
Chapter 4

Transaction and Concurrency

  Transactions and concurrency control

  Transaction

  Transaction properties

  Uncommitted data

  Transaction processing systems

  Concurrency control with locking methods

  Two-phase locking to ensure serializability

  Concurrency control with time stamping methods

  Concurrency control with optimistic methods

  Recoverability

  Equivalence of schedules

  Testing for confl ict serializability

LEARNING OBJECTIVES

introduCtion
A transaction is a logical unit of work. It begins, with the execution
of a BEGIN TRANSACTION operation, and ends with the execu-
tion of a COMMIT or ROLLBACK operation. The logical unit of
work that is, a transaction does not necessarily involve just a single
database operation. Rather, it involves a sequence of several such
operations as follows:

 1. Database updates are kept in buffers in main memory and
not physically written to disk until the transaction commits.
That way, if the transaction terminates unsuccessfully, there
will be no need to undo any disk updates.

 2. Database updates are physically written to disk as part of the
process of honouring the transaction’s COMMIT request.
That way if the system subsequently crashes, we can be sure
that there will be no need to redo any disk updates.

Transactions and Concurrency Control
Database transactions refl ect real-world transactions that are trig-
gered by events, such as buying a product, registering for a course, or
making a deposit in your checking account. Transactions are likely to
contain many parts, for example, a sales transaction consists of at least
two parts.

UPDATE inventory by subtracting number of units sold from
the PRODUCT table’s available quantity on hand and UPDATE the
ACCOUNTS RECEIVABLE table in order to bill the CUSTOMER.
All parts of a transaction must be completed to prevent data integ-
rity problems. Therefore, executing and managing transactions are
important database system activities.

Concurrency control is the management of concurrent transac-
tions execution. When many users are able to access the database,
the number of concurrent transactions tends to grow rapidly; as
a result, concurrency control is especially important in multiuser
database environments.

transaCtion
A transaction is a logical unit of work that must be either entirely
completed or aborted, no intermediate states are acceptable, that is,
multicomponent transactions like the previously mentioned sale,
must not be partially completed. If you read from and/or write to
(update) the database, you create a transaction. Another example
is using SELECT, to generate a list of table contents. Many real-
world database transactions are formed by two or more database
requests. A database request is the equivalent of a single SQL
statement in an application program or transaction. Each database
request generates several input/output operations. A transaction
that changes the contents of a database must alter the database
from one consistent state to another. A consistent database state is
one in which all data integrity constraints are satisfi ed.

Example:

 1. Checking an account balance:
 SELECT ACC_NUM, ACC_BALANCE
 FROM CHECKACC
 WHERE ACC_NUM = ‘0908110638’;
 Even though we did not make any changes to the

CHECKACC table, the SQL code represents a transaction,
because we accessed the database.

4.66  |  Unit 4  •  Databases

	 2.	 Registering a credit sale of 100 units of product X to
customer Y in the amount of $500.00 first, product
X’s quantity on hand (QOH) needs to be reduced by
100.

		 UPDATE PRODUCT
		 SET PROD_QOH = PROD_QOH_100
		 WHERE PROD_CODE = ‘x’;
		 Then, $500 needs to be added to customer Y’s

accounts receivable
		 UPDATE ACCT_RECEIVABLE
		 SET ACCT_RECEIVABLE = ACCT_BALANCE +

500
		 WHERE ACCT_NUM = ‘Y’;

In Example 2, both the SQL, transactions must be com-
pleted in order to represent the real-world sales transaction.
If both transactions are not completely executed, the trans-
action yields an inconsistent database.

If a transaction yields an inconsistent database, the
DBMS must be able to recover the database to a previous
consistent state.

Transaction Properties
All transactions must display atomicity, consistency, isola-
tion and durability. These are known as ACID properties of
transactions.

Atomicity
It requires that all operations of a transaction be completed;
if not, the transaction is aborted. Therefore, a transaction is
treated as a single, logical unit of work.

Consistency
It describes the result of the concurrent execution of
several transactions. The concurrent transactions are
treated as though they were executed in serial order. This
property is important in multiuser and distributed data-
base, where several transactions are likely to be executed
concurrently.

Isolation
It means that the data used during the execution of a
transaction cannot be used by a second transaction until
the first one is completed. Therefore, if a transaction T

1

is being executed and is using the data item X
1
, that data

item cannot be accessed by any other transaction (T
2
…

T
n
) until T

1
 ends. This property is particularly useful in

multiuser database environment, because several differ-
ent users can access and update the database at the same
time.

Durability
It indicates the permanence of the database’s consistent
state. When a transaction is completed, the database reaches
a consistent state, and that state cannot be lost, even in the
event of the system’s failure.

Transaction Management with SQL
The ISO standard defines a transaction model based on two
SQL statements: COMMIT and ROLLBACK. The standard
specifies that an SQL transaction automatically begins with
a transaction-initiating SQL statement executed by a user
or program (e.g., SELECT, INSERT, UPDATE). Changes
made by a transaction are not visible to other concurrently
executing transactions until the transaction completes.
When a transaction sequence is initiated, it must continue
through all succeeding SQL, statements until one of the fol-
lowing four events occur:

	 1.	 A COMMIT statement ends the transaction successfully,
making the database changes permanent.

		 A new transaction starts after COMMIT with the next
transaction initiating statement.

	 2.	 For programmatic SQL, successful program termination
ends the final transaction successfully, even if a
commit statement has not been executed (equivalent to
COMMIT)

	 3.	 For programmatic SQL, abnormal program termination
aborts the transaction (equivalent to ROLLBACK)

Example: 
UPDATE PRODUCT
SET PROD_QOH = PROD_QOH_100
WHERE PROD_CODE = ‘345TYX’;

UPDATE ACCREC
SET AR_BALANCE = AR_BALANCE + 3500
WHERE AR_NUM = ‘60120010’;
COMMIT;

Concurrency Control
The coordination of simultaneous execution of transactions
in a multiprocessing database system is known as concur-
rency control. The objective of concurrency control is to
ensure the serializability of transaction in a multiuser data-
base environment. Concurrency is important, because the
simultaneous execution of transactions over a shared data-
base can create several data integrity and consistency prob-
lems. Three main problems are lost updates, uncommitted
data and inconsistent retrievals.

Lost Updates
Consider the following two concurrent transactions where
PROD_QOH represents a particular PRODUCT’s quantity
on hand. (PROD_QOH is an attribute in the Product table)

Chapter 4  •  Transaction and Concurrency  |  4.67

Assume the current PROD_QOH value for the product con-
cerned is 35.

Table 1

Transaction Computation

T1: purchase 100 units PROD_QOH = PROD_QOH + 100

T2: sell 30 units PROD_QOH = PROD_QOH - 30

Table 1 shows the serial execution of these transactions
under normal circumstances, yielding the correct answer:
PROD_QOH = 105. But suppose that a transaction is able
to read a product’s PROD_QOH value from the table before
a previous transaction (using the same product) has been
committed. The sequence depicted in Table 2 shows how the
cost update problem can arise. Note that the first transaction
(T

1
) has not yet been committed when the second transaction

(T
2
) is executed. Therefore T

2
 still operates on the value 135

to disk which is promptly over written by T
2
. As a result, the

addition of 100 units is “lost” during the process.

Uncommitted Data
Data are not committed when two transactions, T

1
 and T

2
 are

executed concurrently and the first transaction (T
1
) is rolled

back after the second transaction (T
2
) has already accessed

the uncommitted data, thus violating the isolation property
of transaction. Consider the same transactions from T

1
 and

T
2
, from above. However, this time T

1
 is rolled back to elim-

inate the addition of the 100 units. Because T
2
 subtracts 30

from the original 35 units, the correct answer should be 5.

