Angle and Cyclic 17 Properties of a Circle

STUDY NOTES

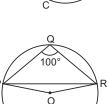
- The angle subtended by an arc of a circle at the centre is twice the angle subtended by it at any point on the remaining part of the circumference.
- Angles in the same segment of a circle are equal. Or in other words, angles subtended by an arc of a circle at any point on the remaining part of the circumference are equal.
- The angle in a semi-circle is a right angle.
- If an arc of a circle substends a right angle at any point on the remaining part of the circle, then the arc is a semi circle.
- If a quadrilateral is inscribed in a circle, then the quadrilateral is known as a cyclic quadrilateral. Thus, the vertices of a cyclic quadrilateral lie on the circumference of a circle.
- The points which lie on the circumference of the same circle are known as concyclic points.
- The opposite angles of a cyclic quadrilateral are supplementary.
- The converse of this theorem is also true, i.e., if the opposite angles of a quadrilateral are supplementary, then the quadrilateral is cyclic.
- The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.
- Every cyclic parallelogram is a rectangle.
- An isosceles trapezium is always cyclic.
- A cyclic trapezium is isosceles and its diagonals are equal.
- Any four vertices of a regular pentagon lie on a circle.
- If two chords of a circle bisect each other, they are diameters of the circle.
- Quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic.
- The mid-point of the hypotenuse of a right triangle is equidistant from its vertices.

QUESTION BANK

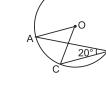
A. Multiple Choice Questions

Choose the correct option:

- 1. In the figure, O is the centre of the circle. If $\angle ABC = 20^\circ$, then $\angle AOC$ is equal to :
 - (a) 20°
 - (b) 40°
 - (c) 60°
 - (d) 10°
- 2. In the figure, $\angle PQR = 100^\circ$, where P, Q and R are points on a circle with centre O, then $\angle OPR =$
 - (a) 15°
 - (b) 12°
 - (c) 10°
 - (d) 8°



[1 Mark]



- 3. In the figure, if $\angle ABC = 69^\circ$, $\angle ACB = 31^\circ$, then $\angle BDC =$
 - nen ∠BD
 - (a) 60°
 - (b) 70°
 - (c) 80°
 - (d) 100°

4. In the figure, if AOB is a diameter of the circle and AC = BC, then \angle CAB is equal to :

- (a) 30°
- (b) 60°
- (c) 90°
- (d) 45°
- 5. In the figure, O is the centre of the circle.
 - If $\angle OAB = 40^\circ$, then $\angle ACB$ is equal to :
 - (a) 50° (b) 40°
 - (c) 60° (d) 70°
- 6. In the figure, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠BEC = 130° and ∠ECD = 20°, then ∠BAC =
 (a) 100°
 (b) 102°
 - (a) 100° (b) 102° (c) 50° (d) 110°
- 7. ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If $\angle DBC = 70^{\circ}$, and $\angle BAC = 30^{\circ}$, then $\angle BCD =$ (a) 60° (b) 70° (c) 80° (d) 75°
- 8. The value of y in the given figure, where O is the centre of the circle, is:
 (a) 50°
 (b) 45°

(aj	50	(0)	45
	~	100	(1)	2 50

- (c) 40° (d) 35°
- 9. In the given figure, O is the centre of the circle. If $\angle ADC = 118^\circ$, then the value of x is :

(a)	18°	(b) 28°
(c)	32°	(d) 46°

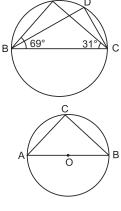
10. ABCD is a parallelogram. A circle passes through A and D, cuts AB at P and DC at Q. If $\angle BPQ = 80^\circ$, then $\angle ABC$ is equal to : (a) 60°

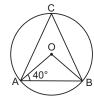
(a)	60°	(b)	/3°
$\langle \rangle$	0.00	(1)	1050

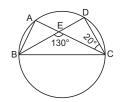
- (c) 80° (d) 105°
- In the given figure, AB and CD are two equal chords of a circle with centre O. OP and OQ are perpendiculars on chord AB and CD respectively. If ∠POQ = 140°, then ∠APQ is equal to :

