Polynomials

1. The graphs of y=p(x) are given to us, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

(i)

(ii)

(iii)

(v)

(vi)

Ans. (i) The graph does not meets x-axis at all. Hence, it does not have any zero.

- (ii) Graph meets x-axis 1 time. It means this polynomial has 1 zero.
- (iii) Graph meets x-axis 3 times. Therefore, it has 3 zeroes.
- (iv) Graph meets x-axis 2 times. Therefore, it has 2 zeroes.
- (v) Graph meets x-axis 4 times. It means it has 4 zeroes.
- (vi) Graph meets x-axis 3 times. It means it has 3 zeroes

2. Which of the following is polynomial?

(a)
$$x^2 - 6\sqrt{x} + 2$$

(b)
$$\sqrt{x} + \frac{1}{\sqrt{x}}$$

(c)
$$\frac{3}{x^2-3x+1}$$

(d) none of these

Ans. (d) none of these

- 3. Polynomial $2x^4 + 3x^3 5x^2 5x^2 + 9x + 1$ is a
- (a) linear polynomial
- (b) quadratic polynomial
- (c) cubic polynomial

(d) bi-quadratic polynomial

Ans. (d) bi-quadratic polynomial

- 4. If α and β are zeros of $x^2 + 5x + 8$, then the value of $(\alpha + \beta)$ is
- (a) 5
- (b) -5
- (c) 8
- (d) -8

Ans. (b) -5

- 5. The sum and product of the zeros of a quadratic polynomial are 2 and -15 respectively. The quadratic polynomial is
- (a) $x^2 2x + 15$
- **(b)** $x^2 2x 15$
- (c) $x^2 + 2x 15$
- (d) $x^2 + 2x + 15$

Ans. (b) $x^2 - 2x - 15$

- 6. If p (x) = $2x^2 3x + 5$, 3x + 5, then P(-1) is equal to
- (a) 7
- (b) 8
- (c) 9
- (d) 10

Ans. (d) 10

- 7. Zeros of p (x) = $x^2 2x 3$ are
- (a) 3 and 1
- (b) 3 and -1
- (c) -3 and -1
- (d) 1 and -3

Ans. (b) 3 and -1

8. If α and β are the zeros of $2x^2 + 5x - 10$, then the value of $\alpha\beta$ is

- (a) $-\frac{5}{2}$
- (b) 5
- (c) -5
- (d) $\frac{2}{5}$
- **Ans. (c)**-5

9. A quadratic polynomial, the sum and product of whose zeros are 0 and $\sqrt{5}$ respectively is

- (a) $x^2 + \sqrt{5}$
- (b) $x^2 \sqrt{5}$
- (c) $x^2 5$
- (d) None of these

Ans. a) $x^2 + \sqrt{5}$

10. Which of the following is polynomial?

- (a) $x^2 6\sqrt{x} + 2$
- (b) $\sqrt{x} + \frac{1}{\sqrt{x}}$
- (c) $\frac{1}{x^2-3x+1}$
- (d) none of these

Ans. (d) none of these

- 11. Polynomial $2x^4 + 3x^3 5x^2 5x^2 + 9x + 1$ is a
- (a) linear polynomial
- (b) quadratic polynomial
- (c) cubic polynomial
- (d) bi-quadratic polynomial

Ans. (d) bi-quadratic polynomial

12. If α and β are zeros of x^2+5x+8 , then the value of $(\alpha+\beta)$ is

- (a) 5
- (b) -5
- (c) 8
- (d) -8

Ans. (b) -5

13. The sum and product of the zeros of a quadratic polynomial are 2 and -15 respectively. The quadratic polynomial is

- (a) $x^2 2x + 15$
- **(b)** $x^2 2x 15$
- (c) $x^2 + 2x 15$
- (d) $x^2 + 2x + 15$

Ans. (b) $x^2 - 2x - 15$