SEXUAL REPRODUCTION IN FLOWERING PLANTS

1. Flower:

- A flower is a modified shoot for reproduction.
- Flowers bears reproductive organs where gametes are produced.
- Androecium represents the male reproductive organ and it consists of two part-
 - (1) Anther Bilobed structure having two theca i.e, dithecous
 - (2) Filament It is a long slender stalk.
 - Two microsporangia are present in each lobe of anther.
 - After maturation two microsporangia of each lobe fused together, hence mature anther has two microsporangia.

2. Structure of Microsporangium

In a T.S of typical Microsporangium appears near circular, it is generally surrounded by four layers.

Microsporangia surrounded by four layers-

(i) Epidermis- outer single celled thick layer,

(ii) Endothecium - It helps in dehiscence of anther.

(iii) Middle layer - it stores food.

(iv) Tapetum – nourishes developing pollen grains, possess dense cytoplasm and multi nucleate

3. Microsporogenesis :

- As the anther develops, the cells of the sporogenous tissue undergo meiotic divisions to form microspore tetrads.
- PMC (Pollen Mother Cell) undergo meiosis to form four haploid microspore.
- Each spore of sporogenous tissue act as a PMC.
- As the anthers mature and dehydrate, the microspores dissociate from each other and develop into **pollen** grains.

Structure of Pollen Grains -

- Pollen grains are generally spherical measuring about 25-50 micrometers in diameter.
- Pollen grains are bilayered in structure. Its outer layer is exine and inner layer is intine.

Exine	Intine
Outer layer	Inner to Exine
Sculptured & discontinuous	Smooth & continuous layer
layer	
Made up of sporopollenin	Made up of pectin and
(Most resistant biological	cellulose
material)	

Difference between Exine and Intine

Difference between Vegetative Cell and Generative Cell

Vegetative Cell	Generative Cell
Large size	Small size
Role – Food reserve and form	Role – Divide by mitosis to give
pollen tube	two male gamete
Nucleus irregular shape	Spindle shaped with dense cytoplasm and a nucleus, floats in the cytoplasm of vegetative cell

- Similarity between vegetative cell and generative cell is that both are haploid, genetically same, gametophytic generation.
- In over 60 per cent of angiosperms, pollen grains are shed at this 2-celled stage.
- In the remaining species, the generative cell divides mitotically to give rise to the two male gametes before pollen grains are shed (3-celled stage).
- **Pollen allergy** *Parthenium* or carrot grass that came into India as a contaminant with imported wheat, has become ubiquitous in occurrence and causes pollen allergy.
- **Pollen food supplement** In western country pollen grains are used as tables or syrup as a source of nutrient. It also increases the performance of athletes and race horses.
- **Viability of Pollen** Maximum time upto which pollen can form pollen tube.
 - Wheat, Paddy short viability (about half an hour)
 - In some members of Rosaceae, Leguminoseae and Solanaceae, viability is for months.
- **Storage of Pollen grain** Can be stored for years in liquid nitrogen (–196°C). Such stored pollen can be used as pollen banks in crop breeding programmes.

4. Carpel/Pistil:

- Gynoecium represents the female reproductive part of flower.
- **Monocarpellary –** Consist of single pistil.
- **Syncarpous** When pistil are more than one and fused together.
- **Apocarpous –** When pistil is free.

- Multicarpellary, Syncarpous pistil Papaver.
- Multicarpellary, Apocarpous pistil Michelia.

Carpel is unit of gynoecium and consist of three part-

- (i) Stigma
- (ii) Style

(iii) Ovary-one/many ovules attached with placenta inside the ovary

5. Megasporangium (Ovule):

- Ovule represents integumented megasporangium.
- Ovule consist of funicle, integument; nucellus and an opening is called micropyle.
- Embryo sac formation from single megaspore is termed monosporic development.

6. Megasporogenesis:

- Formation of megaspores is called megasporogenesis.
- During the process only one cell of the nucleus [Micropylar] differentiate into megaspore mother cell.
- Megaspore mother cell [MMC] undergoes meiotic division to produce four megaspores.
- In most of flowering plants, three megaspores [Micropylar] degenerate and remaining one [Chalazal] becomes functional megaspore.

7. Megametogenesis:

- The nucleus of functional megaspore undergoes three mitotic division to form 8 nucleated stage [Free nuclear division].
- After cytokinesis, 7-celled and 8-nucleated female gametophyte or embryosac is formed.
- Out of the seven cells, three at micropylar end form-Egg apparatus [Two synergids and one egg cell].
- Three cells towards the chalazal end are called antipodals. The large central cell has two polar nuclei.
- In a typical angiosperm, mature embryosac is seven celled and eight nucleated stage.