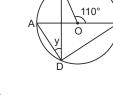
(a) 70°	(b) 80°
---------	---------

(c) 95° (d) 105°

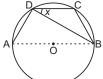


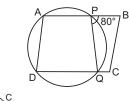






B





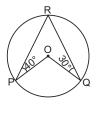
- 12. In the given figure, O is the centre of the circle. If $\angle OPR$ and $\angle OQR$ are 40° and 30° respectively then, the measure of $\angle POQ$ is
 - (a) 160° (b) 150° (c) 140° (d) 130°
- 13. In the figure, O is the centre of the circle. If $\angle OAB = 40^{\circ}$, then the measure of $\angle ACB$ is:
 - (a) 40° (b) 50°
 - (c) 60° (d) 75°
- 14. In the given figure, if O is the centre of the circle and $\angle AOC = 130^{\circ}$, then $\angle ABC$ is equal to :

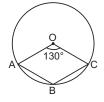
(a)	115°	(b)	120°
(c)	135°	(d)	150°

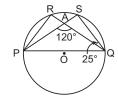
15. In the given figure, O is the centre of the circle. If $\angle PAQ = 120^{\circ}$ and $\angle RQS = 25^{\circ}$, then the measure of $\angle PRQ$ is equal to : (a) 95°

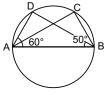
(a)	95°	(b)	105°
(c)	115°	(d)	135°

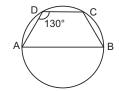
- 16. In the figure, if ∠DAB = 60°, ∠ABD = 50°, then ∠ACB is equal to :
 (a) 60°
 (b) 50°
 (c) 70°
 (d) 80°
- 17. ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and ∠ADC = 130°, then ∠BAC is equal to:
 (a) 80°
 (b) 50°
 - (c) 40° (d) 30°
- 18. In the figure, if ∠AOB = 90° and ∠ABC = 30°, then ∠CAO is equal to :
 (a) 30°
 (b) 45°
 - (c) 90° (d) 60°
- 19. In the figure, O is the centre of the circle. The angle subtended by the arc BCD at the centre is 140°, BC is produced to P, then $\angle BAD + \angle BCD =$
 - (a) 160° (b) 170°
 - (c) 180° (d) 210°
- **20.** In the figure, chord ED is parallel to the diameter AC of the circle. Given, $\angle CBE = 65^{\circ}$, then $\angle DEC =$
 - (a) 35° (b) 30°
 - (c) 25° (d) 20°

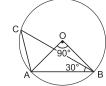




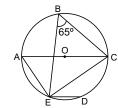


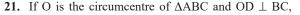












- then $\angle BOD =$
- (a) ∠A
- (b) ∠B
- (c) ∠C
- (d) none of these

22.	In the given figure, the value	of x is :
	(a) 86°	(b) 84°
	(c) 82°	(d) 80°

A. Answers

1. (b)	2. (c)	3. (c)	4. (d)	5. (a)	6. (d)	7. (c)	8. (d)	9. (b)	10. (c)
11. (a)	12. (c)	13. (b)	14. (a)	15. (a)	16. (c)	17. (c)	18. (d)	19. (c)	20. (c)
21. (a)	22. (c)								

B. Short Answer Type Questions

- In the given figure, angles subtended by arcs AC and BC at the centre O of the circle are 55° and 155° respectively. Find ∠ACB.
- Sol. OA = OC [Radii] In $\triangle AOC$, $\angle OAC = \angle OCA = x$ Now, $\angle OAC + \angle AOC + \angle ACO = 180^{\circ}$ $\Rightarrow x + 55^{\circ} + x = 180^{\circ} \Rightarrow 2x = 180^{\circ} - 55^{\circ} \Rightarrow 2x = 125^{\circ} \Rightarrow x = \frac{125}{2} = 62.5^{\circ}$. OB = OC [Radii] In $\triangle BOC$, $\angle OBC = \angle OCB = y$ Now, $\angle BOC + \angle OBC + \angle OCB = 180^{\circ}$ $\Rightarrow 155^{\circ} + y + y = 180^{\circ} \Rightarrow 2y = 180^{\circ} - 155^{\circ} \Rightarrow y = \frac{25^{\circ}}{2} = 12.5^{\circ}$ But, $\angle ACB = \angle ACO + \angle BCO = 62.5 + 12.5 = 75^{\circ}$
 - BC is a chord of a circle with centre O. A is a point on major arc BC as shown in the figure. Prove that ∠BAC + ∠OBC = 90°.

