]{} \times (B) \xrightarrow[\text{HCI}]{} \xrightarrow[\text{NaNO}_2]{} \times (C)$$

(P) Formation of six member ring takes place

(B)
$$\xrightarrow{\text{(1) Mg-Hg}} \text{(A)} \xrightarrow{\text{Conc. H}_2\text{SO}_4} \text{(B)}$$

(Q) Final product is Ketone

Column - II

(C)
$$CH_3 - C - CH_2 - CH_2 - CH_2 - C - H \xrightarrow{HO^{\Theta}} (A)$$

(R) Final product formed will give positive Idoform test

(D)
$$CH_3 \xrightarrow{H^{\oplus}} (A)$$
 OH OH

(S) Final product formed will react with 2,4-DNP. (2,4-Di-nitrophenyl hydrazine)

CL0045

Q.2 Arrange the following compounds in decreasing order of K_{eq} for hydrate formation.

$$(1) C_{6}H_{5}COCH_{3} (2) CI - CH_{3} (3) NO_{2} - C-CH_{3} (4) CH_{3} - C-CH_{3}$$

CL0046

Paragraph for Q. 03 to 04

Two reactions which are example of nucleophilic attack are given as below.

Reaction - I:
$$R_1$$
 $C = O + HCN \xrightarrow{pH = x}$

- Q.3 Value of x is:
 - (A) $x \le 4.5$
- (B) x = 6
- (C) x > 7
- (D) Can't decide

CL0047

Q.4 Value of y is:

- (A) x = 4.5
- (B) x = 1.5
- (C) x = 7
- (D) x = 9

CL0047

Q.5 Some Grignard reagents react with ethyl orthoformate, followed by acidic hydrolysis, to give aldehydes. Propose mechanisms for the two steps in this synthesis.

Q.6 A synthesis that begins with 3,3-dimethyl-2-butanone gives the epoxide shown. Suggest reagents appropriate for each step in the synthesis.

$$(CH_3)_3CCCH_3 \xrightarrow{58\%} (CH_3)_3CCCH_2Br \xrightarrow{54\%} (CH_3)_3CCHCH_2Br \xrightarrow{68\%} (CH_3)_3CC \xrightarrow{CH_2} CH_2$$

Q.7 Predict the organic products:

$$(a) CH_{3} - C - CH_{3} + CH_{3} - CH_{2} - NH_{2} \xrightarrow{\text{(i) } H^{+}/\Delta \\ \text{(ii) } H_{2}/Pt}}$$

$$(b) \overbrace{\bigcirc{^{\text{CH}_2-\,\text{CH}_2-\,\text{CH}_2-\,\text{NH}_2}}_{O}}^{\text{CH}_2-\,\text{CH}_2-\,\text{CH}_2-\,\text{NH}_2} \xrightarrow{\text{(i) } H^+/\Delta \atop \text{(ii) } H_2/\text{Pt}}}$$

$$(c) \underbrace{ \bigcap_{O} - CH_3 \xrightarrow{\quad (i) \quad Cl_2 / NaOH / HOH \quad}}_{\quad (ii) \quad \overset{@}{H}} z$$

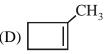
CL0050

Paragraph for Q.No.8 to 9

A(Hydrocarbon) (C \Rightarrow 88.24%) [Molecular weight of A = 68]

A
$$\frac{\text{(i) Na}}{\text{(ii) n-propyl bromide}} \rightarrow \text{B} (\text{C}_8\text{H}_{14})$$

$$A \xrightarrow{Hg^{2+}} C_5 H_{10} O (C)$$

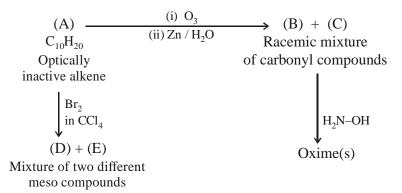

$$A \xrightarrow{KMnO_4} Carboxylic acid + Gas$$

Q.8 'A' can be:

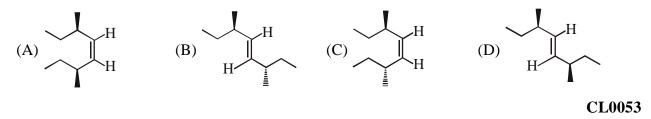
(A)
$$H_3C-H_2C-C\equiv C-CH_3$$

(B)
$$CH_3-CH_2-CH_2-C\equiv C-H$$

(C)
$$CH_3$$
— CH — $C\equiv CH$
 CH_3


CL0051

- Q.9 Correct statement reagarding C is.
 - (A) C reacts with fehling solution to give red ppt.
 - (B) C gives +ve iodoform test
 - (C) C give -ve 2, 4, D.N.P test
 - (D) C is aldehyde


Q.10 Show how you would accomplish the following syntheses efficiently and in good yield. You may use any necessary reagents.

Paragraph for Q.No. 11 to 12

In given reaction sequence

11. Alkene A is:

12. How many total oxime(s) is/are obtained

(A) 1 (B) 2 (C) 3 (D) 4

CL0061

EXERCISE # (MAINS)

