CHAPTER1

Some Basic Concepts of Chemistry

CHAPTER ANALYSIS

	IIT J 201		HT J 201		HT .	JEE 12	1077000	dvanced 013	117790000	lvanced 14	90,000	lvanced 15	JEE Ac	lvanced 16		dvanced 17
	Pap	er	Pap	er	Pap	per	Pa	per	Pa	per	Pa	per	Pa	per	Pa	per
Topic	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
Importance of Chemistry																
Nature of Matter																
Properties of Matter and their Measurement	l								1							
Uncertainty in Measurement																
Laws of Chemical Combinations																
Dalton Atomic Theory																
Atomic and Molecular Masses																
Mole Concept and Molar Masses			1	1												
Percentage Composition			1		1			Xes :							3	
Stoichiometry and Stoichiometric Calculations																

QUESTIONS

1. The normality of 0.3 M	phosphorus acid	(H,PO_i)	18
---------------------------	-----------------	------------	----

(A) 0.1

(B) 0.9

(C) 0.3

(D) 0.6

(IIT JEE 1999)

2. At 100 °C and 1 atm if the density of the liquid water is 1.0 g cm⁻³ and that of water vapour is 0.0006 g cm⁻³, then the volume occupied by water molecules in 1 litre of steam at this temperature is

(A) 6 cm³

(B) 60 cm^3

(C) 0.6 cm^3

(D) 0.06 cm^3

(HT JEE 2000)

3. An aqueous solution of 6.3 g oxalic acid dehydrate is made up to 250 ml > the volume of 0.1 N NaOII required to completely neutralise 10 ml of this solution is

(A) 40 ml

(B) 20 ml

(C) 10 ml

(D) 4 ml

(IIT JEE 2001)

4. How many moles of an electron weighs one kilogram?

(A) 6.023×10^{23}

(B) $\frac{1}{9.108} \times 10^{31}$

(C) $\frac{6.023}{9.108} \times 10^{54}$

(D) $\frac{1}{9.108 \times 6.023} \times 10^8$

(IIT JEE Screening 2002)

5.	Write balanced equations for the reactions of the following compounds with water:	11. Among the following, the intensive property is (properties are)						
	(1) Al_4C_3 (2) CaNCN (3) BF ₃	(A) Molar conductivity						
	(4) NCl ₃ (5) XeF ₄	(B) Electromotive force						
	(IIT JEE Main 2002)	(C) Resistance						
6	Which of the following has the maximum number of	(D) Heat capacity						
6.	Which of the following has the maximum number of atoms?	(HT JEE 2010 Paper-1)						
	(A) 24 g of C (12) (B) 56 g of Fe (56)	12. Dissolving 120 g of urea (mol. wt. 60) in 1000 g of water						
	(C) 27 g of Al (27) (D) 108 g of Ag (108)	gave a solution of density 1.15 g/mL. The molarity of the						
	(IIT JEE Screening 2003)	solution is						
7.	Mixture $X = 0.02$ mol of $[Co(NH_3)_5SO_4]Br$ and 0.02 mol	(A) 1.78 M (B) 2.00 M						
,.	of [Co(NH ₃) ₅ Br]SO ₄ was prepared in 2 L of solution.	(C) 2.05 M (D) 2.22 M						
	1 L of mixture X + excess AgNO, \rightarrow Y	(IIT JEE 2011 Paper-1)						
	1 L of mixture X + excess BaCl, \rightarrow Z	13. A decapeptide (mol. wt. 796) on complete hydrolysis						
	Number of moles of Y and Z are	gives glycine (mol. wt. 75), alanine and phenylalanine.						
	(Λ) 0.01, 0.01 (B) 0.02, 0.01	Glycine contributes 47.0% to the total weight of the hydrolysed products. The number of glycine units pres-						
	(C) 0.01, 0.02 (D) 0.02, 0.02	ent in the decapeptide is						
	(IIT JEE Screening 2003)	(IIT JEE 2011 Paper-1)						
8.	Calculate the molarity of water if its density is							
	1000 kg/m ³ .	14. The volume (in mL) of 0.1 M AgNO ₃ required for complete precipitation of chloride ions present in 30 mL of						
	(IIT JEE Main 2003)	0.01 M solution of [Cr(H,O),Cl]Cl,, as silver chloride is						
9.	AIF, is insoluble in anhydrous HF but when little KF is	close to						
	added to the mixture it becomes soluble. On addition of	(HT JEE 2011 Paper-2)						
	BF ₃ , AlF ₃ is precipitated out. Write the balanced chemi-	15. 29.2% (w/w) HCl stock solution has density of						
	cal equations to depict these changes.	1.25 g mL ⁻¹ . The molecular weight of HCl is 36.5 g mol ⁻¹ .						
	(IIT JEE Main 2004)	The volume (mL) of stock solution required to prepare a						
10.	Given that the abundances of isotopes 54Fe, 56Fe and 57Fe	200 mL solution of 0.4 M HCl is						
	are 5%, 90% and 5%, respectively, the atomic mass of	(IIT JEE 2012 Paper-1)						
	Fe is	16. If the value of Avogadro number is 6.023×10^{23} mol ⁻¹						
	(A) 55.85 (B) 55.95	and the value of Boltzmann constant is 1.380×10^{-23}						
	(C) 55.75 (D) 56.05	J K ⁻¹ , then the number of significant digits in the calculated value of the universal gas constant is						
	(IIT JEE 2009 Paper-1)	(JEE Advanced 2014 Paper-1)						
		(old Advanced 2014 Taper-1)						
	ANSWER KEY							
1	. (D) 2. (C) 3. (A) 4. (D)							
	5. (1) $Al_4C_3 + 6H_5O \rightarrow 4Al (OH)_3 + 3CH_4$;							
	(2) $CaCN_2 + 5H_2O \rightarrow CaCO_3 + 2NH_4OH;$							
	(3) $BF_3 + 3H_2O \rightarrow B(OH)_3 + 3HF$;							
(4) $NCl_3 + 4H_2O \rightarrow NH_4OH + 3HOCl_5$								
	(5) $3XeF_4 + 6H_2O \rightarrow 2Xe + XeO_3 + 12HF + \frac{3}{2}O_2$							
6	8. 55.56 mol/L 9. K ₃ Al	$F_6 + 3BF_3 \rightarrow AlF_3 + 3KBF_4$ 10. (B) 11. (A), (B)						