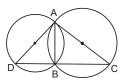
Sol. $\angle BOC = 2 \angle BAC$ $\Rightarrow z = 2x$

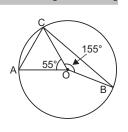
 $\Rightarrow z = 2x$ In $\triangle BOC$, Also, $\angle BOC + \angle OBC + \angle OCB = 180^{\circ}$ $\Rightarrow z + y + y = 180^{\circ} \Rightarrow 2x + y + y = 180^{\circ} \Rightarrow 2(x + y) = 180^{\circ} \Rightarrow x + y = \frac{180^{\circ}}{2} = 90^{\circ}$ $\Rightarrow \angle BAC + \angle OBC = 90^{\circ} \text{ Proved.}$

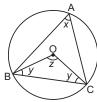
3. Two circles intersect at two points A and B. AD and AC are diameters of the two circles. Prove that B lies on the line segment DC.

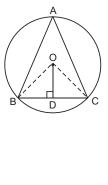
Sol. Join AB,

 $\angle ABD = 90^{\circ}$ [Angle in a semi-circle] $\angle ABC = 90$ [Angle in a semi-circle] $\Rightarrow \angle ABD + \angle ABC = 180^{\circ}$ $\Rightarrow DBC$ is a line, or B lies on the segment DC. **Proved.**









4. ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If $\angle DBC = 70^\circ$, $\angle BAC = 30^\circ$, find $\angle BCD$. Further, if AB = BC, find ∠ECD. **Sol.** $\angle DAC = \angle CBD = 70^{\circ}$ [Angles in the same segment] $\angle BAD = \angle BAC + \angle DAC = 30^{\circ} + 70^{\circ} = 100^{\circ}$ $\angle BCD + \angle BAD = 180^{\circ}$ [Opposite angles of a cyclie quad. are supplementary] $\Rightarrow \angle BCD + 100^\circ = 180^\circ \Rightarrow \angle BCD = 180^\circ - 100^\circ = 80^\circ$ AB = BC $\Rightarrow \angle BAC = \angle BCA = 30^{\circ}$ $\angle ECD = \angle BCD - \angle BCE = 80^{\circ} - 30^{\circ} = 50^{\circ}.$ 5. In the given figure, AB is a diameter of the circle. $\angle BDC = 20^{\circ}$ and \angle CBD = 25°. Find \angle AED and \angle ACD. **Sol.** $\angle BCD + \angle BDC + \angle CBD = 180^{\circ}$ $\Rightarrow \angle BCD + 20^{\circ} + 25^{\circ} = 180^{\circ} \Rightarrow \angle BCD + 45^{\circ} = 180^{\circ}$ $\Rightarrow \angle BCD = 180^{\circ} - 45^{\circ} \Rightarrow \angle BCD = 135^{\circ}$ $\angle BCA = 90^{\circ}$ [Angle in a semi-circle] $\angle ACD = \angle BCD - \angle BAC = 135^{\circ} - 90^{\circ} = 45^{\circ}$ $\angle \text{EBC} + \angle \text{BCE} + \angle \text{BEC} = 180^{\circ} \Rightarrow 25^{\circ} + 90^{\circ} + \angle \text{BEC} = 180^{\circ}$ $\Rightarrow 115^{\circ} + \angle BEC = 180^{\circ} \Rightarrow \angle BEC = 180^{\circ} - 115^{\circ} = 65^{\circ}$ $\angle BEC = 65^{\circ}$ $\angle AED = \angle BEC = 65^{\circ}$ [Vertically Opposite Angles] So, $\angle AED = 65^{\circ}$, $\angle ACD = 45^{\circ}$. 6. In the given figure, ABCD is a cyclic quadrilateral. O is the centre of the circle. If $\angle COD = 120^{\circ}$ and $\angle BAC = 30^{\circ}$, find $\angle BOC$ and $\angle BCD$. $\angle DAC = \frac{1}{2} \angle COD = \frac{1}{2} \times 120^\circ = 60^\circ$ Sol. [On the same segment] $\angle BAD = \angle DAC + \angle BAC = 60^{\circ} + 30^{\circ} = 90^{\circ}$ $\angle BCD + \angle BAD = 180^{\circ}$ [Opposite angles of a cyclic quad.] $\Rightarrow \angle BCD + 90^\circ = 180^\circ$ $\Rightarrow \angle BCD = 180^\circ - 90^\circ = 90^\circ$ $\angle BOC + \angle COD = 180^{\circ}$ [Linear Pair] $\Rightarrow \angle BOC + 120^\circ = 180^\circ$ $\Rightarrow \angle BOC = 180^\circ - 120^\circ = 60^\circ.$ 7. In the given figure, $\angle BAD = 65^{\circ}$, $\angle ABD = 70^{\circ}$ and $\angle BDC = 45^{\circ}$. Find ∠BCD (a) (b) $\angle ADB$. Hence, show that AC is a diameter of the circle. (a) $\angle BAD + \angle BCD = 180^{\circ}$ [Opposite angles of a cyclic quad.] Sol. $\Rightarrow 65^{\circ} + \angle BCD = 180^{\circ}$ $\Rightarrow \angle BCD = 180^{\circ} - 65^{\circ} = 115^{\circ}$ (b) $\angle ADB + \angle BAD + \angle ABD = 180^{\circ}$ $\Rightarrow \angle ADB + 65^{\circ} + 70^{\circ} = 180^{\circ}$ $\Rightarrow \angle ADB + 135^\circ = 180^\circ$ $\Rightarrow \angle ADB = 180^{\circ} - 135^{\circ} = 45^{\circ}$ Since, $\angle ADB + \angle BDC = 45^{\circ} + 45^{\circ} = 90^{\circ}$ So, AC is a diameter of the circle.