1.	When $CH_2 = CH - C$	OOH is reduced with L	$iAlH_4$, the compoun	nd obtained will	be -		
	(1) $CH_3-CH_2-CH_2$	OH	$(2) CH_3-CH_2-CI$	[AIEEE-2003]			
	(3) CH3-CH2-COC	Н	(4) $CH_2 = CH - CH$	I ₂ OH			
					CL0054		
2.		llowing undergoes reac	tion with 50% sodiu	ım hydroxide so	_		
	corresponding alcoh				[AIEEE-2004]		
	(1) Phenol	(2) Benzaldehyde	(3) Butanal	(4) Benzoi			
3.	Which one of the fo	llowing is reduced with	Zn-Hg/HCl to give	the correspondi	CL0055 ng hydrocarbon [AIEEE-2004]		
	(1) Butan-2-one	(2) Acetic acid	(3) Acetamide	(4) Ethyl a	cetate		
					CL0056		
4.	On mixing ethyl ace	tate with aqueous sodium	m chloride, the comp	osition of the re	sultant solution is		
	(1) $CH_3COOC_2H_5$	+ NaCl	(2) CH ₃ COONa	+ C ₂ H ₅ OH	[AIEEE-2004]		
	$(3) CH_3COCl + C_2$	H ₅ OH + NaOH	(4) CH3Cl + C2H	I ₅ COONa			
					CL0057		
5.	The best reagent to	convert pent-3-en-2-o	l into pent –3–en –2-	-one is -	[AIEEE-2005]		
	(1) Acidic dichroma	te	(2) Acidic permanganate				
	(3) Pyridinium chlor	o-chromate	(4) Chromic anhy	dride in glacial	acetic acid		
	·		-	_	CL0058		
6.	Rate of the reaction-				[AIEEE-2005]		
	$R - C \setminus X + Nu$	$P \longrightarrow R - C < Nu$	χ^Θ				
	is fastest when X is	-					
	(1) NH ₂	(2) Cl	(3) OCOR	$(4) OC_2H_5$			
_	4 (1)			.• • • •	CL0059		
7.		g the one that gives posi			-		
	(1) $CH_3CH_2CH(OH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3C$	CH ₂ CH ₃	$(2) C_6H_5CH_2CH_2$	ОП	[AIEEE-2006]		
	(3) H_3C CH_3		(4) PhCHOHCH				
	OH		(+) I heriorien	3			
					CL0060		
8.	In the following seq	uence of reactions					
	$CH_3CH_2OH_2$	$A \xrightarrow{\text{Il}_2} A \xrightarrow{\text{Mg}} B \xrightarrow{\text{HCHO}} C -$	$\xrightarrow{H_2O}$ D, then compositely	und 'D' is -	[AIEEE-2007]		
	(1) Butanal		(2) n–Butyl alcoh	ol			
	(3) n–Propyl alcoho	I	(4) Propanal				

9.	In the following sequence of reactions, the alkene affords the compound 'B':- [AIEEE-2008]									
	CH ₃ CH = CHCI	$H_3 \xrightarrow{O_3} A \xrightarrow{H_2O} H_3$	→ B.							
	The compound B is									
	•	(2) CH ₂ COCH ₂	(3) CH ₃ CH ₂ COCH	, (4) CH,CHO						
	3 2	3 3	3 2	CL006	2					
10.	Bakelite is obtained to	from phenol by reactin	g with	[AIEEE-2008]						
	$(1) (CH_2OH)_2$	(2) CH ₃ CHO	(3) CH ₃ COCH ₃	(4) HCHO						
				CL006	3					
11.	Which of the following	ing on heating with aq	ueous KOH, produces	acetaldehyde ? [AIEEE-2009]						
	(1) CH ₂ ClCH ₂ Cl	(2) CH_3CHCl_2	(3) CH ₃ COCl	(4) CH ₃ CH ₂ Cl						
				CL006	4					
12.	In Cannizzaro reaction	on given below :-		[AIEEE-2009]						
		CH OH → PbCO [⊖]								
		$2\text{PhCHO} \xrightarrow{: \overset{\ominus}{\circ} H} \text{PhCH}_2\text{OH} + \text{PhCO}_2^{\ominus}$								
	-	the slowest step is :-								
		(1) The abstraction of proton from the carboxylic group								
	(2) The deprotonation of PhCH ₂ OH									
	(3) The attack of : OH at the carboxyl group									
	(4) The transfer of h	ydride to the carbonyl	group							
				CL006	5					
13.	One mole of a symmetrical alkene on ozonolysis gives two moles of an aldehyde having a molecular mass of 44 u. The alkene is :- [AIEEE-2010]									
	(1) Ethene	(2) Propene	(3) 1-Butene	(4) 2-Butene						
				CL006	6					
14.	Ozonolysis of an org presence of :-	anic compound gives f	Formaldehyde as one of	the products. This confirms th [AIEEE-2011]						
	(1) An isopropyl gro	up	(2) An acetylenic triple bond							
	(3) Two ethylenic do	ouble bonds	(4) A vinyl group							
				CL006	7					
15.	Ozonolysis of an organic compound 'A' produces acetone and propional dehyde in equimolar mixture.									
	Identify 'A' from the	[AIEEE-2011]								
	(1) 2-Methyl - 1- per	ntene	(2) 1-Pentene							
	(3) 2-Pentene		(4) 2-Methyl-2-pen	ene						
				CL006	8					

16. Trichloroacetaldehyde was subjected to assumed Cannizzaro's reaction by using NaOH. The mixture of the products contains sodium trichloroacetate and another compound. The other compound is:-[AIEEE-2011] (1) 2,2,2–Trichloropropanol (2) Chloroform (3) 2,2,2–Trichloroethanol (4) Trichloromethanol CL0069

17. Silver Mirror test is given by which one of the following compounds? [AIEEE-2011]

(1) Formaldehyde

(2) Benzophenone

(3) Acetaldehyde

(4) Acetone

CL0070

In the given transformation, which of the following is the most appropriate reagent? [AIEEE-2012] **18.**

(1) NaBH₄

(2) NH_2 NH_2 , $\stackrel{\odot}{O}H$ (3) Zn-Hg / HCl (4) Na, $Liq.NH_3$

CL0071

19. Iodoform can be prepared from all except :- [AIEEE-2012]

(1) Isobutyl alcohol

(2) Ethyl methyl ketone

(3) Isopropyl alcohol

(4) 3-Methyl-2-butanone

CL0072

The major organic compound formed by the reaction of 1, 1, 1–trichloroethane with silver powder 20. is:-[JEE(Main)-2014]