Table 2

Computation

T1: purchase
100 units

PROD_QOH = PROD_QOH + 100 (Rolled
Back)

T2: sell
30 units

PROD_QOH = PROD_QOH_30

Table 2 shows how, under normal circumstances, the serial
execution of these transactions yield the correct answer. The
uncommitted data problem can arise when the ROLLBACK
is completed after T

2
 has begun its execution.

Inconsistent Retrievals
Inconsistent retrievals occur when a transaction calculates
some summary (aggregate) functions over a set of data,
while other transactions are updating the data. The prob-
lem is that the transaction might read some data before they
are changed and other data after they are changed, thereby
yielding inconsistent results.

Example: 

	 1.	 T
1
 calculates the total PROD_QOH of the products

stored in the PRODUCT table

	 2.	 At the same time, T
2
 updates the PROD_QOH for

two of the PRODUCT table’s products (T
2
 represents

the correction of a typing error: the user added 30
units to product 345TYX’s PROD_QOH but meant to
add the 30 units to 125TYZ’s PROD_QOH to correct
the problem, the user subtracts 30 from product
345TYX’s PROD_QOH and adds 30 to product
125TYZ’s PROD_QOH).

The computed answer 485 is obviously wrong, because we
know the correct answer to be 455.

Transaction Processing Systems
Transaction processing systems are systems with large data-
bases and hundreds of concurrent users that are executing
database transactions. For example, banking, credit card
processing, stock markets, supermarket checkout, etc.

They require high availability and fast response time for
hundreds of concurrent users.

	 1.	 A transaction includes one or more database access
operations. These can include insertion, deletion,
modification, or retrieval operations.

	 2.	 Basic operations: The basic database access
operations that a transaction can include are as
follows:
•• read_item (X):  Reads a database item named X into

a program variable.
•• Write_item (X):  Writes the value of program vari-

able X into the database item named X
Executing a read_item (X):  Command includes the follow-
ing steps:

	 1.	 Find the address of the disk block that contains item X
	 2.	 Copy that disk block into a buffer in main memory (if

that disk block is not in main memory buffer).
	 3.	 Copy item X from the buffer to the program variable

named x
Executing a write_item (X) command includes the follow-
ing steps:

	 1.	 Find the address of the disk block that contains item X
	 2.	 Copy that disk block into a buffer in main memory (if

that disk block is not in main memory buffer)
	 3.	 Copy item X from the program variable named X into

its correct location in the buffer
	 4.	 Store the updated block from the buffer back to

disk.

Step 4 actually updates the database on disk.

The decision about when to store back a modified disk
block that is in a main memory buffer is handled by the
recovery manager of the DBMS in cooperation with the
underlying operating system.

4.68  |  Unit 4  •  Databases

BEGIN END
PARTIALLY

READ/ WRITE

ACTIVE

ABORTABORT

FAILED

COMMIT

COMMITTED

TERMINATED

Figure 1  Transactions execution state transition diagram.

For the purpose of recovery, the system needs to keep track
of when the transaction starts, terminates, and commits or
aborts. Hence, the recovery manager keeps track of the fol-
lowing operations:

	 1.	 BEGIN_TRANSACTION:  It shows the beginning
of Execution of a transaction.

	 2.	 READ/WRITE:  These specify read or write
operations on the database items.

	 3.	 END_TRANSACTION:  This specifies that READ
and WRITE operations have ended and marks the end
of transaction execution.

	 4.	 COMMIT_TRANSACTION:  This shows a
successful end of the transaction so that any changes
executed by the transaction can be safely committed
to the database and will not be undone.

	 5.	 ROLL BACK OR ABORT:  This shows that the
transaction has ended unsuccessfully, so that any
changes or effects that the transaction may have
applied to the database must be undone.

	 6.	 ACTIVE STATE:  A transaction goes into an active
state immediately after it starts execution where it can
issue READ and WRITE operations.

	 7.	 PARTIALLY COMMITTED:  When the transaction
ends, it moves to the partially committed state

	 8.	 COMMIT:  A transaction reaches its commit point
when all its operations that access the database
have been executed successfully, and the effect of
all the transaction operations on the database have
been recorded in the log. Beyond the commit point,
the transaction is said to be committed, and its
effect is assumed to be permanently recorded in the
database.

	 9.	 FAILED_STATE:  A transaction can go to the failed
state if the transaction is aborted during its active
state. The transaction may then have to be rolled back
to undo the effect of its WRITE operations on the
database.

	 10.	 TERMINATIED:  The terminated state corresponds
to the transactions leaving the system.

Concurrency Control with
Locking Methods
A lock guarantees exclusive use of a data item to a transac-
tion. In general, if transaction T

1
 holds a lock on a data item

(e.g., an employee’s salary) then transaction T
2
 does not

have access to that data item. A transaction acquires a lock
prior to data access; the lock is released (unlocked) when
the transaction is completed, so that another transaction can
lock the data item for its exclusive use. All lock informa-
tion is managed by a lock manager, which is responsible for
assigning and policing the locks used by the transactions.

Lock Granularity
Lock granularity indicates the level of lock use. Locking
can take place at the following levels: database level, table
level, page level, row level and field (or attribute) level.

Database Level
In a database-level lock, the entire database is locked, thus
preventing the use of any tables in the database by transaction
T

2
 while transaction T

1
 is being executed. Transaction T

1
 and

T
2
 cannot access the database concurrently, even if they use

different tables. This level of locking is suitable for batch pro-
cesses, but it is not unsuitable for online multiuser DBMSs.

Table Level
In a table-level lock, the entire table is locked, preventing
access to any row by transaction T

2
 while transaction T

1
 is

using Table 2 transactions can access the same database, as
long as they access different tables. Transactions T

1
 and T

2

cannot access the same table even if they try to use different
rows, T

2
 must wait until T

1
 unlocks the table.

Page level
In a page level lock, the DBMS will lock an entire disk page (a
disk page or page is the equivalent of a disk block, which can

Chapter 4  •  Transaction and Concurrency  |  4.69

be described as a (referenced) section of a disk). Transactions
T

1
and T

2
 access the same table while locking different disk

pages. If T
2
 requires the use of a row located on a page that is

locked by T
1
, T

2
 must wait until the page is unlocked by T

1
.

Row level
The row-level lock is much less restrictive than the locks
discussed earlier. The DBMS allows concurrent transac-
tions to access different rows of the same table, even if the
rows are located on the same page. A lock exists for each
row in each table of the database.

Field level
The field-level lock allows concurrent transactions to access
same row as long as they require the use of different fields
(attributes) within the row. Although, field-level locking
clearly yields the most flexible multi user data access, it
requires a high level of computer over head.

Lock Types
	 1.	 Binary locks
	 2.	 Shared/Exclusive locks

Binary Locks
A binary lock has only two states: locked (1) or unlocked
(0). If an object, that is, a database, table, page, or row is
locked by a transaction, no other transaction can use that
object. If an object is unlocked, any transaction can lock
the object for its use. As a rule, a transaction must unlock
the object after its termination. Every database operation
requires that the affected object be locked. Therefore, every
transaction requires a lock and unlock operation for each
data item that is accessed. Such operations are automati-
cally scheduled by the DBMS, the user need not concerned
about locking or unlocking data items. Binary locks are
now considered too restrictive to yield optimal concurrency
conditions. For example if two transaction want to read the
same database object, the DBMS will not allow this to hap-
pen, even though neither transaction updates the database
(and therefore, no concurrency problems can occur) con-
currency conflicts occur only when two transactions execute
concurrently and one of them updates the database.

Shared/Exclusive locks
The tables “shared’ and “exclusive” indicate the nature of the
lock. The following table comparatively explains both locks.

Exclusive Locks Shared Locks

An exclusive lock exists when access is specifically
reserved for the transaction that locked the object.

A shared lock exists when concurrent transactions are
granted READ access on the basis of a common lock.

The exclusive lock must be used when the potential for
conflict exists.