13. 6

12. (C)

14. 6 **15.** 8 mL **16.** 4

ANSWERS WITH EXPLANATIONS

1. Topic: Mole Concept and Molar Masses

We know that

Normality = $M \times$ basicity

Basicity of phosphorus acid is 2. That is, phosphorus acid has two replaceable hydrogen atoms.

Therefore, Normality = $0.3 \times 2 = 0.6$

Answer (D)

2. Topic: Mole Concept and Molar Masses

Let volume of $H_2O = 1$ L; then mass = 1000 g

So, volume of 1000 g steam =
$$\frac{1000}{0.0006}$$
 cm³

Volume of molecules in 1000 g of steam is

$$=1000 \times \frac{0.0006}{1000} \times 1000 = 0.60 \text{ cm}^3$$

Answer (C)

3. Topic: Mole Concept and Molar Masses

Oxalic acid dehydrate is C₂H₂O₄·2H₂O

Equivalent mass of oxalic acid = $\frac{126}{2}$ = 63

Therefore, Normality of oxalic acid = $\frac{6.3}{63} \times \frac{1000}{250} = 0.4$

Now from, $N_1V_1 = N_2V_2$

Where, N_1 is normality of oxalic acid, V_1 is volume of oxalic acid, N_2 is normality of NaOH and V_2 is volume of NaOH. Substituting all values, we get

$$0.1 \times V_{\perp} = 0.4 \times 10$$

$$V_1 = \frac{0.4 \times 10}{0.1} = 40 \text{ mL}$$

Answer (A)

4. Topic: Mole Concept and Molar Masses

We know that the mass of electron is 9.108×10^{-31} kg. Therefore, mass of 1 mole of electrons is $9.108 \times 10^{-31} \times 6.023 \times 10^{23}$ kg.

Thus, the number of moles of electrons in 1 kg is

$$\frac{1}{9.108 \times 10^{-31} \times 6.023 \times 10^{23}} = \frac{10^8}{9.108 \times 6.023}$$

Answer (D)

5. Topic: Stoichiometry and Stoichiometric Calculations

- (1) $Al_4C_3 + 6H_2O \rightarrow 4Al(OH)_3 + 3CH_4$
- (2) CaCN, $+ 5H_2O \rightarrow CaCO_3 + 2NH_4OH$
- (3) $BF_3 + 3H_2O \rightarrow B(OH)_3 + 3HF$

(4)
$$NCl_3 + 4H_2O \rightarrow NH_4OH + 3HOC1$$

(5)
$$3XeF_4 + 6H_2O \rightarrow 2Xe + XeO_3 + 12HF + \frac{3}{2}O_2$$

6. Topic: Mole Concept and Molar Masses

24 g carbon is equal to 2 moles of carbon, so it contains $2 \times 6.023 \times 10^{23}$ atoms. 56 g of Fe, 27 g of Al and 108 g of Ag are equivalent to one mole and hence the number of atoms is 6.023×10^{23} .