(1) 2-Butyne

(2) 2-Butene

(3) Acetylen

(4) Ethene

CL0073

21. The most suitable reagent for the conversion of $R - CH_2 - OH \rightarrow R - CHO$ is :-

[JEE(Main)-2014]

(1) CrO₃

(2) PCC (Pyridinium chlorochromate)

(3) $KMNO_4$

(4) K₂Cr₂O₇

CL0074

22. A compound A with molecular formula C₁₀H₁₃Cl gives a white precipitate on adding silver nitrate solution. A on reacting with alcoholic KOH gives compound B as the main product. B on ozonolysis gives C and D. C gives Cannizaro reaction but not aldol condensation. D gives aldol condensation but not Cannizaro reaction. A is: [JEE(Main)-2015]

(2)
$$C_6H_5-CH_2-C$$
 CH_3
 CH_3

(3) $C_6H_5-CH_2-CH_2-CH_2-CH_2-CI$

23. In the reaction sequence

[JEE(Main)-2015]

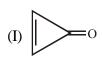
 $2CH_3CHO \xrightarrow{OH^-} A \xrightarrow{\Delta} B$; the product B is:-

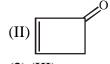
(1) CH₃-CH=CH-CHO

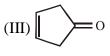
- (2) CH₃-CH₂-CH₂-CH₃
- (3) CH₃-CH₂-CH₂-CH₂-OH
- O || (4) CH₃-C-CH₃

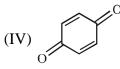
CL0076

24. Which compound would give 5-keto-2-methyl hexanal upon ozonlysis? [JEE(Main) 2015]


CL0077


25. The correct sequence of reagents for the following conversion will be :- [JEE(Main)-2017]


- (1) [Ag(NH₃)₂]⁺ OH⁻, H⁺/CH₃OH, CH₃MgBr
- (2) CH₃MgBr, H⁺/CH₃OH, [Ag(NH₃)₂]⁺ OH⁻
- (3) CH₃MgBr, [Ag(NH₃)₂]⁺ OH⁻, H⁺/CH₃OH
- (4) $[Ag(NH_3)_2]^+ OH^-, CH_3MgBr, H^+/CH_3OH$


CL0078

26. Which of the following compounds will show highest dipole moment? [JEE(Main-on-line)-2017]

(1)(II)

(2) (III)

(3)(I)

(4) (IV)

27. Glucose on prolonged heating with HI gives :

[JEE(Main)-2018]

- (1) 1-Hexene
- (2) Hexanoic acid
- (3) 6-iodohexanal
- (4) n-Hexane

CL0080

CL0079

- **28.** Which of the following compounds will most readily be dehydrated to give alkene under acidic condition? [JEE(Main-on-line)-2018]
 - (1) 4-Hydroxypentan-2-one

(2) 2-Hydroxycyclopentanone

(3) 3-Hydroxypentan-2-one

(4) 1-Pentanol

29. The major product of the following reaction is:

[JEE-Main(January)-2019]

OEt
$$\xrightarrow{\text{(i) Ni/H}_2}$$
 CN $\xrightarrow{\text{(ii) DIBAL-H}}$ OH CHO (2) $\stackrel{\text{NH}}{\bigcirc}$ (3) $\stackrel{\text{NH}}{\bigcirc}$ (4) $\stackrel{\text{OH}}{\bigcirc}$ NH₂

CL0082

30. In the following reaction

[JEE-Main(January)-2019]

$$\begin{array}{ccc} \text{Aldehyde} & + \text{Alcohol} & \xrightarrow{\text{HCl}} & \text{Acetal} \\ \text{Aldehyde} & & \text{Alcohol} \\ \text{HCHO} & & ^{\text{t}}\!\!\text{BuOH} \\ \text{CH}_3\text{CHO} & & \text{MeOH} \end{array}$$

The best combinations is:

(1) HCHO and MeOH (2) HCHO and ^tBuOH (3) CH₃CHO and MeOH (4) CH₃CHO and ^tBuOH

CL0083

31. The aldehydes which will not form Grignard product with one equivalent Grignard reagents are : **[JEE-Main(January)-2019]**

(A)
$$CHO$$

(B) HO_2C

(CHO) CHO

(D) CHO

(1) (B), (C), (D)

(2) (B), (D)

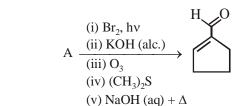
(3) (B), (C)

(4) (C), (D)

CL0084

32. An unsaturated hydrocarbon X absorbs two hydrogen molecules on catalytic hydrogenattion, and also gives following reaction: [JEE-Main(Jan)-2020]

$$X \xrightarrow[\text{Zn/H}_2O]{O_3} A \xrightarrow{\left[\text{Ag(NH}_3)_2\right]^+}$$


B(3-oxo-hexanedicarboxylic acid)

X will be :-

$$(1) \qquad \qquad (2) \qquad \qquad (3) \qquad \qquad (4) \qquad \qquad (4) \qquad \qquad (4) \qquad \qquad (5)$$

33. In the following reaction A is:

[JEE-Main(Jan)-2020]

CL0086

34. Consider the following reactions

$$A \xrightarrow{(i)CH_3MgBr} B \xrightarrow{Cu} 2$$
-methyl

2-butene

The mass percentage of carbon in A is _____.