A shared lock produces no conflict as long as the concur-
rent transactions are read only.

(An exclusive lock is issued when a transaction wants to
write (update) a data item and no locks are currently held
on that data item by any other transaction.

A shared lock is issued when a transaction wants to read
data from the database and no exclusive lock is held on
that data item.

Using the shared/exclusive locking concept, a lock can
have three states: unlocked, shared (READ) and exclusive
(WRITE). 2 READ transactions can be safely executed and
shared locks allow several READ transactions to concurrently
read the same data item. For example, if transaction T

1
 has a

shared lock on data item X, and transaction T
2
 wants to read

data item X, T
2
 may also obtain a shared lock on data item X.

If transaction T
2
 updates data item X, then an exclusive

lock is required by T
2
 over data item X. The exclusive lock

is granted if and only if no other locks are held on the data
item. Therefore, if a shared or exclusive lock is already held
on data item X by transaction T

1
, an exclusive lock cannot

be granted to transaction T
2
.

Potential problems with locks
Although locks prevent serious data inconsistencies, their
use may lead to two major problems:

	 1.	 The resulting transaction schedule may not be
serializable.

	 2.	 The schedule may create deadlocks. Database
deadlocks are the equivalent of a traffic gridlock in

a big city and are caused when two transactions wait
for each other to unlock data.

Both problems can be solved. Serializability is guaranteed
through a locking protocol known as two-phase locking and
deadlocks can be eliminated by using deadlock detection, and
prevention techniques. We shall examine these techniques next.

Two-phase Locking to Ensure
Serializability
The two-phase locking protocol defines how transactions
acquire and relinquish locks. It guarantees serializability, but
it does NOT prevent deadlocks. The two phases are as follows:

	 1.	 A growing phase, in which a transaction acquires all
the required locks without unlocking any data. Once
all locks have been acquired, the transaction is in its
locked point.

	 2.	 A shrinking phase, in which a transaction releases all
locks and cannot obtain any new lock.

The two-phase locking protocol is governed by the follow-
ing rules”

4.70  |  Unit 4  •  Databases

	 1.	 Two transactions cannot have conflicting locks.
	 2.	 No unlock operation can precede a lock operation in

the same transaction.
	 3.	 No data are affected until all locks are obtained, that

is, until the transaction is in its locked point.

Deadlocks
Deadlocks exist when two transactions, T

1
 and T

2
, exist in

the following mode:

	 1.	 T
1
 would like to access data item X and then data

item Y. (So far, T
1
 has locked data item X and T

1
 is in

progress, it will eventually require to lock data item Y.)
	 2.	 T

2
 needs to access data items X and Y, to begin. (So

far, T
2
 has locked data item Y.)

If T
1
 has not unlocked data item X, T

2
 cannot begin; if

T
2
 has not unlocked data item Y, T

1
 cannot continue.

Consequently, T
1
 and T

2
 wait indefinitely, each waiting for

the other to unlock the required data item. Such in a real-
world DBMS, many transactions can be executed simulta-
neously, thereby increasing the probability of generating
deadlocks. Note that deadlocks are possible only if one
of the transactions wants to obtain an exclusive lock on a
data item; no deadlock condition can exist among shared
locks.

Three basic techniques exist to control deadlocks:

	 1.	 Deadlock prevention: A transaction requesting a new
lock is aborted if there is a possibility that a deadlock
can occur. If the transaction is aborted, all the changes
made by this transaction are ROLLED BACK, and
all locks obtained by the transaction are released.
The transaction is then rescheduled for execution.
Deadlock prevention works because it avoids the
conditions that lead to deadlocking.

	 2.	 Deadlock detection: The DBMS periodically tests the
database for deadlocks. If a deadlock is found, one of
the transactions (the “victim”) is aborted (ROLLED
BACK and restarted), and the other transaction
continues.

	 3.	 Deadlock avoidance: The transaction must obtain all
the locks it needs before it can be executed.

The best deadlock control method depends on the data-
base environment. For example, if the probability of
deadlocks is low, deadlock detection is recommended.
However, if the probability of deadlocks is high, deadlock
prevention is recommended. If response time is not high
on the system priority list, deadlock avoidance might be
employed.

Deadlock occurs when each transaction T in a set
of two or more tractions is waiting for some item that
is locked by some other transaction T1 in the set. Each
transaction in the set is on a waiting queue, waiting for
one of the other transactions in the set to release the lock
on an item

Example: 

T1 T2

Write lock (z)

Read lock (z)

Read lock (y)

Write lock (y)

Transaction T
1
 is waiting for Y which is locked by Transaction

T
2
 and transaction T

2
 is waiting for z which is locked by

transaction T
1
. The below graph is called wait for graph.

Y

Z

T1 T2

Deadlock Prevention
There are number of deadlock prevention schemes that make
a decision about what to do with a transaction involved in a
possible deadlock situation:

	 1.	 Should it be blocked and made to wait
	 2.	 Should it be aborted
	 3.	 Should the transaction pre-empt and abort another

transaction.

Concurrency Control
with Time Stamping Methods
The time stamping approach to scheduling concurrent trans-
actions assigns a global unique time stamp to each trans-
action. The time stamp value produces an explicit order
in which transactions are submitted to the DBMS. Time
stamps must have two properties: uniqueness and monoto-
nicity. Uniqueness ensures that no equal time stamp values
can exist, and monotonicity ensures that time increases.

All database operations (READ and WRITE) within
the same transaction must have the same time stamp. The
DBMS executes conflicting operations in time stamp order,
thereby ensuring serializability of the transactions. If two
transactions conflict, one often is stopped, rescheduled, and
assigned a new time stamp value.

The concept of transaction time stamp TS(T), which is a
unique identifier assigned to each transaction. The time stamps
are based on the order in which transactions start. If transaction
T

1
 starts before transaction T

2
, then T S (T

1
) < T S(T

2
)

	 1.	 Older transaction will have the smaller time stamp value
	 2.	 Two schemes that prevent deadlock are

•• Wait-die
•• Wound-wait

Suppose that transaction T
k
 tries to lock an item x but is

not able to because x is locked by some other transaction T
L

with a conflicting lock.

Chapter 4  •  Transaction and Concurrency  |  4.71

The rules followed by these schemes are as follows:

	 1.	 Wait-die:  If T
s
 (T

k
) < T

s
 (T

L
), then (T

k
 older than T

L
)

T
k
 is allowed to wait; otherwise (T

k
 younger than T

L
)

abort T
k
 and restart it later with the same time stamp

	 2.	 Wound-wait:  If T
s
 (T

k
) < T

s
 (T

L
) then (T

k
 older than

T
L
) abort T

L
 and restart it later with the same time

stamp; otherwise (T
k
 younger than T

L
) T

k
 is allowed to

wait

Both schemes end up aborting the younger of the two
transactions that may be involved in a deadlock

Concurrency Control with
Optimistic Methods
Optimistic methods are based on the assumption that the
majority of the database operations do not conflict. A trans-
action is executed without restrictions until it is committed.
Each transaction moves through two or three phases:

Read phase:  The transaction reads the database, executes
the needed computations, and makes the updates to a pri-
vate copy of the database values.

Validation phase:  The transaction is validated to assure that
the changes made will not affect the integrity and consist-
ency of the database.

If the validation test is positive, transaction goes to the
Write Phase.

If the validation test is negative, transaction is restarted,
and changes are discarded.

Write phase: The changes are permanently applied to the
database.

Serializability
Serializabilty is accepted as ‘criterion for correctness’ for
the interleaved execution of a set of transactions, such an
execution is considered to be correct if and only if it is
serializable.

	 1.	 A set of transactions is serializable if and only if it
is equivalent to some serial execution of the same
transactions

	 2.	 A serial execution is one in which the transactions are
run one at a time in some sequence

Schedule: Given a set of transactions, any execution of those
transactions interleaved or otherwise is called a schedule.