Comparison between Male Gametophyte and Female Gametophyte

Male Gametophyte	Female Gametophyte
Also known as Pollen grain	Also known as Embryo sac
Haploid, Multicellular	Haploid, Multicellular
2-3 cell	7 cells
Number of male gamete = 2	Number of female gamete = 1
All cell of sporogenous tissue is	Only one cell of nucellus is
PMC	MMC

Meiosis gives 4 microspore cell		Meiosis gives 4 megaspore but			
which later develop	into 4	only	one	is	functional
pollen grain		(monosporic)			

8. Pollination :

The transfer of pollen grains from anther to the stigma is called pollination.

Pollination is of two types-

1. Self pollination -

– Pollen from same plant.

- It involve autogamy & geitonogamy.

- (i) Autogamy Pollination within the same flower
- (ii) Geitonogamy Pollination in between the two different flowers of the same plant.

Types of flowers :

- Cleistogamous flower which do not open at all, anther and stigma lie close to each other.
- Only Autogamy occurs.

Chasmogamous flower :

- Have exposed anthers and stigma.
- **Example :** *Viola* (common pansy), *Oxalis* and *Commelina* shows both types of flowers.

2. Cross pollination -

- Involves pollen from different plant (same species)

– Involves xenogamy

Xenogamy - Transfer of pollen grains from anther to the stigma of a different plant.

Types of flower :

Unisexual flower :

- Plant bisexual : when both male and female flowers are present on same plant.
- **Example :** Cucumber, Castor, Coconut, Maize

Plant unisexual flower (dioecy) :

- Male and female flowers present on different plants.
- Example : Papaya, Date palm, Mulberry, Vallisneria
 Bisexual flower (monoecious) :

Example : Sweet potato, tomato, China rose

9. Agents of Pollination -

Geitnogamy and Xenogamy requires pollinator. Two types of pollinating agents.

- (a) **Abiotic agent (Non-living) :** Wind (Anemophily), Water (Hydrophily)
- (b) Biotic agent : Animals (Zoophily), Bat (Chirepterophily), Bird (Ornithophily), Insect (Entomophily), Snail (Malacophily)

Seed plants - Gymnosperm (wind pollination)

- Angiosperm (abiotic + biotic)

10. Wind Pollination -

Features of flower – colour less, nectar less, odour less, small size present in cluster.

Stamen – Exerted from flower surface

Pollen are light weight, non-sticky, large in number, can be transferred by wind.

Pistil – large and feathery – so that it can capture pollen, mono ovular ovary (single ovule in ovary)

Example : Grass, Tassels (stigma and style) in maize.

11. Pollination in Aquatic Plants -

It is quite rare in flowering plants and is limited to about 30 genera, mostly monocotyledons.

Algae, Bryophyte, Pteriodophyte – Pollination by water.

- Plant is aquatic but flower comes on surface pollination by wind or insect.
 Example : Water lily, Water hyacinth
- 2. Plant is aquatic but pollination is by water -

- On surface of water

Example : Vallisneria, Hydrilla

In *Vallisneria*, female flower come in surface with long stalk and male flower detach and float on surface and carried passively with water current.

Under water
 Example : Zostera (Sea grass)
 Pollen – Ribbon shape, Mucilagenous covering (non-wettable)

12. Biotic Agents :

- Majority of flowering plants use a range of animals as pollinating agents-Bees, butterflies, flies, beetles, wasps, ants, moths, birds (sunbirds & humming birds) & bats.
- Among animals, insects particularly bees are dominant pollinating agents.
- Some primates (lemurs), arboreal (tree dwelling), rodents or even reptiles (gecko lizard & garden lizard) are also pollinators in some species.

Difference between Bat Pollination and Bird Pollination

Bat Pollination	Bird Pollination
Large size flower	Large size flower
Dull colour	Bright colour
Strong smell	Smell absent
Large sugary nectar	Nectar present
Ex. Kigelia, Adansonia	Ex. Sun bird, Humming bird

13. Rewards for pollinator :

To ensure regular visit of pollinator.

- (a) Edible nectar (for Insect, Bird, Bat)
- (b) Edible pollen some plants have edible pollen.
- (c) Safe place for egg laying –
 Example : Amorphophallus 6 Ft flower (insect lay egg)

- (d) Yucca plant and Moth
 - Moth-pollination
 - Yucca plant safe place for egg laying
 - Larvae of moth feed on pollen of yucca plant.