CL0087

35. Identify (A) in the following reaction sequence :

[JEE-Main(Jan)-2020]

[JEE-Main(Jan)-2020]

(A)
$$\xrightarrow{\text{(i) } \text{CH}_3\text{MgBr}}$$
 (B) $\xrightarrow{\text{O}_3/\text{Zn, H}_2\text{O}}$ (B) $\xrightarrow{\text{O}_3/\text{Zn, H}_2\text{O}}$ (B) $\xrightarrow{\text{O}_3/\text{Zn, H}_2\text{O}}$ (B) $\xrightarrow{\text{CO}_3/\text{Zn, H}_2\text{O}}$ (B) $\xrightarrow{\text{CO}_3/\text{Zn, H}_2\text{O}}$ (B) $\xrightarrow{\text{CO}_3/\text{Zn, H}_2\text{O}}$ (B) $\xrightarrow{\text{CO}_3/\text{Zn, H}_2\text{O}}$ (CH₃) $\xrightarrow{\text{CO}_3/\text{Zn, H}_2\text{O}}$ (B) $\xrightarrow{\text{CO}_3/\text{Zn, H}_2\text{O}}$ (CH₃) $\xrightarrow{\text{CO}_3/\text{Zn, H}_2\text{O}}$ (CH₃) $\xrightarrow{\text{CO}_3/\text{Zn, H}_2\text{O}}$ (CH₃) $\xrightarrow{\text{CO}_3/\text{Zn, H}_2\text{O}}$ (B) $\xrightarrow{\text{CO}_3/\text{Zn, H}_2\text{O}}$ (CH₃) $\xrightarrow{\text{CO}_3/\text{Zn, H}_2\text{O}}$

$$(1) \bigcirc CH_3$$

$$(2) \bigcirc CH_3$$

$$(3) \bigcirc CH_3$$

$$(4) \bigcirc CH_3$$

$$(4) \bigcirc CH_3$$

CL0088

36. The major product (Y) in the following reactions is :

[JEE-Main(Jan)-2020]

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} - \text{CH} - \text{C} \equiv \text{CH} \xrightarrow{\text{HgSO}_{4}, \text{H}_{2}\text{SO}_{4}} \rightarrow \text{X} \xrightarrow{\text{(i)C}_{2}\text{H}_{3}\text{MgBr}, \text{H}_{2}\text{O}} \rightarrow \text{Y} \\ \text{(1)} \text{ H}_{3}\text{C} - \text{C} - \text{CH} - \text{CH}_{3} \\ \text{C}_{2}\text{H}_{5} \\ \text{(2)} \text{ CH}_{3} - \text{CH} - \text{C} = \text{CH} - \text{CH}_{3} \\ \text{C}_{2}\text{H}_{5} \\ \text{(3)} \end{array}$$

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} - \text{CH} - \text{C} = \text{CH} - \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} - \text{CH} - \text{C} = \text{CH}_{2} \\ \text{CH}_{2}\text{CH}_{3} \\ \end{array}$$

$$(4) \text{ CH}_{3} - \text{CH} - \text{C} = \text{CH}_{2} \\ \text{CH}_{2}\text{CH}_{3} \\ \end{array}$$

EXERCISE-(IIT QUESTIONS)

Q.1 Which of the following has the most acidic hydrogen:

[IIT 2000]

- (A) 3-hexanone
- (B) 2,4-hexanedione
- (C) 2,5-hexanedione
- (D) 2,3-hexandione

CL0090

- Q.2 A mixture of benzaldehyde and formaldehyde on heating with aqueous NaOH solution gives:
 - (A) benzyl alcohol and sodium formate
 - (B) sodium benzoate and methyl alcohol
 - (C) sodium benzoate and sodium formate
 - (D) benzyl alcohol and methyl alcohol [IIT 2001]

CL0091

Q.3 1-propanol & 2-propanol can be best distinguished by:

[IIT 2001]

- (A) Oxidation with alkaline KMnO₄ followed by reaction with Fehling solution
- (B) Oxidation with acidic dichromate followed by reaction with Fehling solution
- (C) Oxidation by heating with copper followed by reaction with Fehling solution
- (D) Oxidation with concentrated H₂SO₄ followed by reaction with Fehling solution

CL0092

- Q.4 Compound A (molecular formula C₃H₈O) is treated with acidified potassium dichromate to form a product B (molecular formula C₃H₆O). B forms a shining silver mirror on warming with ammonical silver nitrate. B when treated with an aqueous solution of H₂NCONHNH₂. HCl and sodium acetate gives a product C. Identify the structure of C. [IIT 2002]
 - (A) $CH_3CH_2CH = NNHCONH_2$

(B)
$$CH_3 - C = NNHCONH_2$$

 CH_3

(C)
$$CH_3 - C = NCONHNH_2$$

 CH_3

(D) $CH_3CH_2CH=NCONHNH_2$

Q.5
$$(i) \text{ NaOH(excess)} 100^{\circ}\text{C}$$

$$(i) \text{ NaOH(excess)} 100^{\circ}\text{C}$$

$$(ii) \text{ H}^{+}/\text{H}_{2}\text{O}$$
[IIT 2003]

any one of the products formed is:

(A)
$$(B)$$
 (CH_2OH) (CH_2OH)

$$(C)$$
 CH_2OH
 $COOH$
 CH_2OH
 $COOH$
 CH_2OH
 $COOH$
 CH_2OH
 $COOH$
 CH_2OH

CL0094

Q.6
$$\xrightarrow{\text{OCOCH}_3}$$
 $\xrightarrow{\text{Acidic}}$ Products formed by P & Q can be differentiated by: [IIT 2003]

(A) 2, 4 DNP

(B) Lucas reagent (ZnCl₂) conc. HCl

(C) NaHSO₃

(D) Fehlings solution

CL0095

Q.7 The order of reactivity of phenyl Magnesium Bromide with the following compounds is [IIT 2004]

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CII
 CII
 CII
 CII

- (A) II > III > I
- (B) I > III > II
- (C) II > I > III
- (D) All react with the same rate

CL0096

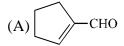
Q.8
$$\xrightarrow{\text{CHO}}$$
 + X $\xrightarrow{\text{CH}_3\text{COONa}}$ $\xrightarrow{\text{MeO}}$ [IIT 2005]

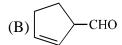
What is X?