	 1.	 Executing the transactions one at a time, with no
interleaving constitutes a serial schedule. A schedule
that is not serial is an interleaved schedule (or) non-
serial schedule.

	 2.	 Two schedules are said to be equivalent if and only if
they are guaranteed to produce the same result as each
other. Thus, a schedule is serializable, and correct, if
and only if it is equivalent to some serial schedule.

Two-phase Locking Theorem
If all transactions obey the two phase locking protocol, then
all possible interleaved schedule are serializable.

	 1.	 Before operating on any object (it could be a database
tuple), a transaction must acquire a lock on the object

	 2.	 After releasing a lock, a transaction must never go on
to acquire any more locks.

A transaction that obeys this protocol thus has two
phases: a lock acquisition or “growing phase and a lock
releasing or “shrinking” phase

Let ‘I’ be an interleaved schedule involving some set of
transactions T, T

2
, T

3
, . . . T

n
.

If ‘I’ is serializable, then there exists at least one serial
schedule ‘S’ involving T

1
, T

2
, . . . T

n
 such that ‘I’ is equivalent

to ‘S’ is said to be a serialization of ‘I’
Let T

i
 and T

j
 be any two distinct transactions in the set

T
1
, T

2
, T

3
, . . . T

n
. Let T

i
 precede T

j
 in the serialization ‘S’. In

the interleaved schedule I, then the effect must be as if T
i

really did execute before T
j
. In other words, if A and B are

any two transactions involved is some serializable schedule,
then either A logically precedes B or B logically precedes A
in that schedule, that is, either B can see A’s output or A can
see B’s. If the effect is not as if either A ran before B or B ran
before A, then the schedule is not serializable and not correct.

	 1.	 A schedule ‘S’ of ‘n’ transactions T
1
, T

2
 . . . T

n
 is an

ordering of the operations of the transactions subject
to the constraint that, for each transaction T

i
 that

participates in ‘S’, the same order in which they occur
in T

i
.

	 2.	 For the purpose of recovery and concurrency control,
we are mainly interested in the ‘read item’ and ‘write
item’ operations of the transactions, as well as the
COMMIT and ABORT operations. A shorthand
notation for describing a schedule uses the symbols,
‘R’, ‘W’, ‘C’ and ‘A’ for the operations read item, write
item, commit, and abort respectively, and appends as
subscript the transition-id (transaction number) to
each operation in the schedule

Example:  The schedule of the given set of transactions can
be written as follows:

T1 T2

Read item (x);

X = X – N;

Read item (x);

X = X + M;

Write item (x)

Read item (y)

Write item (x)

Write item (y)

Y = Y + N

Write item (y) Commit

4.72  |  Unit 4  •  Databases

Schedule:

S: R
1
(X); R

2
(X); W

1
 (X); R

1
(Y);

W
2
(X); W

2
(Y); W

1
(Y); C

2

Conflicts: Two operations in a schedule are said to have con-
flict if they satisfy all three conditions, if

	 1.	 they belong to different transactions
	 2.	 they access the same data item
	 3.	 at least one of the operations is a write item

For example, In the schedule ‘S’ given above, the operations
r

1
(x) and w

2
(x) conflict, as do

The operations r
2
 (x) and w

1
(x) and the operations w

1
(x)

and w
2
(x). However the operations r

1
(x) and r

2
(x) do not

conflict, since they are both read operations;
The operations w

1
(x) and w

2
(y) do not conflict because

they operate on distinct data items x and y. The operations
r

1
(x) and w

1
(x) do not conflict, because they belong to the

same transaction.

Complete schedule: A schedule S of ‘n’ transactions T
1
, T

2
,

T
3
 . . . T

n
 is said to be a complete schedule if the following

conditions hold.

	 1.	 The operations is ‘S’ are exactly those operations in
T

1
, T

2
, . . . T

n
 including a commit or abort operation as

the last operation for each transaction in the schedule.
	 2.	 For any pair of operations from the same transaction

T
i
, their order of appearance in ‘S’ is the same as their

order of appearance in T
i

	 3.	 For any two conflicting operations, one of the two must
occur before the other in the schedule.

The preceding condition (3) allows for two non-conflicting
operations to occur in the schedule without defining which
occurs first, thus leading to the definition of a schedule as a
partial order of the operations in the ‘n’ transactions.

It is difficult to encounter complete schedules in a trans-
action processing system, because new transactions are
continually being submitted to the system. Hence, it is use-
ful to define the concept of the ‘committed projection C(S)
of schedule S; which include only the operations in S that
belong to committed transactions, that is, transaction T

i

whose commit operation is C
i
.

Recoverability
Recoverability ensures that once a transaction T is com-
mitted, it should never be necessary to roll back T. The
schedules that theoretically meet this criterion are called
recoverable schedules and those that do not are called non-
recoverable, and hence should not be permitted

A schedule ‘S’ is recoverable if no transaction T in ‘S’
commits until all transactions T1 that have written an item
that T reads have committed

A transaction T reads from transaction T1 in a schedule
S if some item x is first written by T1 and later read by T.
In addition, T1 should not have been aborted before T reads
item x, and there should be no transactions that write x after
T1 writes it and before T reads it (unless those transactions,
if any, have aborted before T reads x)

Example: 
Consider the given schedule, check whether it is recover-
able or not:
S: R

1
(X); R

2
(X); W

1
(X); R

1
(Y); W

2
(X); C

2
, W

1
(Y); C

1
?

Solution: 
The given schedule can also be represented as follows:

T1 T2

R1(x)

R2(x)

W1(x)

R1(y)

W2(x)

C2

W1(y)

C1

There are two WR conflicts, if the schedule consists of RW
conflict, then we may say that the schedule is not recover-
able (if the transaction which is performing read operation
commits first)

Cascadeless Schedule
In a recoverable schedule, no committed transaction ever
needs to be rolled back. It is possible for a phenomenon
known as cascading rollback to occur, when an uncommit-
ted transaction has to be rolled back because it read an item
from a transaction that failed.

This is illustrated in the following schedule:

Example: 

S: R
1
(X); W

1
(X); R

2
(X); R

1
(Y); W

2
(X); W

1
(Y); A

1
, A

2

The above schedule is represented as follows:

T1 T2

R1(x)

W1(x)

R2(x)

R1(y)

W2(x)

W1(y)

A1

A2

Transaction T
2
 has to be rolled back because it reads item x

from T
1
,

and T

1
 is then aborted, because cascading rollback

Chapter 4  •  Transaction and Concurrency  |  4.73

can be quite time consuming since numerous transactions can
be rolled back. It is important to characterize the schedules
where this phenomenon is guaranteed not to occur.

A scheduled is said to be cascadeless if every transaction
in the schedule reads only items that were written by com-
mitted transaction. In this case, all items read will not be
discarded, so no cascading rollback will occur.

Strict Schedule
A schedule is called strict schedule, in which transactions
can neither read nor write an item x until the last transaction
that wrote x has committed or aborted

	 1.	 All strict schedules are cascadeless
	 2.	 All cascadeless schedules are recoverable

Equivalence of Schedules
There are several ways to define equivalence of schedules
as follows:

	 1.	 Result equivalent
	 2.	 Conflict equivalent
	 3.	 View equivalent

Result Equivalent
Two schedules are called result equivalent if they produce
the same final state of the database. However, two different
schedules may accidentally produce the same final state.

Example:  Check whether the two schedules are result
equivalent or not:

S1 S2

Read item (x); Read item (x)

X = X + 20; X = X * 1.1;

Write item (x); Write item (x);

Solution: 
Schedules S

1
 and S

2
 will produce the same final database

state if they execute on a database with an initial value of x
= 200; but for other initial values of x, the schedules are not
result equivalent

For two schedules to be equivalent, the operations
applied to each data item affected by the schedules should
be applied to that item in both schedules in the same order.
The other two definitions of equivalence of schedules gen-
erally used are conflict equivalence and view equivalence

Conflict Equivalence
Two schedules are said to be conflict equivalent if the order
of any two conflicting operations is the same in both sched-
ules. If two conflicting operations are applied in different
orders in two schedules, the effect can be different on the
database or on other transactions in the schedule, and hence
the schedules are not conflict equivalent.