8. In the figure, A, D, B, C are four points on the circumference of a circle with centre O. arc AB = 2 arc BC and ∠AOB = 108°. Calculate in degrees (a) ∠ACB (b) ∠CAB (c) ∠ADB.

Sol. Let
$$\angle BOC = x^\circ$$
, then $\angle AOB = 2x^\circ$
 $\Rightarrow 2x = 108^\circ \Rightarrow x = 54^\circ$
 $\angle BOC = 54^\circ$ and $\angle DOB = 108^\circ$
(a) $\angle ACB = \frac{1}{2} \angle AOB$
 $\Rightarrow \angle ACB = \frac{1}{2} \times 108^\circ = 54^\circ$
(b) $\angle CAB = \frac{1}{2} \angle COB = \frac{1}{2} \times 54^\circ = 27^\circ$
(c) $\angle ADB = \frac{1}{2}$ reflex $\angle AOB = \frac{1}{2} \times (360^\circ - 108^\circ) = \frac{1}{2} \times 252^\circ = 126^\circ$.

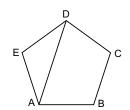
- 9. In the given figure, AB is a diameter of the circle. PQ is a chord such that ∠BAP = ∠ABQ. Prove that ABQP is a cyclic trapezium.
- Sol. ABQP is a cyclic quadrilateral.

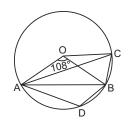
 $\angle BAP + \angle BQP = 180^{\circ} \qquad \dots(i)$ $\angle ABQ + \angle APQ = 180^{\circ} \qquad \dots(i)$ From (i) and (ii) $\angle BAP + \angle BQP = \angle ABQ + \angle APQ$ $\Rightarrow \angle BAP + \angle BQP = \angle BAP + \angle APQ \ [\angle BAP = \angle ABQ \text{ given}]$ $\Rightarrow \angle BQP = \angle APQ$ From (i), we have $\angle BAP + \angle APQ = 180^{\circ}$ Sum of the adjacent angles on the same side of the transversal AP of the line segment AB and PQ is 180^{\circ}. $\therefore AB \text{ and } PQ \text{ are parallel}$

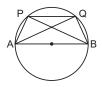
: ABQP is cyclic trapezium. Proved.

C. Long Answer Type Questions

- **1.** Prove that any four vertices of a regular pentagon are concyclic.
- Sol. Given, ABCDE is a regular pentagon AB = BC = CD = DE = AESum of all interior angles = 540° One interior angle = $\frac{540}{5} = 108^{\circ}$ In ΔADE AE = DE $\Rightarrow \angle ADE = \angle DAE$ $\angle ADE + \angle DAE + \angle AED = 180^{\circ}$. $\Rightarrow \angle ADE + \angle ADE + 108^{\circ} = 180^{\circ}$ $\Rightarrow 2\angle ADE = 72^{\circ} \Rightarrow \angle ADE = \frac{72^{\circ}}{2} = 36^{\circ}$ $\angle ADE = 108^{\circ} - 36^{\circ} = 72^{\circ}$ In quadrilateral ABCD







 $\angle DAB + \angle C = 72^{\circ} + 108^{\circ} = 180^{\circ}$. The sum of the opposite angles of a quadrilateral is 180°. ABCD is a cyclic quadrilateral So, A, B, C and D are concyclic. **Proved.**