14. OUTBREEDING DEVICES -

- Flowering plants have developed many devices to discourage self pollination and to encourage cross pollination. For example:
- Pollen release and stigma receptivity are not synchronised.
- Anther and stigma are placed at different positions so that pollen cannot come in contact with stigma of the same flower.
- Self-incompatibility is a genetic mechanism which prevents self-pollen from fertilizing the ovules by inhibiting pollen germination or pollen tube growth in the pistil.
- Production of unisexual flowers.
 - In **castor & maize**, (monoecious) autogamy is prevented but not geitonogamy.
 - In **papaya** (Dioecious), both autogamy and geitonogamy are prevented.

15. POLLEN-PISTIL INTERACTION –

• All events after pollination till entry of pollen tube inside ovule.

It involve –

- (a) Acceptance or rejection of pollen.
- (b) If accepted germination of pollen.
- (c) Growth of pollen tube is stigma.
- (d) Growth of pollen tube in style.
- (e) Entry of pollen tube inside ovule.

ARTIFICIAL HYBRIDISATION

- In such crossing, desired pollen are used for pollination & stigma is protected from contamination from unwanted pollen by emasculation and bagging.
- If female parent bears bisexual flowers, emasculation is followed by bagging & rebagging after dusting mature pollen for fruit development.
- If female flowers are unisexual, there is no need of emasculation.
- Continued self-pollination result in inbreeding depressions.

16. Fertilization:

Pollen tube release both male gamete in one of the synergids

- One male gamete move into egg cell. Another move into central cell.

Syngamy – Fusion of one male gamete with nucleus of egg cell.

- Result of syngamy – Zygote (2n)

Triple Fusion – Male gamete fuse with polar nuclei (two).

Result of triple fusion – PEN (Primary endosperm nucleus)

Double Fertilization – In one embryosac, triple fusion and syngamy both occurs known as double fertilization.

- Occurs only in angiosperm (Dicot and Monocot)

17. POST-FERTILISATION EVENTS :

Endosperm

- Endosperm development precedes embryo development.
- The cells of tripoid endosperm are filled with reserve food materials and used by developing embryo.
- The most common type of endosperm, is nuclear type (PEN undergoes successive nuclear divisions to

give free nuclei) eg., Coconut water and surrounding white kernel is cellular endosperm.

Embryo

- Develops at micropylar end of embryo sac where the zygote is situated.
- In dicots, the zygote forms → proembryo → globular
 → heart-shaped → mature embryo.
- A typical dicot embryo has embryonal axis & two cotyledons. Epicotyl terminates with plumule or stem tip.
- Hypocotyl terminates at its lower tip in radical or root tip, covered by root cap.
- Embryos of monocot has only one cotyledon. In grass family, it is called **scutellum** towards lateral side of the embryonal axis.
- Radicle or root cap enclosed with undifferentiated sheath called **coleorhiza**.
- Epicotyl has shoot apex & a few leaf primordia enclosed in foliar structure **coleoptile**.

Seed

- In angiosperms, seed (fertilised ovule) is the final product of sexual reproduction, formed inside fruits.
- A seed typically consists of seed coats, cotyledon(s) & an embryo axis.
- Mature seeds may be non-abuminous or exalbuminous, having no residual endosperm, which is consumed completely during embryo development (eg. Pea, groundnut). Albuminous seeds retain a part of endosperm (eg. Wheat, maize, barley, castor, coconut).
- In black pepper & beet, remnants of nucellus are also persistent, called perisperm.

- Wall of ovary develops into pericarp. True fruits develop from ovary.
- In apple, strawberry, cashew, etc, thalamus also contributes to form fruit called false fruit.
- Parthenocarpic fruit develop without fertilisation eg. Banana.
- *Lupinus arcticus* seed germinated and flowered after estimated record 10,000 years of dormancy.
- *Phoenix dactytifera* (date palm) seed remained viable for 2000 years.
- Orchid, Parasitic species (*Orobanche* and *Strigga*) contain very large number of tiny seeds.

18. Asexual reproduction/Apomixis:

The formation of new individuals without fertilization is called asexual/apomixis.

- (a) In many *Citrus* and Mango varieties some of the nucellar cells surrounding embryo sac develops into embryos.
- (b) **Polyembryony** In some of the angiosperms more than one embryos are formed inside the ovule.
 [Example Citrus].