CLASSIFICATION

- 1. The hybrid state of C-atoms which are attached to a single bond with each other in the following structure are : $CH_2 = CH C \equiv CH$
 - (1) sp², sp
- (2) sp^3 , sp
- (3) sp^2 , sp^2
- (4) sp^2 , sp^3
- 2. Which of the following is an example of symmetrical or simple ether :
 - (1) CH_3 —C— CH_3

- (2) CH₃—O—CH₂—CH₃
- (3) CH₃—CH₂—O—CH₂—CH₂—CH₃
- (4) CH₃—CH—O—CH—CH₃

 CH₂

 CH₃

 CH₃
- 3. The higher homologue of dimethylamine (CH3-NH-CH3) has the structure :-
 - (1) CH₃-N-CH₃ CH₃

(2) CH₃—CH₂—CH₂—NH₂

(3) CH₃—NH—CH₂—CH₃

- (4) CH₃—CH—CH₃ | NH₂
- **4.** Which of the following are tertiary radicals :-
 - CH₃
 (a) CH₃-C-
- (b) CH₃-CH-
- (c) CH_3 CH_3 CH_3
- $\begin{array}{c} CH_3 \\ \text{(d)} \ CH_3\text{--}C\text{--}CH_2\text{--} \\ CH_3 \end{array}$

- (1) a and b
- (2) b and c
- (3) a and c
- (4) b and d

IUPAC NAME

- 5. The IUPAC name for isobutyl chloride is :-
 - (1) 2-Methyl-2-chloro butane
- (2) 2-Chloro-2-methyl butane
- (3) 1-Chloro-2-methyl propane
- (4) 2-Methyl-3-chloro propane
- **6.** Write the IUPAC names of following compounds:
 - $\begin{array}{c} CH_{_{3}} \\ \text{(i)} \qquad \mathring{C}H_{_{3}}-\mathring{C}H_{_{2}}-\mathring{C}H-\overset{\circ}{C}-\mathring{C}H_{_{3}} \\ CH_{_{3}} & CH_{_{3}} \end{array}$
- ii) $CH_3 CH_2 CH CH_2 CH CH_2 CH_3 CH_3$ $CH_3 - CH_3 - CH_3$
- (iii) $CH_3 CH_2 CH_3$ $CH_3 - C - CH_2 - CH - CH_2 - CH - CH_3$ $CH_3 - CH_3 - CH_3 - CH_3$

(v)

(vi)

(vii)

(xiii)

(ix)

7. Write the IUPAC name of the following compounds:-

(i)
$$CH_3 - CH_2 - CH - CH = CH - CH_2 - CH_3$$
 (iii) (iii)

8. Write the IUPAC name of the following compounds:-

(i)
$$CH_3 - CH_3 - C \equiv C - CH_3$$
 (ii)

(iii)
$$CH_3 - C \equiv CCH(CH_3)_2$$
 (iv) $H_3C - CH_2 - C - CH - C \equiv CH_3$ $CH_3 - CH_4 - CH_5 -$