- In the given figure, AC is the diameter of the circle with centre O. CD and BE are parallel, ∠AOB = 80° and ∠ACE = 10°.
 Calculate (a) ∠BEC (b) ∠BCD (c) ∠CED.
- Sol. (a) $\angle AOB + \angle BOC = 180^{\circ}$ $\Rightarrow 80^{\circ} + \angle BOC = 180^{\circ} \Rightarrow \angle BOC = 180^{\circ} - 80^{\circ} = 100^{\circ}$ And $\angle BEC = \frac{1}{2} \angle BOC$ [On the same segment] $= \frac{1}{2} \times 100^{\circ} \Rightarrow \angle BEC = 50^{\circ}$ (b) DC || EB $\angle DCE = \angle BEC = 50^{\circ}$ And $\angle AOB = 80^{\circ}$ $\angle ACB = \frac{1}{2} \angle AOB$ $\Rightarrow \angle ACB = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$

(c)
$$\angle BED = 180^{\circ} - \angle BCD = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

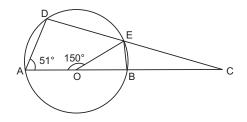
 $\angle CED = \angle BED - \angle BEC = 80^{\circ} - 50^{\circ} = 30^{\circ}.$

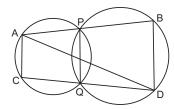
3. In the figure, O is the centre of the circle. $\angle AOE = 150^{\circ}, \angle DAO = 51^{\circ}.$ Calculate the measures of $\angle BEC$ and $\angle EBC$.

Sol.
$$\angle DAB + \angle BED = 180^{\circ}$$
 [sum of opp. angles of a cyclic quadrilateral]
 $\angle BED = 180^{\circ} - 51^{\circ} = 129^{\circ}$
 $\angle CEB = 180^{\circ} - \angle BED = 180^{\circ} - 129^{\circ}$
 $\Rightarrow \angle BEC = 51^{\circ}$
 $\Rightarrow \angle ADE = \frac{1}{2}$ reflex $\angle AOE = \frac{1}{2} (360^{\circ} - 150^{\circ}) = \frac{1}{2} \times 210^{\circ} = 105^{\circ}$
 $\angle ABE + \angle ADE = 180^{\circ}$ [Sum of opp. angles of a cyclic quadrilateral]
 $\Rightarrow \angle ABE + 105^{\circ} = 180^{\circ}$
 $\Rightarrow \angle CBE + 105^{\circ} = 180^{\circ}$
 $\Rightarrow \angle CBE + 75^{\circ} = 180^{\circ}$
 $\Rightarrow \angle CBE = 180^{\circ} - 75^{\circ} = 105^{\circ}.$

4. Two circles intersect at P and Q. Through P, a straight line APB is drawn to meet the circles in A and B. Through Q, a straight line is drawn to meet the circles at C and D. Prove that AC is parallel to BD.

Sol.ACQP is a cyclic quadirlateralSo, \angle CAP + \angle PQC= 180°PQDB is a cyclic quadirlateralSo, \angle PQD + \angle DBP= 180° \angle PQC + PQD = 180° [Linear pair]





From (i), (ii) and (iii), we have $\angle CAP + 180^{\circ} - \angle PQD = 180^{\circ}$ $\Rightarrow \angle CAP + 180^{\circ} - (180^{\circ} - \angle DBP) = 180^{\circ}$ $\Rightarrow \angle CAP + 180^{\circ} - 180^{\circ} + \angle DBP = 180^{\circ}$ $\Rightarrow \angle CAP + \angle DBP = 180^{\circ}$ $\Rightarrow \angle CAB + \angle DBA = 180^{\circ}$ AC || BD [Co-interior angles are supplementary] **Proved.**

B V V Q

5. In the figure, O is the centre of the circle. Prove that x + y = z.

Sol. $z = 2 \times \angle 3$ [On the same segment] $z = 2 \times \angle 4$ [On the same segment] ∴ ∠3 = ∠4 $\Rightarrow z = 2 \angle 3 = \angle 3 + \angle 3 = \angle 3 + \angle 4$...(i) $y = \angle 1 + \angle 3$ [Exterior angle = sum of interior opposite angles] $\Rightarrow \angle 3 = y - \angle 1$...(ii) From (i) and (ii), we have $z = y - \angle 1 + \angle 4$...(iii) $\angle 4 = \angle 1 + x$ $\Rightarrow \angle 4 - \angle 1 = x$...(iv) From (iii) and (iv), we have z = y + x **Proved.**

— * * * —