DPP No. 2

SYLLABUS: KINEMATICS

1.	A ball is thrown upwards. It returns to ground describing a parabolic path. Which of the follow
	ing remains constant?

(A) Speed of the ball

(B) Kinetic energy of the ball

(C) Vertical component of velocity

(D) Horizontal component of velocity.

A bullet is fired horizontally from a rifle at a distant target. Ignoring the effect of air resistance, which of the following is correct?

	Horizontal Acceleration	Vertical Acceleration
(A)	10 ms ⁻²	10 ms ⁻²
(B)	10 ms ⁻²	0 ms ⁻²
(C)	0 ms ⁻²	10 ms ⁻²
(D)	0 ms ⁻²	0 ms ⁻² .

3. It was calculated that a shell when fired from a gun with a certain velocity and at an angle of elevation $\frac{5\pi}{36}$ rad should strike a given target in the same horizontal plane. In actual practice, it was found that a hill just prevented the trajectory. At what angle of elevation should the gun be fired to hit the target.

(A)
$$\frac{5\pi}{36}$$
 rad

(B)
$$\frac{11\pi}{36}$$
 rad

(C)
$$\frac{7\pi}{36}$$
 rad

(A)
$$\frac{5\pi}{36}$$
 rad (B) $\frac{11\pi}{36}$ rad (C) $\frac{7\pi}{36}$ rad (D) $\frac{13\pi}{36}$ rad.

4. Velocity of a stone projected, 2 second before it reaches the maximum height, makes angle 53° with the horizontal then the velocity at highest point will be

- (A) 20 m/s

- (B) 15 m/s (C) 25 m/s (D) 80/3 m/s

5. During projectile motion, acceleration of a particle at the highest point of its trajectory is

(A) g

(B) zero

(C) less than g

(D) dependent upon projection velocity

6. The speed at the maximum height of a projectile is half of its initial speed u. Its range on the horizontal plane is:

(A)
$$\frac{2u^2}{3g}$$

(B)
$$\frac{\sqrt{3}\,\mathrm{u}^2}{2\,\mathrm{g}}$$

(C)
$$\frac{u^2}{3g}$$

(D)
$$\frac{u^2}{2g}$$

The velocity of projection of a projectile is $(6\hat{i} + 8\hat{j})$ ms⁻¹. The horizontal range of the projectile 7. is $(g = 10 \text{ m/sec}^2)$

(A) 4.9 m

(B) 9.6 m

(C) 19.6 m

(D) 14 m

8. A cricketer can throw a ball to a maximum horizontal distance of 100 m. To what height above the ground can the cricketer throw the same ball with same speed.

(A) 10 m

(B) 30 m

(C) 50 m

(D) 150 m

9. A gun kept on a straight horizontal road is used to hit a car, traveling along the same road away from the gun with a uniform speed of 72 × $\sqrt{2}$ km/hour. The car is at a distance of 50 metre from the gun, when the gun is fired at an angle of 45° with the horizontal. Find (i) the distance of the car from the gun when the shell hits it, (ii) the speed of projection of the shell from the gun. $[g = 10 \text{ m/s}^2]$

(A) 150 m, 50 m/s

(B) 225 m, 60 m/s (C) 200 m, 50 m/s (D) 250 m, 50 m/s

- 10. One stone is projected horizontally from a 20 m high cliff with an initial speed of 10 ms⁻¹. A second stone is simultaneously dropped from that cliff. Which of the following is true?
 - (A) Both strike the ground with the same speed.
 - (B) The stone with initial speed 10 ms⁻¹ reaches the ground first.
 - (C) Both the stones hit the ground at the same time.
 - (D) None of these
- 11. An object is thrown horizontally from a point 'A' from a tower and hits the ground 3s later at B. The line from 'A' to 'B' makes an angle of 30° with the horizontal. The initial velocity of the object is: $(take g = 10 \text{ m/s}^2)$

(A) $15\sqrt{3}$ m/s

(B) 15 m/s

(C) $10\sqrt{3}$ m/s (D) $25/\sqrt{3}$ m/s

A stone projected at angle '0' with horizontal from the roof of a tall building falls on the ground 12. after three second. Two second after the projection it was again at the level of projection. Then the height of the building is -

(A) 5 m

(B) 25 m

(C) 20 m

(D) 15 m

The trajectory of a projectile fired horizontally with velocity v is a parabola given by : 13.

(A) $y = \frac{g}{2v^2} x^2$ (B) $y = -\frac{g}{2v^2} x^2$ (C) $x = \frac{g}{2v^2} y^2$ (D) $x = -\frac{g}{2v^2} y^2$

14.	A ball is projected from a certain point on the surface of a planet at a certain angle with the horizontal surface. The horizontal and vertical displacement x and y varies with time t in second as: $x = 10 \sqrt{3} t$ and $y = 10t - t^2$. The maximum height attained by the ball is						
	(A) 100 m	(B) 75 m	(C) 50 m	(D) 25 m.			
15.	A ball is thrown upw	ard at an angle of 30°	with the horizontal a	nd lands on the top edge of			

a building that is 20 m away. The top edge is 5m above the throwing point. The initial speed of the ball in metre/second is (take $g = 10 \text{ m/s}^2$):

(A)
$$u = 40 \sqrt{\frac{(4+\sqrt{3})}{13\sqrt{3}}}$$
 m/s (B) $u = 40 \sqrt{\frac{4-\sqrt{3}}{13\sqrt{3}}}$ m/s

(C)
$$u = 40 \sqrt{\frac{4+\sqrt{3}}{13}} \text{ m/s}$$
 (D) $u = 40 \sqrt{\frac{40}{\sqrt{\sqrt{3}(4+\sqrt{3})}}} \text{ m/s}$

- 16. The equation of motion of a projectile is $y = 12 \times -3/4 \times^2$. Given that $g = 10 \text{ ms}^{-2}$. What is the range of the projectile?
 - (A) 36m (B) 30.6 m (C) 16 m (D) 12.4 m
- 17. The equation of a projectile is $y = \sqrt{3} x \frac{gx^2}{2}$, find the angle of projection. Also find the speed

of projection. Where at t = 0, x = 0 and y = 0 also $\frac{d^2x}{dt^2}$ = 0 & $\frac{d^2y}{dt^2}$ = - g.

- (A) 1m/s (B) 2m/s (C) 3m/s (D) 4m/s
- 18. A ball is horizontally projected with a speed v from the top of a plane inclined at an angle 45° with the horizontal. How far from the point of projection will the ball strike the plane?

(A)
$$\frac{\mathrm{v}^2}{\mathrm{g}}$$
 (B) $\frac{\sqrt{2}\,\mathrm{v}^2}{\mathrm{g}}$ (C) $\frac{2\mathrm{v}^2}{\mathrm{g}}$ (D) $\left[\frac{2\sqrt{2}\,\mathrm{v}^2}{\mathrm{g}}\right]$

19. A shooter aims his rifle at an angle of 37° with the horizontal to hit an object at A but the bullet hits at the point B, x below it. If the initial velocity of the bullet is 125 m/s the value of 'x' is :

(take g = 10 m/s²)

(A) 19m

(B) 80m

(C) 40m

(D) 48 m