Example: 

S1 S3

r1(x) W1(x)

W2(x) W2(x)

S2 S4

W2(x) W2(x)

r1(x) W1(x)

The value read by r
1
(x) can be different in the two sched-

ules. Similarly, if two write operations occur in the order
w

1
(x), w

2
(x) in s

3
, and in the reverse order w

2
(x), w

1
(x) in s

4
,

the next r(x) operation in the two schedules will read poten-
tially different values.

Testing for Conflict Serializability
The following algorithm can be used to test a schedule for
conflict serializability. The algorithm takes read item and
write item operations in a schedule to construct a prec-
edence graph or serialization graph, which is a directed
graph G(N, E) here N is a set of Nodes N = {T

1
, T

2
, …. T

n
} and E

is a set of directed edges E = {e
1
, e

2
, ….. E

m
} There is one node

in the graph for each transaction. T
i
 in the schedule. Each

edge e
i
 in the graph is of the form (T

j
→ T

k
), 1 ≤ j ≤ n, 1 ≤ k ≤ n,

Where T
j
 is the starting node of e

i
 and T

k
 is the ending

node of e
i
.

Edge is created if one of the operations in T
j
 appears in

the schedule before some conflicting operation in T
k

Algorithm
	 1.	 For each transaction T

i
 participating in schedule S,

create a node labelled T
i
 in the precedence graph

	 2.	 For each case in S where T
j
 executes a read item (x)

after T
i
 executes a write item (x), create an edge (T

i
 →

T
j
) in the graph

	 3.	 For each case in S where T
j
 executes a write item (x)

after T
i
 executes a read item (x), create an edge (T

i
 →

T
j
) in the graph

	 4.	 For each case in S where T
j
 executes a write item (x)

after T
i
 executes a write item (x), create an edge (T

i
 →

T
j
) in the precedence graph

	 5.	 The schedule S is serializable, if the precedence graph
contains no cycles

A cycle in a directed graph is a sequence of edges C = ((T
j

→ T
k
), (T

k
 → T

p
), . . . (T

i
 → T

j
))

With the property that the starting node of each edge,
except the first edge is the same as the ending node of the
previous edge, and the starting node of the first edge is the
same as the ending node of the last edge.

Example:  Check whether the given schedule is conflict
serializable or not by drawing precedence graph:

4.74  |  Unit 4  •  Databases

T1 T2 T3

R1(x)

W2(x)

R3(x)

W1(x)

W3(x)

R1(x)

Solution: 
First identify the conflicts:
(T

1
 → T

2
) WR conflict

(T
2
 → T

1
) WW conflict

(T
2
 → T

3
) RW conflict

(T
3
 → T

1
) WR conflict

(T
1
 → T

3
) WW conflict

Take transactions as nodes in the precedence graph:

T1 T2

T3

The precedence graph has cycle, which says that the sched-
ule is not serializable.

View Equivalence and View Serializability
View equivalence is less restrictive compared to conflict
equivalence. Two schedules S and S′ are said to be view
equivalent if the following three conditions hold:

	 1.	 The same set of transactions participate in S and S′,
and S and S′ include the same operations of those
transactions

	 2.	 For any operation r
i
(x) of T

i
 in S, if the value of x read

by the operation has been written by an operation w
j

(x) of T
j
, the same condition must hold for the value

of x read by operation r
i
 (x) of T

j
 in S′

	 3.	 If the operation w
k
(y) of T

k
 is the last operation to

write Y in S, then W
k
 (y) of T

k
 must also be the last

operation to write item Y in S′

The idea behind view equivalence is that as long as each
read operation of a transaction reads the result of the same
write operation in both schedules, the write operations of
each transaction must produce the same result. Hence the
read operation is said to see the same view in both schedules:

	 1.	 A schedule S is said to be view serializable if it is
view equivalent to a serial schedule.

	 2.	 All conflict serializable schedules are view
serializable, but vice versa is not true.

Exercises

Practice Problem 1
Directions for questions 1 to 20:  Select the correct alterna-
tive from the given choices.
	 1.	 Consider the given schedules S

1
 and S

2

		 S
1
: r

1
(x), r

1
(y), r

2
(x), r

2
(y), w

2
(y), w

1
(x)

		 S
2
: r

1
(x), r

2
(x), r

2
(y), w

2
(y), r

1
(y), w

1
(x)

		 Which schedule is conflict serializable?
	 (A)	 S

1
 	 (B)	 S

2

	 (C)	 S
1
 and S

2
	 (D)	 None of these

	 2.	 Consider the given schedule with three transactions T
1
,

T
2
 and T

3
:

T1 T2 T3

r1(x)

r2(y)

r3(y)

w2(y)

w1(x)

w3(x)

r2(x)

w2(x)

	 	 Which of the following is correct serialization?
	 (A)	 T

2
→ T

1
→ T

3
	 (B)	 T

1
→ T

3
→ T

2

	 (C)	 T
3
→ T

1
→ T

2	
(D)	 None of these

	 3.	 Consider the three data items D
1
, D

2
 and D

3
 and the

following execution of schedules of transactions T
1
, T

2

and T
3
:

T1 T2 T3

R(D2)

R(D2)

W(D2)

R(D2)

R(D3)

R(D1)

W(D1)

W(D2)

W(D3)

R(D1)

R(D2)

W(D2)

W(D1)

		 Which of the following is true?
	 (A)	 The schedule is conflict serializable
	 (B)	 The schedule is not conflict serializable
	 (C)	 The schedule has deadlock
	 (D)	 Both (A) and (C)

Chapter 4  •  Transaction and Concurrency  |  4.75

	 4.	 Consider the given schedule

T3 T4 T7

R(Q)

W(Q)

W(Q)

R(Q)

W(Q)

		 Which of the following is the correct precedence graph
for the above schedule?

	 (A)	 T7T4T3

	 (B)	 T7 T4T3

	 (C)	 T7 T4 T3

	 (D)	 T7T4T3

	 5.	 Consider two Transactions T
1
 and T

2
 and four sched-

ules: S
1
, S

2
, S

3
 and S

4
 of T

1
 and T

2
:

		 T
1
:	 r

1
(x), w

1
(x), w

1
(y)

		 T
2
:	 r

2
(x), r

2
(y), w

2
(y)

		 S
1
:	 r

1
(x), r

2
(x), r

2
(y), w

1
(x), w

1
(y), w

2
(y)

		 S
2
:	 r

1
(x), r

2
(x), r

2
(y), w

1
(x), w

2
(y), w

1
(y)

		 S
3
:	 r

1
(x), w

1
(x), r

2
(x), w

1
(y), r

2
(y), w

2
(y)

		 S
4
:	 r

2
(x), r

2
(y), r

1
(x), w

1
(x), w

1
(y), w

2
(y)

		 Which schedules are conflict serializable in the given
schedules?

	 (A)	 S
1
 and S

2

	 (B)	 S
1
 and S

3

	 (C)	 S
2
 and S

3

	 (D)	 S
1
 and S

4

	 6.	 Consider the following transactions with data items P
and Q initialized to ‘0’:

		 T
1
: read(P)

		 Read(Q)

		 if p = 0 then Q = Q + 1

		 Write(Q)

		 T
2
:	 read(Q)

		 Read(P)

		 if Q = 0 then p = p + 1

		 Write (P)

		 Any non-serial interleaving of T
1
 and T

2
 for concurrent

execution leads to
	 (A)	 a serializable schedule
	 (B)	 a schedule that is not conflict serializable
	 (C)	 a conflict serializable schedule
	 (D)	� a schedule for which a precedence graph cannot be

drawn

	 7.	 Consider the concurrent execution of two transactions
T

1
 and T

2
, if the initial values of x, y, M and N are 200,

100, 10, 20 respectively. What are the final values of x
and y?