Answer (A)

7. Topic: Mole Concept and Molar Masses

In concentration of the complexes in one litre of the solution is

$$[Co (NH_3)_5SO_4]Br = 0.01 mol$$

$$[Co(NH_3)_5Br]SO_4 = 0.01 \text{ mol}$$

Therefore, 0.01 mol of Br ion from X in 1 L of mixture will react with excess AgNO₃ to form 0.01 mol of AgBr. Similarly, 0.01 mol of SO₄ ion from Y in 1 L of mixture will react with excess BaCl, to form 0.01 mol of BaSO₄.

$$Ag^{+}_{Excess} + Br^{-}_{0.01 \text{ mole}} \rightarrow AgBr_{0.01 \text{ mole}}$$

$$\text{Ba}^{2+}_{\text{Excess}} + \text{SO}_{4}^{2-} \rightarrow \text{BaSO}_{4}$$
 0.01 mole

Answer (A)

8. Topic: Mole Concept and Molar Masses

Molarity is defined as the number of moles of solute present/volume of solution in litres.

It is given that the density is 1000 kg m⁻³; therefore,

1 L of water =
$$1 \text{ kg} = 1000 \text{ g}$$
.

Therefore, numbers of moles of solute present

$$= \frac{1000 \text{ (given mass)}}{18 \text{ (molecular mass)}} = 55.56 \text{ mol of H}_2\text{O}$$

Hence, molarity is 55.56 mol per litre.

Answer (55.56 mol/L)

9. Topic: Stoichiometry and Stoichiometric Calculations

Anhydrous HF is stabilised by hydrogen bonding and hence the extent of dissociation is less. Hence, AlF₃ when added to it is insoluble. On addition of KF, AlF₃ dissolves in HF with the formation of complex [AlF₆]³⁻

$$3KF + AlF_3 \rightarrow K_3AlF_6$$

On addition of BF₃, AlF₃ is precipitated out because BF₃ being more acidic can replace AlF₃ from the complex.

$$K_3AlF_6 + 3BF_3 \rightarrow AlF_3 + 3KBF_4$$

10. Topic: Atomic and Molecular Masses

The atomic mass of Fe based on relative abundances of isotopes is

$$54 \times \frac{5}{100} + 56 \times \frac{90}{100} + 57 \times \frac{5}{100} = 55.95$$

Answer (B)

11. Topic: Properties of Matter and their Measurement

Molar conductivity and emf are mass/size independent properties, hence intensive. Resistance and heat capacity are mass-dependent properties, hence extensive.

Answer (A), (B)

12. Topic: Mole Concept and Molar Masses

The mass of the solution of water and urea 1000 + 12 = 1012 g

Volume of solution
$$=$$
 $\frac{\text{Mass of solution}}{\text{Density of solution}}$
 $=$ $\frac{1012}{1.15}$ $=$ 973.91 g/mL

$$Molarity = \frac{Number of moles}{Volume of solution in litres}$$

Number of moles =
$$\frac{120}{60}$$
 = 2

Therefore, Molarity =
$$\frac{2}{0.974}$$
 = 2.05 M

Answer (C)

13. Topic: Percentage Composition

The hydrolysis reaction of peptide linkage is

$$\begin{array}{ccc}
O & & O \\
\parallel & & \parallel \\
-C - NH - & \longrightarrow & -C - OH + NH_2^-
\end{array}$$

Let *n* glycine units be present in the compound, then the total weight of the product will be

 $796 + 9 \times 18 = 958$ (since there are 9 water molecules) Percent weight of glycine in the given weight of product

$$\frac{75n}{958} \times 100 = 47\%$$

Therefore,

$$n = 47 \times \frac{958}{75} \times 100 = 6$$

Answer (6)

14. Topic: Mole Concept and Molar Masses

The reaction taking place is

$$2AgNO_3 + [Cr(H_2O)_5Cl]Cl_2$$

$$\downarrow$$

$$2AgCl + [Cr(H_2O)_5Cl](NO_3)_2$$

Using molarity equation

$$(M \times n \times V)_{AgNO_3} = (M \times n \times V)_{[Cr(H_2O)_5Cl]Cl_2}$$
$$0.1 \times 1 \times V = 0.01 \times 2 \times 30 \Rightarrow V = 6$$

Answer (6)

15. Topic: Percentage Composition

Given that density of solution = 1.25 g mL^{-1} . 29.2% HCl means 29.2 g of HCl in 100 g of the solution

Density of the solution =
$$\frac{\text{Mass of the solution}}{\text{Volume of solution}}$$

 $\Rightarrow V = \frac{100}{1.25} \text{mL}$

Now,

Molarity of the solution

=
$$\frac{\text{Number of moles of HCl}}{\text{Volume of solution}} \times 1000$$

= $\frac{29.2/36.5}{100/1.25} \times 1000 = 10 \text{ M}$

Using molarity equation, $M_1V_1 = M_2V_2$, we get

$$10 \times V = 0.4 \times 200 \Rightarrow V = 8 \text{ mL}$$

Answer (8)

16. Topic: Properties of Matter and their Measurement

Since, we know that

$$R = N_A \times k_B$$
= 6.023 × 10²³ × 1.380 × 10⁻²³
= 8.312 (four significant figures)

Answer (4)