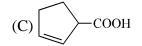
(A) CH₃COOH

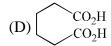
(B) BrCH₂, COOH

(C) (CH₃CO)₂O


(D) CHO-COOH


- Q.9 The smallest ketone and its next homologue are reacted with NH₂OH to form oxime.
 - (A) Two different oximes are formed
- (B) Three different oximes are formed
- (C) Two oximes are optically active
- (D) All oximes are optically active


[IIT 2006] CL0098


Q.10 Cyclohexene on ozonolysis followed by reaction with zinc dust and water gives compound E. Compound E on further treatment with aqueous KOH yields compound F. Compound F is

[IIT-JEE(ADV.)- 2007]

CL0099

Q.11 **Statement-1**: Glucose gives a reddish-brown precipitate with Fehling's solution.

because

Statement-2: Reaction of glucose with Fehling's solution gives CuO and gluconic acid.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.

[IIT-JEE(ADV.)- 2007]

CL0100

Q.12 Match the compounds/ion in column I with their properties/ reaction in Column II. Indicate your answer by darkening the appropriate bubbles of the 4×4 matrix given in the ORS.

[IIT-JEE(ADV.)- 2007]

Column I

Column II

- (A) C_6H_5CHO
- (B) CH₃C≡CH
- (C) CN-
- (D) I-

- (P) gives precipitate with 2,4-dinitrophenylhydrazine
- (Q) gives precipitate with AgNO₃
- (R) is a nucleophile
- (S) is involved in cyanohydrin formation

CL0101

Paragraph for Question No. 13 to 15

A tertiary alcohol \mathbf{H} upon acid catalysed dehydration gives a product \mathbf{I} . Ozonolysis of \mathbf{I} leads to compounds \mathbf{J} and \mathbf{K} . Compound \mathbf{J} upon reaction with KOH gives benzyl alcohol and a compound \mathbf{L} , whereas \mathbf{K} on reaction with KOH gives only \mathbf{M} .

$$\mathbf{M} = \begin{array}{c} H_{3}C & O \\ Ph & H \end{array}$$

Q.13 Compound H is formed by the reaction of

[IIT-JEE(ADV.)- 2008]

(A) Ph
$$CH_3$$
 + PhMgBr

(C) Ph
$$H + PhCH_2MgBr$$

(B) Ph
$$CH_3$$
 + PhCH₂MgBr

Q.14 The structure of compound **I** is

$$(A) \bigvee_{H}^{Ph} CH$$

$$(B) \bigvee_{H}^{H_3C} \bigvee_{P_1}^{P_1}$$

(D)
$$Ph$$
 H

CL0102

Q.15 The structures of compounds J, K and L, respectively, are

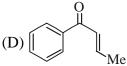
[IIT-JEE(ADV.)- 2008]

[IIT-JEE(ADV.)- 2008]

- (A) PhCOCH₃, PhCH₂COCH₃ and PhCH₂COO⁻K⁺
- (B) PhCHO, PhCH2CHO and PhCOOK+
- (C) PhCOCH₃, PhCH₂CHO and CH₃COO⁻K⁺
- (D) PhCHO, PhCOCH₃ and PhCOO⁻K⁺

CL0102

Paragraph for Question Nos. 16 to 38


A carbonyl compound \mathbf{P} , which gives positive iodoform test, undergoes reaction with MeMgBr followed by dehydration to give an olefin \mathbf{Q} . Ozonolysis of \mathbf{Q} leads to a dicarbonyl compound \mathbf{R} , which undergoes intramolecular aldol reaction to give predominantly \mathbf{S} .

$$\mathbf{P} \xrightarrow[3,H_2\text{SO}_4,\Delta]{1.\text{MeMgBr}} \mathbf{Q} \xrightarrow[3,H_2\text{SO}_4,\Delta]{1.\text{O}_3} \mathbf{R} \xrightarrow[2.\text{A}]{1.\text{OH}^-} \mathbf{S}$$

Q.16 The structure of the carbonyl compound \mathbf{P} is

[IIT-JEE(ADV.)- 2009]

$$(A)$$
 O Me

CL0103

Q.17 The structure of the products \mathbf{Q} and \mathbf{R} , respectively, are

[HT-JEE(ADV.)- 2009]

Q.18 The structure of the product S is

[IIT-JEE(ADV.)- 2009]

CL0103

Paragraph for Questions Nos. 19 to 20

An acyclic hydrocarbon P, having molecular formula C_6H_{10} , gave acetone as the only organic product through the following sequence of reactions, in the which Q is an intermediate organic compound.

$$\mathbf{P} \xrightarrow{\text{(i) dil H}_2\text{SO}_4/\text{HgSO}_4} \mathbf{Q} \xrightarrow{\text{(ii) conc.H}_2\text{SO}_4} \mathbf{Q} \xrightarrow{\text{(Catalytic amount)}} \mathbf{Q} \xrightarrow{\text{(ii) O}_3} \mathbf{Q} \xrightarrow{\text{(ii) O}_3} \mathbf{Q} \xrightarrow{\text{(iii) O}_3} \mathbf{Q} \xrightarrow{\text{(iii) PaPh}_4/\text{CH}_3} \mathbf{Q}$$

Q.19 The structure of compound P is -

[IIT-JEE(ADV.)- 2011]

$$\begin{array}{c}
H_3C \\
(D) \quad H_3C - C - C \equiv C - H \\
H_3C
\end{array}$$

CL0104

Q.20 The structure of the compound Q is -

[IIT-JEE(ADV.)- 2011]

CL0104

Q.21 The number of aldol reaction(s) that occurs in the given transformation is [IIT-JEE(ADV.)- 2012]

CH₃CHO + 4HCHO
$$\xrightarrow{\text{conc. aq. NaOH}}$$
 HO OH

(A) 1 (B) 2 (C) 3 (D) 4

CL0105

Q.22 Among P, Q, R and S, the aromatic compound(s) is / are :