T1 T2

read-item(x)

x = x – N

read-item(x)

x = x + M

Write-item(x)

read-item(y)

Write-item(x)

y = y + N

Write-item(y)

	 (A)	 220, 110	 (B)	 210, 120
	 (C)	 220, 120	 (D)	 210, 110

	 8.	 For the above data, if the transactions are executed in
serial manner, what would be the values of X and Y at
the end of the serial execution of T

1
 and T

2
?

T1 T2

Read-item(x)

X = X – N

Write-item(x)

Read-item(y)

Y = Y + N

Write-item(y)

Read-item(x)

X = X + M

Write-item(x)

	 (A)	 190, 120
	 (B)	 180, 120
	 (C)	 190, 110
	 (D)	 180, 110

	 9.	 Consider the given two transactions T
1
 and T

2
:

		 T
1
:	 r

1
(x), w

1
(x), r

1
(y)

4.76  |  Unit 4  •  Databases

		 T
2
:	 r

2
(x), r

2
(y), w

2
(x), w

2
(y)

		 Which of the following schedules are complete schedules?
	 (A)	 r

1
(x), r

2
(x), w

1
(x), r

1
(y), r

2
(y), w

2
(x), w

2
(y)

	 (B)	 r
2
(x), r

1
(x), r

2
(y), w

1
(x), w

2
(x), r

1
(y), w

2
(y)

	 (C)	 r
1
(x), r

1
(y), r

2
(x), r

2
(y), w

1
(x), w

2
(x), w

2
(y)

	 (D)	 All the above

	10.	 Consider the given schedule with data-locks on data-
items, check whether it has dead-lock or not. The locks
are shared-lock(S) and Exclusive-lock(X). Shared-lock
is also called Read-lock, Exclusive-lock is also called
Write-lock. Read and Write operations are denoted by
R and W, respectively.

T1 T2 T3 T4

S(A)

R(A)

X(B)

W(B)

S(B)

S(C)

R(C)

X(C)

X(B)

X(A)

	 	 Which of the following is incorrect?
	 (A)	 T

1
 → T

2
	 (B)	 T

3
 → T

1

	 (C)	 T
2
 → T

3
	 (D)	 T

4
 → T

3

	11.	 Consider the three transactions T
1
, T

2
 and T

3
 and the

schedule S
1
 as given below. Draw the serializability

(precedence) graph for S
1
, and state whether the sched-

ule is serializable or not. If a schedule is serializable,
which one of the following is equivalent serial schedule?

		 T
1
:	 r

1
(x), r

1
(z), w

1
(x)

		 T
2
:	 r

2
(z), r

2
(y), w

2
(z), w

2
(y)

		 T
3
:	 r

3
(x), r

3
(y), w

3
(y)

		 S
1
:	 r

1
(x), r

2
(z), r

1
(z), r

3
(x), r

3
(y), w

1
(x), w

3
(y), r

2
(y),

w
2
(z), w

2
(y)?

	 (A)	� r
3
(x), r

3
(y), w

3
(y), r

1
(x), r

1
(z), w

1
(x), r

2
(z), r

2
(y),

w
2
(z), w

2
(y)

	 (B)	� r
1
(x), r

1
(z), w

1
(x), r

2
(z), r

2
(y), w

2
(z), w

2
(y), r

3
(x),

r
3
(y), w

3
(y)

	 (C)	� r
2
(z), r

2
(y), w

2
(z), w

2
(y), r

3
(x), r

3
(y), w

3
(y), r

1
(x),

r
1
(z), w

1
(x)

	 (D)	� r
2
(z), r

2
(y), w

2
(z), w

2
(y), r

1
(x), r

1
(z), w

1
(x), r

3
(x),

r
3
(y), w

3
(y)

	12.	 Consider the data given in the above question. Draw the
precedence graph for S

2
 and state whether each sched-

ule is serializable or not. If a schedule is serializable,
which of the following is equivalent serial schedule?

		 S
2
: 	 r

1
(x), r

2
(z), r

3
(x), r

1
(z), r

2
(y), r

3
(y), w

1
(x), w

2
(z),

w
3
(y), w

2
(y)

	 (A)	� r
3
(x), r

3
(y), w

3
(y), r

1
(x), r

1
(z), w

1
(x), r

2
(z), r

2
(y),

w
2
(z), w

2
(y)

	 (B)	� r
1
(x), r

1
(z), w

1
(x), r

2
(z), r

2
(y), w

2
(z), w

2
(y), r

3
(x),

r
3
(y), w

3
(y)

	 (C)	� r
2
(z), r

2
(y), w

2
(z), w

2
(y), r

3
(x), r

3
(y), w

3
(y), r

1
(x),

r
1
(z), w

1
(x)

	 (D)	� r
2
(z), r

2
(y), w

2
(z), w

2
(y), r

1
(x), r

1
(z), w

1
(x), r

3
(x),

r
3
(y), w

3
(y)

	13.	 Consider schedule S
3
, which is a combination of transac-

tions T
1
, T

2
 and T

3
 from Q. No.11.

		 S
3
:	 r

1
(x), r

2
(z), r

1
(z), r

3
(x), r

3
(y), w

1
(x), c

1
, w

3
(y), c

3
,

r
2
(y), w

2
(z), w

2
(y), c

2
?

		 Which of the following is true?
	 (A)	 Recoverable and conflict serializable
	 (B)	 Recoverable but not conflict serializable
	 (C)	 Conflict serializable but not Recoverable
	 (D)	 Not recoverable and not conflict serializable

	14.	 Consider the given schedule:

		 S
4
:	 r

1
(x), r

2
(z), r

1
(z), r

3
(x), r

3
(y), w

1
(x), w

3
(y), r

2
(y),

w
2
(z), w

2
(y), c

1
, c

2
, c

3
:

		 Which of the following is true?
	 (A)	 Recoverable and conflict serializable
	 (B)	 Recoverable but not conflict serializable
	 (C)	 Conflict serializable but not Recoverable
	 (D)	 Not recoverable and not conflict serializable

	15.	 Which of the following is correct for the below com-
patibility matrix?

Mode of Locks
Currently held by
other
transactions

Shared-Lock Exclusive-Lock

S

X

		 S – shared - Lock, X – Exclusive - Lock
	 (A)	

S X

S No No

X Yes No

	 (B)	

S X

S Yes No

X No No

	 (C)	

S X

S Yes Yes

X No No

	 (D)	

S X

S No Yes

X No No

Chapter 4  •  Transaction and Concurrency  |  4.77

	16.	 Consider the following schedule with locking:

T1 T2

Lock – X(A)

R(A)

W(A)

Lock – X(B)

R(B)

W(B)

Lock – X(A)

Lock – X(B)

		 Which of the following is true?
	 (A)	 schedule is in Dead–Lock state
	 (B)	 schedule is conflict serializable
	 (C)	 schedule is not conflict serializable
	 (D)	 Both A and B

	17.	 Consider the given set of transactions:

T1 T2

SELECT AVG (balance)

FROM Account

INSERT INTO Account

VALUES
(487, 2000);

COMMIT

SELECT AVG (balance)

FROM Account

COMMIT

		 The above problem is a case of
	 (A)	 READ UNCOMMITTED
	 (B) RAD COMMITTED
	 (C)	 REPEATABLE READ
	 (D)	 DIRTY READ

	18.	 Consider the given set of transactions

T1 T2

UPDATE ACCOUNT

SET balance = balance – 1000

WHERE number = 586;

SELECT AVG (balance)

FROM Account

ROLL BACK

COMMIT

		 The above problem is a case of
	 (A)	 READ UNCOMMITTED
	 (B)	 READ COMMITTED
	 (C)	 DIRTY READ
	 (D)	 BOTH A and C

	19.	 Consider the following set of transactions

T1 T2

SELECT AVG (balance)

FROM Account

UPDATE Account

SET balance =
balance – 4000

WHERE number = 586;

COMMIT

SELECT AVG (balance)

FROM Account

COMMIT

		 The above problem is a case of
	 (A)	 READ UNCOMMITTED
	 (B)	 READ COMMITTED
	 (C)	 REPEATABLE READ
	 (D)	 DIRTY READ

	20.	 Consider the following schedule with locks on data
items:

T1 T2 T3

X(A)

X(A)

X(A)

S(B)

S(B)

		 Which of the following is incorrect?
	 (A)	 T

2
 → T

1

	 (B)	 T
3
→ T

2

	 (C)	 T
3
→ T

1

	 (D)	 T
1
→ T

3

Practice Problem 2
Directions for questions 1 to 20:  Select the correct alterna-
tive from the given choices.
	 1.	 Which of the following is false with respect to B+ -

trees of order p?
	 (A)	 Each internal node has at most p tree pointers.

	 (B)	 Each leaf node has at most
p

2












 values.

	 (C)	� Each internal node, except the root, has at least

p

2












 tree pointers.

	 (D)	 All leaf nodes are at same level.

4.78  |  Unit 4  •  Databases

	 2.	 Consider below transactions:

T1 T2

Read - item(X);

X : = X - N;

Read - item (X);

X: = X + M;

Write - item(X);

Read - item (Y);

Write - item (X);

Y: = Y + N;

Write - item (Y);

		 Which of the following problem will occur during the
concurrent execution of the above transactions?

	 (A)	 Lost update problem because of incorrect X.
	 (B)	 Lost update problem because of incorrect Y.
	 (C)	 Dirty read problem because of incorrect X.
	 (D)	 Dirty read problem because of incorrect Y.

	 3.	 Consider the scheduled:

		 S: r
1
(X); r

2
(X); w

1
 (X); r

1
(Y); w

2
(X); C

2
; w

1
(Y); C

1
;

		 This schedule is
	 (A)	 Recoverable	 (B)	 Non-recoverable
	 (C)	 Strict schedule	 (D)	 Both (A) and (C)

	 4.	 Consider below schedule:

T1 T2

Read - item(X);

X : = X - N;

Read - item (X);

X: = X + M;

Write - item(X);

Read - item (Y);

Write - item (X);

Y: = Y + N;

Write - item (Y);

		 This schedule is
	 (A)	 Serializable
	 (B)	 Not serializable
	 (C)	 Under dead lock
	 (D)	 Both (B) and (C)

	 5.	 Let, current number of file records = r

		 maximum number of records = bfr

		 current number of file buckets = N

		 Then what will be the file load factor?

	 (A)	
r

bfr N()∗ 	
(B)	 r + (bfr * N)

	 (C)	 r * (bfr * N)	 (D)	 r * (bfr + N)

	 6.	 Match the following:

LIST I LIST II

1. Primary index A. Ordered key field

2. Clustering index B. Non-ordered
field

3. Secondary index C. Ordered non-key
field

	 (A)	 1 – A, 2 – B, 3 – C
	 (B)	 1 – A, 2 – C, 3 – B
	 (C)	 1 – C, 2 – B, 3 – A
	 (D)	 1 – C, 2 – A, 3 – B

	 7.	 Consider a file with 30,000 fixed length records of size
100 bytes stored on a disk with block size 1024 bytes.
Suppose that a secondary index on a non-ordering key
field is constructed with key field size 9 bytes and block
pointer 6 bytes. What will be the number of blocks
needed for the index?

	 (A)	 68	 (B)	 442
	 (C)	 1500	 (D)	 3000

	 8.	 Match the following:

Index type Number of Index entries

1. Primary Index A. Blocks in data file

2. Clustering
index

B. Record in data file

3. Secondary
key index

C. Distinct index filed values

	 (A)	 1 – A, 2 – B, 3 – C	 (B)	 1 – A, 2 – C, 3 – B
	 (C)	 1 – C, 2 – B, 3 – A	 (D)	 1 – C, 2 – A, 3 – B

	 9.	 Which of the following is true with respect to B – Tree
of order p?

	 (A)	 Each node has at most p tree pointers.
	 (B)	� Each node, except the root and leaf nodes, has at

least p

2






tree pointers.

	 (C)	 All leaf nodes are at the same level.
	 (D)	 All of these.

	10.	 What is the amount of unused space in allocation of uns-
panned fixed records of size R on a block of size B bytes?

	 (A)	 B - R	 (B)	 B
B

R
− 





	 (C)	 B
B

R
R− 





∗





 4 	 (D)	

B

R
R B







∗





 −

	11.	 What is the average time required to access a record in
a file consisting of b blocks using unordered heap linear
search?

	 (A)	 b	 (B)	 b/2

	 (C)	 log2
b

	 (D)	 b2

	12.	 Consider a file of fixed length records of size R bytes. If
the block size is B bytes, then the blocking factor will be

Chapter 4  •  Transaction and Concurrency  |  4.79

	 (A)	 B × R records	 (B)	
B

R






records

	 (C)	
B

R






records 	 (D)	 B + R records

	13.	 Consider the following relation instance:

P Q R

1 4 2

1 5 3

1 6 3

3 2 2

		 Which of the following FDs are satisfied by the instance?
	 (A)	 PQ → R and R → Q	 (B)	 QR → P and Q → R
	 (C)	 QR → P and P → R	 (D)	 PR → Q and Q → P

	14.	 Consider an ordered file with 30,000 records stored on
a disk with block size of 1024 bytes. The records are
of fixed size and are of unspanned, with record length
100 bytes. What is the number of accesses required to
access a data file using binary search?

	 (A)	 10	 (B)	 12
	 (C)	 1500	 (D)	 3000

	15.	 What is the blocking factor for an index if the ordering
key field size is 9 bytes and block pointer is 6 bytes
long, and the disk block size is 1024 bytes?

	 (A)	 114	 (B)	 171
	 (C)	 341	 (D)	 68

	16.	 For a set of n transactions, there exist ______ different
valid serial schedules

	 (A)	 n	 (B)	 n2

	 (C)	 n/2	 (D)	 n!

	17.	 The number of possible schedules for a set of n transac-
tions is

	 (A)	 lesser than n!	 (B)	 much larger than n!
	 (C)	 n!	 (D)	 None

	18.	 Which one of the following is conflict operation?
	 (A)	 Reads and writes from the same transaction
	 (B)	 Reads and writes from different transaction
	 (C)	� Reads and writes from different transactions on

different data items.
	 (D)	� Reads and writes from different transaction on

same data.