[IIT-JEE(ADV.)- 2013]

Q.23 After completion of the reactions (I and II), the organic compound(s) in the reaction mixtures is(are)

Reaction I : H₃C CH₃
$$\xrightarrow{\text{Br}_2(1.0 \text{ mol})}$$
 aqueous/ $\xrightarrow{\text{aqueous}/\text{sqrfl}}$ NaOH [IIT-JEE(ADV.)- 2013]

Reaction II :
$$H_3C$$
 CH_3 $\xrightarrow{Br_2(1.0 \text{ mol})}$ CH_3COOH

- (A) Reaction I: P and Reaction II: P
- (B) Reaction I: U, acetone and Reaction II: Q acetone
- (C) Reaction I: T, U, acetone and Reaction II: P
- (D) Reaction I : R, acetone and Reaction II : S acetone

CL0107

Q.24 The major product in the following reaction is

[IIT-JEE(ADV.)- 2014]

Cl
$$CH_3 \xrightarrow{\text{CH}_3 \text{MgBr, dry ether, 0°C}} 2. \text{ aq. acid}$$

$$CH_3 \xrightarrow{\text{CH}_3 \text{MgBr, dry ether, 0°C}} \longrightarrow CH_3 \xrightarrow{\text{$$

(A)
$$H_3C$$
 CH

(D)
$$CH_3$$
 CH_3

CL0108

Q.25 The major product of the following reaction is -

[IIT-JEE(ADV.)- 2015]

Q.26 In the following reactions, the product S is -

[IIT-JEE(ADV.)- 2015]

$$H_3C$$
 $I. O_3$
 $R \longrightarrow S$

$$(A) \qquad \qquad (A)$$

$$(B) \xrightarrow{H_3C} N$$

CL0110

Q.27 Positive Tollen's test is observed for :

[IIT-JEE(ADV.)- 2016]

$$(A) \underset{H}{\overset{H \longrightarrow O}{\longleftrightarrow}}$$

CL0111

Q.28 The major product of the following reaction sequence is :

[IITJEE(ADV.)-2016]

$$(C)$$
 HO O

Q.29 Compound **P** and **R** upon ozonolysis produce **Q** and **S**, respectively. The molecular formula of **Q** and **S** is C₈H₈O. **Q** undergoes Cannizzaro reaction but not haloform reaction, whereas **S** undergoes haloform reaction but not Cannizzaro reaction:

[IIT-JEE(ADV.)- 2017]

(i)
$$P \xrightarrow{(i) O_3 / CH_2Cl_2} Q$$
 (C_8H_8O)

(ii)
$$R \xrightarrow{\text{(i) } O_3 / CH_2Cl_2} S$$

 (C_0H_0O)

The option(s) with suitable combination of P and R, respectively, is(are)

(A)
$$H_3C$$
— and CH_3

(B)
$$CH_3$$
 and CH_3 CH_3

(C)
$$CH_3$$
 and CH_3 CH_3

(D)
$$H_3C$$
 and H_3C CH_3

CL0113

30. The reaction(s) leading to the formation of 1,3,5-trimethylbenzene is (are)

[IIT-JEE(ADV.)- 2018]

(A)
$$O$$
 Conc. H₂SO₄ (B) Me $=$ H O Heated iron tube 873 K (C) O 1) Br₂, NaOH O (D) O CHO O CHO O CHO O CHO O CHO

31. The desired product X can be prepared by reacting the major product of the reactions in LIST-I with one or more appropriate reagents in LIST-II. [IIT-JEE(Adv.)-2018]

(given, order of migratory aptitude: aryl > alkyl > hydrogen)

LIST-I

P. Ph
$$Me + H_2SO_4$$

1. l₂, NaOH

$$Q. \ \ \stackrel{H_2N}{\overset{Ph}{\overset{O}{\longrightarrow}}} \ \ \stackrel{H_2}{\overset{O}{\longrightarrow}} \ \ H \ + \ HNO_2$$

2. $[Ag(NH_3)_2]OH$

$$R. \begin{tabular}{ll} Ph \\ \hline $R.$ & Me \\ \hline OH \\ \hline Ph \\ \hline OH \\ \hline H_2SO_4 \\ \hline \end{tabular}$$

3. Fehling solution

4. HCHO, NaOH

5. NaOBr

The correct option is

(A)
$$P \to 1$$
; $Q \to 2,3$; $R \to 1,4$; $S \to 2,4$ (B) $P \to 1,5$; $Q \to 3,4$; $R \to 4,5$; $S \to 3$

(B)
$$P \rightarrow 1.5$$
: $Q \rightarrow 3.4$: $R \rightarrow 4.5$: $S \rightarrow 3$

(C)
$$P \rightarrow 1.5$$
: $O \rightarrow 3.4$: $R \rightarrow 5$: $S \rightarrow 2.4$

(C) P
$$\rightarrow$$
 1,5; Q \rightarrow 3,4; R \rightarrow 5; S \rightarrow 2,4 (D) P \rightarrow 1,5; Q \rightarrow 2,3; R \rightarrow 1,5; S \rightarrow 2,3

ANSWER-KEY

			EXERCI	SE #	# O-I		
1	Ans. (A)	2	Ans. (B)	3	Ans. (C)	4	Ans. (C)
5	Ans. (C)	6	Ans. (D)	7	Ans. (A)	8	Ans. (C)
9	Ans. (C)	10	Ans. (C)	11	Ans. (A)	12	Ans. (D)
13	Ans. (C)	14	Ans. (C)	15	Ans. (B)	16	Ans. (D)
17	Ans. (A)	18	Ans. (D)	19	Ans. (D)	20	Ans. (C)
21	Ans. (D)	22	Ans. (C)	23	Ans. (B)	24	Ans. (A)
25	Ans. (D)	26	Ans. (C)	27	Ans. (D)	28	Ans. (C)
29	Ans. (D)						
			EXERCIS	SE #	O-II		
1	Ans. (A,B)	2	Ans. (C,D)	3	Ans. (A,B,C)	4	Ans. (B,C)
5	Ans. (A,B)	6	Ans. (A,B,C,D)	7	Ans. (A,B,C)	8	Ans. (B,C)
9	Ans. (A,D)	10	Ans. (D)	11	Ans. (D)	12	Ans. (B)
13	Ans. (B)	14	Ans. (A,B,C)	15	Ans. $(A) \rightarrow R$;	(B)→	$Q,S;(C)\rightarrow S;(D)\rightarrow P$
			EXERCI	SE a	# S-I		