	19.	 The following schedule S: r
3
(x), r

2
(x), w

3
(x), r

1
(x), w

1
(x)

is conflict equivalent to serial schedule
	 (A)	 T

1
 → T

3
 → T

1	
(B)	 T

2
 → T

1
 → T

3

	 (C)	 T
1
 → T

2
 → T

3	
(D)	 None

	20.	 The following schedule S: R
1
(x), R

2
(x), W

1
(x), W

2
(x) is

	 (A)	 Conflict serializable	 (B)	 View serializable
	 (C)	 Both 	 (D)	 None

Previous Years’ Questions

	 1.	 Consider the following four schedules due to three trans-
actions (indicated by the subscript) using read and write
on a data item x, denoted by r(x) and w(x), respectively.
Which one of the them is conflict serializable?� [2014]

	 (A)	 r
1
(x); r

2
(x); w

1
(x); r

3
(x); w

2
(x)

	 (B)	 r
2
(x); r

1
(x); w

2
(x); r

3
(x); w

1
(x)

	 (C)	 r
3
(x); r

2
(x); r

1
(x); w

2
(x); w

1
(x)

	 (D)	 r
2
(x); w

2
(x); r

3
(x); r

1
(x); w

1
(x)

	 2.	 Consider the following schedule S of transactions T
1
,

T
2
, T

3
, T

4
:

T1 T2 T3 T4

Reads (X)

Writes (X)
Commit

Writes (X)
Commit

Writes (Y)
Reads (Z)
Commit

Reads (X)
Reads (Y)
Commit

		 Which one of the following statements is correct?
� [2014]

	 (A)	 S is conflict-serializable but not recoverable
	 (B)	 S is not conflict-serializable but is recoverable
	 (C)	 S is both conflict-serializable and recoverable
	 (D)	� S is neither conflict-serializable nor it is recover-

able

	 3.	 Consider the following transaction involving two
bank accounts x and y.

		 read (x) ; x : = x – 50; write (x) ; read(y); y : = y + 50;
write(y)

		 The constraint that the sum of the accounts x and y
should remain constant is that of � [2015]

	 (A)	 Atomicity	 (B)	 Consistency
	 (C)	 Isolation	 (D)	 Durability

	 4.	 Consider a simple checkpointing protocol and the fol-
lowing set of operations in the log.

		� (start, T
4
); (write, T

4
, y, 2, 3); (start, T

1
); (commit, T

4
);

(write, T
1
, z, 5, 7);

		 (checkpoint);

		� (start, T
2
); (write, T

2
, x, 1, 9); (commit, T

2
); (start, T

3
),

(write, T
3
, z, 7, 2);

		� If a crash happens now and the system tries to recover
using both undo and redo operations. What are the
contents of the undo list and the redo list?� [2015]

4.80  |  Unit 4  •  Databases

	 (A)	 Undo: T
3
, T

1
; Redo: T

2

	 (B)	 Undo: T
3
, T

1
; Redo: T

2
, T

4

	 (C)	 Undo: none; Redo: T
2
, T

4
, T

3
, T

1

	 (D)	 Undo: T
3
, T

1
, T

4
; Redo: T

2

	 5.	 Consider the following partial schedule S involving
two transactions T

1
 and T

2
. Only the read and the write

operations have been shown. The read operation on
data item P is denoted by read(P) and the write opera-
tion on data item P is denoted by write(P)

Time Instance

Transaction – id

T
1

T
2

1 read(A)

2 write(A)

3 read(C)

4 write(C)

5 read(B)

6 write(B)

7 read(A)

8 commit

9 read(B)

		 Schedule S

		 Suppose that the transaction T
1
 fails immediately after

time instance 9. Which one of the following state-
ments is correct?� [2015]

	 (A)	� T
2
 must be aborted and then both T

1
 and T

2
 must

be re-started to ensure transaction atomicity.
	 (B)	� Schedule S is non-recoverable and cannot ensure

transaction atomicity.
	 (C)	� Only T

2
 must be aborted and then re-started to

ensure transaction atomicity.
	 (D)	� Schedule S is recoverable and can ensure atomic-

ity and nothing else needs to be done.

	 6.	 Which one of the following is NOT a part of the
ACID properties of database transactions?� [2016]

	 (A)  Atomicity
	 (B)  Consistency
	 (C)  Isolation
	 (D)  Deadlock - freedom

	 7.	 Consider the following two phase locking protocol.
Suppose a transaction T accesses (for read or write
operations), a certain set of objects {O

1
, ….. , O

k
).

This is done in the following manner:� [2016]

		 Step 1. T acquires exclusive locks to O
1
,….O

k
 in

increasing order of their addresses.

		 Step 2. The required operations are performed.

		 Step 3. All locks are released.

		 This protocol will

	 (A)	 guarantee serializability and deadlock-freedom.
	 (B)	� guarantee neither serializability nor deadlock-

freedom.
	 (C)	� guarantee serializability but not deadlock-free-

dom.
	 (D)	�� guarantee deadlock-freedom but not serializa-

bilty.
	 8.	 Suppose a database schedule S involves transactions

T
1
,….T

n
. Construct the precedence graph of S with

vertices representing the transactions and edges rep-
resenting the conflicts. If S is serializable, which one
of the following orderings of the vertices of the prec-
edence graph is guaranteed to yield a serial schedule?

� [2016]
	 (A)	 Topological order
	 (B)	 Depth - first order
	 (C)	 Breadth - first order
	 (D)	� Ascending order of transaction indices

	 9.	 Consider the following database schedule with two
transactions T

1
 and T

2
.

		 S = r
2
(X); r

1
(X); r

2
(Y); w

1
(X); r

1
(Y); w

2
(X); a

1
;a

2

		 Where r
i
 (Z) denotes a read operation by transaction

T
i
 on a variable Z, w

i
(Z) denotes a write operation by

T
i
 on a variable Z and ai denotes an abort by transac-

tion T
i
.

		 Which one of the following statements about the
above schedule is TRUE?� [2016]

	 (A)	 S is non - recoverable
	 (B)	 S is recoverable, but has a cascading abort
	 (C)	 S does not have a cascading abort
	 (D)	 S is strict.

	10.	 In a database system, unique timestamps are assigned
to each transaction using Lamport’s logical clock. Let
TS(T

1
) and TS(T

2
) be the timestamps of transactions

T
1
 and T

2
 respectively. Besides, T

1
 holds a lock on the

resource R, and T
2
 has requested a conflicting lock on

the same resource R. The following algorithm is used
to prevent deadlocks in the database system assum-
ing that a killed transaction is restarted with the same
timestamp.

if TS(T2) < TS(T1) then
T1 is killed

else T2 waits.
		 Assume any transaction that is not killed terminates

eventually. Which of the following is TRUE about the
database system that uses the above algorithm to pre-
vent deadlocks?� [2017]

	 (A)	� The database system is both deadlock-free and
starvation-free.

	 (B)	� The database system is deadlock-free, but not
starvation-free.

Chapter 4  •  Transaction and Concurrency  |  4.81

Answer Keys

Practice Problem 1
	 1.  B	 2.  B	 3.  B	 4.  B	 5.  C	 6.  B	 7.  B	 8.  A	 9.  A	 10.  D
	11.  A	 12.  A	 13.  A	 14.  C	 15.  B	 16.  D	 17.  C	 18.  D	 19.  B	 20.  D

Practice Problem 1
	 1.  B	 2.  A	 3.  A	 4.  D	 5.  A	 6.  B	 7.  B	 8.  B	 9.  D	 10.  C	
11.  B	 12.  B	 13.  B	 14.  B	 15.  D	 16.  D	 17.  C	 18.  D	 19.  A	 20.  D

Previous Years’ Questions
	 1.  D	 2.  C	 3.  B	 4.  A	 5.  B	 6.  D	 7.  A	 8.  A	 9.  C	 10.  A
	11.  54

	 (C)	� The database system is starvation-free, but not
deadlock-free.

	 (D)	� The database system is neither deadlock-free nor
starvation-free.

	11.	 Two transactions T
1
and T

2
are given as

T
1
: r

1
(X)w

1
(X)r

1
(Y)w

1
(Y)

T
2
: r

2
(Y)w

2
(Y)r

2
(Z)w

2
(Z)

		 where r
i
(V) denotes a read operation by transaction

T
i
on a variable V and w

i
(V) denotes a write operation

by transaction T
i
on a variable V. The total number of

conflict serializable schedules that can be formed by
T

1
 and T

2
is _______.� [2017]

	Unit 4: Databases
	Chapter 4: Transaction and Concurrency
	Introduction
	Transaction
	Concurrency Control
	Transaction Processing Systems
	Concurrency Control with Locking Methods
	Deadlocks
	Concurrency Control with Time Stamping Methods
	Serializability
	Recoverability
	Equivalence of Schedules
	Exercises
	Previous Years’ Questions
	Answer Keys