- 1. Ans. (A) P,Q,S; (B) P,Q,S; (C) P,Q,S; (D) P,Q,S
- 2. Ans. 3 > 2 > 1 > 4
- 3. **Ans.** (C)
- 4. **Ans.** (A)

Ethyl orthoformate

Acetal

aldehyde

6. Ans.
$$H^+/Br_2$$
; H_2/Ni ; NaOH

7. Ans. (a)
$$CH_3 - CH - NH - CH_2 - CH_3$$
 (b) (c) $CHCl_3 + C - CH_3$ (c) $CHCl_3 + C - CH_3$

- **8. Ans.** (B,C)
- **9. Ans.** (B)
- 10. Ans.

(a) (i) KMnO₄, (ii) CH₂ – OH , (iii) LiAlH₄, (iv) H₃O^{$$\oplus$$} CH₂ – OH

- (d) (i) H_2 , Ni
- (e) NH_2NH_2/H_2O_2 (f) $NaBH_4$
- 11. Ans. (B) 12. Ans. (D)

.

EXERCISE # (MAINS)

1.	Ans. (4)	2.	Ans. (2)	3.	Ans. (1)	4.	Ans. (2)
5.	Ans. (4)	6.	Ans. (2)	7.	Ans. (4)	8.	Ans. (3)
9.	Ans. (4)	10.	Ans. (4)	11.	Ans. (2)	12.	Ans. (4)

27. Ans. (4)

Sol. CHO

H
OH
HO
OH
H
OH
OH
CH₂OH

$$Reduction$$
 n -Hexane

32. Ans. (1)

Sol.

33. Ans. (3)

Sol.

A
$$\xrightarrow{(i) Br_2}$$
 $\xrightarrow{(ii) KOH}$ $\xrightarrow{(iii) O_3}$ $\xrightarrow{(iv) (CH_3)_2S}$ $\xrightarrow{(v) NaOH/\Delta}$

34. Ans. (66.65 to 66.70)

Sol.

A
$$\xrightarrow{\text{CH}_3\text{MgBr}}$$
 B $\xrightarrow{\text{Cu}}$ CH₃ CH₃-C=CH-CH₃ (2-methyl-2-butene)

$$C \Rightarrow 12 \times 4 = 48$$

$$H \Rightarrow 8 \times 1 = 8$$

$$O \Rightarrow 16 \times 1 = 16$$

Total 72

% of
$$C = \frac{48}{72} \times 100 = 66.66\%$$

$$\begin{array}{c|c} H & O \\ \hline & NaOH/\Delta \\ \hline & (Intramolecular \\ & aldol) \\ \hline & Br \\ \hline & Alc. KOH \\ \hline & \Delta \\ \end{array}$$

35. Ans. (4)

Sol.

$$(A) \xrightarrow{i) CH_3MgBr} \xrightarrow{ii) HOH/H^+} \xrightarrow{HO CH_3} CH_3$$

$$CH=O CH_3 CH_3 CH_3$$

$$CH=O CH_3 CH_3 CH_3$$

$$CH_3 CH_3 CH_3$$

36. Ans. (3)

Sol.

$$CH_{3}$$

$$CH_{3}-CH-C\equiv CH\xrightarrow{HgSO_{a}, H_{2}SO_{4}} (X)$$

$$\downarrow (i) C_{2}H_{3} MgBr, H_{2}O$$

$$\downarrow (ii) Conc. H_{2}SO_{4}\Delta$$

$$(Y)$$

$$O$$

$$\therefore CH_{3}-CH-C\equiv CH\xrightarrow{HgSO_{a}, H_{2}SO_{4}} CH_{3}-CH-C-CH_{3}$$

$$CH_{3} (Kucherov's CH_{3} (X)$$

$$\downarrow C_{2}H_{3} MgBr, H_{2}O$$

$$(Nucleophilic addition reaction)$$

$$OH$$

$$CH_{3}-C\equiv C-CH_{3} \xleftarrow{H^{1}/\Delta} CH_{3}-CH-C-CH_{3}$$

$$CH_{3} CH_{2}-CH_{3} CH_{3}-CH-C-CH_{3}$$

$$Major$$

$$(Saytzeff alkene)$$

EXERCISE-#(IIT QUESTIONS)

1.	Ans. (B)	2.	Ans. (A)	3.	Ans. (C)	4.	Ans. (A)
5.	Ans. (C)	6.	Ans. (D)	7.	Ans. (C)	8.	Ans. (C)
9.	Ans. (B)	10.	Ans. (A)	11.	Ans. (C)		
12.	Ans. (A) P,S; (B) Q; (C) Q,	R,S; (D) Q,R	13.	Ans. (B)	14.	Ans. (A)
15.	Ans. (D)	16.	Ans. (B)	17.	Ans. (A)	18.	Ans. (B)

19. Ans. (D)

20. Ans.(B)

Ans.(B)
$$P \Rightarrow Me_{3}C - C \equiv CH \xrightarrow{HgSO_{4}/dil.H_{2}SO_{4}} Me_{3}C - C - CH_{3}$$

$$O$$

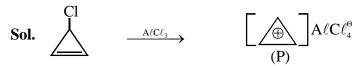
$$NaBH_{4} / Ethanol$$

$$dil.acid$$

$$H_{3}C \xrightarrow{C} C - CH - CH_{3} \xrightarrow{I,2 \text{ shift}} H_{3}C - C - CH - CH_{3} \xrightarrow{H_{2}SO_{4}} H_{3}C \xrightarrow{H_{3}C} C - CH - CH_{3}$$

$$CH_{3} \xrightarrow{C} C = C \xrightarrow{CH_{3}} \xrightarrow{O_{3}/Zn} 2$$

$$H_{3}C \xrightarrow{C} CH_{3} \xrightarrow{O_{3}/Zn} 2$$


$$CH_{3} \xrightarrow{O_{3}/Zn} CC$$

21. Ans. (C)

Sol.
$$CH_3CH = O + \overline{O}H \iff \overline{C}H_2 - CH = O \iff \overline{C}H_2OH = O$$
(1 time aldol)

$$\begin{array}{c|c} \hline OH \\ \hline \hline OH \\ \hline \hline OH \\ \hline O$$

22. Ans. (A,B,C,D)

 2π electron (delocalised) (Aromatic Nature)

6π electron (delocalised) (Aromatic Nature)

$$\begin{array}{c}
 & \stackrel{(NH_4)_2CO_3}{\longrightarrow} \\
 & \stackrel{N}{\longrightarrow} \\$$

(R) 6π -electron (delocalised) (Aromatic nature)

Mechanism:

6π electron (delocalised) (Aromatic Nature)

23. Ans. (C)

Sol. Reaction I:
$$H_3C$$
 CH_3 $\xrightarrow{Br_2(1.0 \text{ mol})}$ $O \cap Na^+ + CHBr_2$ $O \cap Na^+ + CHBr_3$

Mechanism

$$O H + OH^{\circ} \rightleftharpoons O Br OH^{\circ} O Br$$

[least acidic α -H]

 $O H + OH^{\circ} \rightleftharpoons O Br OH^{\circ} O Br$
 $O H + OH^{\circ} \rightleftharpoons O Br OH^{\circ} O Br$
 $O H + OH^{\circ} \rightleftharpoons O Br OH^{\circ} O Br$
 $O H + OH^{\circ} \rightleftharpoons O Br OH^{\circ} O Br$
 $O H + OH^{\circ} \rightleftharpoons OH^{\circ} O Br$
 $O H + OH^{\circ} \rightleftharpoons OH^{\circ} OH^{\circ} OH^{\circ}$
 $O H + OH^{\circ} \rightleftharpoons OH^{\circ} OH^{\circ}$
 $O H + OH^{\circ}$
 $O H$

OH +
$$\overrightarrow{CBr_3}$$
 O $^{\circ}$ + CHB r_3 enation dose not stop with replacement of just one h

In basic medium halogenation dose not stop with replacement of just one hydrogen and poly halogenation takes place because α-haloketones are more reactive towards base and haloform reaction takes place In above reaction Br, is limiting agents.

Further bromination is less favourable because of less amount of Br₂

24. Ans. (D)

Cl Polar
$$\pi$$
-bond give nucleophilic addition reaction] (Leaving group) give substitution

(i) Grignard prefer to give nucleophilic addition on polar π -bond and form anion intermediate.

$$Cl$$
 + Me Mg Cl \longrightarrow Cl O^{-} Me

(ii) In next step anion give intramolecular nucleophilic substitution reaction & form 5 membered ring.

$$CI \xrightarrow{O^{-}} Me \longrightarrow O$$

25. Ans. (A)

Mechanism:

$$\begin{array}{c|c} OH^{\bigcirc} & OH^$$

26. Ans.(A)

Sol.

$$(1) O_3 \longrightarrow (2) Zn/H_2O \longrightarrow (2)$$

27. Ans. (A,B,C)

Sol. Tollens's test is given by compounds having aldehyde group. Also α -hydroxy carbonyl gives positive tollen's test.

(A)
$$H$$
 $C = O$

Tollen's reagent

 H
 $CO_2^ CO_2^ CO_$

Benzaldehyde

(D) PhCH=CH-C-Ph
$$\xrightarrow{\text{Tollen's}}$$
 No reaction (-ve test)

28. Ans. (A)

Sol.

$$\begin{array}{c|ccccc} OH & OH & OH & OH \\ \hline H-C-H/NaOH & CH_2 & H-C-H/NaOH \\ \hline [Cross aldol reaction] & H-C-H/NaOH & CH_2 \\ \hline \end{array} \\ + HCOO \\ \hline \end{array}$$

$$\begin{array}{c} \text{OH} & \text{OH} \\ \text{CH}_2 & \text{O} \\ \hline & \text{H-C-H/H}^{\dagger} \\ \hline & \text{Acetal formation} \end{array}$$

29. Ans. (A,C)

Sol. (A)
$$CH_3$$
 \longrightarrow O_3 \longrightarrow CH_3 \longrightarrow $CHO + H - C - H$

Q

give cannizzaro reaction but no haloform

$$\begin{array}{c|c} & & & \\ &$$

(B) Product of ozonolysis of R is having 9 carbon.

(C)
$$CH_3$$
 O_3/CH_2Cl_2 O_3/CH_3CH_2O O_4/CH_3CH_2O O_5/CH_3CH_2O O_5/CH_3CH_3O O_5/CH_3CH_3O O_5/CH_3CH_3O O_5/CH_3CH_3O O_5/CH_3O O_5/CH_3O

(D) Product of ozonolysis of R is having 9 carbon.

30. Ans. (A,B,D)

Sol. (A)
$$\xrightarrow{\text{ConcH}_2\text{SO}_4}$$
 (B) Me $\xrightarrow{\text{H}}$ $\xrightarrow{\text{Fe}\Delta}$ (C) $\xrightarrow{\text{COOH}}$ $\xrightarrow{\text$

31. Ans. (D)