CLASS TEST

PHYSICS

CLASS TEST # 17

SECTION-I

7 Q. [Marks 3 (-1)]

Single Correct Answer Type

1. A block of mass m slides down on a wedge of mass M as shown in figure. Let \vec{a}_1 be the acceleration of the wedge and \vec{a}_2 the acceleration of block w.r.t. ground. N_1 is the normal reaction between block and wedge and N2 the normal reaction between wedge and ground. Friction is absent everywhere. Select the incorrect alternative

(A) $N_2 < (M + m)g$ (C) $N_1 \sin \theta = M |\vec{a}_1|$

(D) $m \vec{a}_2 = -M \vec{a}_1$

2. Three blocks are connected by strings and pulled by a force F = 60 N as shown in figure. If $m_A = 10$ kg, $m_B = 20 \text{ kg}$ and $m_C = 30 \text{ kg}$, then

(C) $T_1 = 10 \text{ N} \& T_2 = 30 \text{ N}$

(A) Acceleration of the system is 2 m/s^2 (B) Acceleration of the system is 5 m/s^2 (C) $T_1 = 10 \text{ N} \& T_2 = 30 \text{ N}$ (D) $T_2 = 20 \text{ N} \& T_2 = 40 \text{ N}$ (D) $T_1 = 20 \text{ N} \& T_2 = 40 \text{ N}$

(B) $N_1 = m(g \cos\theta - |\vec{a}_1|\sin\theta)$

3. A lift is moving with acceleration 3 m/sec². Three masses are put as shown in figure. Find the normal contact force exerted by floor of lift on mass m_1 . ($m_1 = 5$ kg, $m_2 = 3$ kg and $m_3 = 1$ kg)

(A) 116 N

(B) 117 N

(C) 52 N

(D) 13 N

A man of mass m₁ holding one end of a massless inextensible string that passes over the smooth pulley, 4. is accelerating up while standing on a platform of mass m₂. Find the force applied by the man on the platform, if it moves up with an upward acceleration 'a'.

PHYSICS / Class Test # 17

5. A smooth wedge of mass M is pushed with an acceleration $a = g \tan \theta$ and a block of mass m is projected down the slant with a velocity v relative to the wedge. The most CORRECT statement is :

(A) The time taken by the block to reach the ground is $\frac{\ell}{\ell}$.

- (B) The normal reaction between wedge and block is $mgsec\theta$.
- (C) The normal reaction offered by ground to the wedge is (M + m)g.
- (D) All of the above.
- 6. A helicopter of mass M is carrying a box of mass m at the end of a rope and is moving horizontally with constant acceleration 'a'. The acceleration due to gravity is 'g'. Neglect air resistance. The rope is stretched out from the helicopter at a constant angle θ to the vertical. What is this angle? (B) $\cos\theta = a/g$

(A) $\sin\theta = a/g$

(C) $\tan\theta = a/g$

ABCD is an elastic string of natural length 3 m and particles of equal mass are attached to the unstretched 7. string at points B and C where AB = BC = CD. The ends A and D are then attached to two points on the same horizontal level and 3 m apart. The particles hang in equilibrium so that the string sections AB and CD are each at 60° to the horizontal. Force constant of the string is 50 N/m.

(D) $\sin\theta = ma/(Mg)$

(A) Extension in AB is
$$\frac{2}{3}$$
 m

(B) Extension in BC is $\frac{2}{3\sqrt{3}}$ m

(C) Extension in AB is equal to extension in BC.

(D) Mass of each particle is 5kg.

Multiple Correct Answer Type

Four block system having masses 1kg, 2kg, 3kg & 4 kg respectively are placed on smooth inclined 8. plane and all blocks are moving upward with acceleration 5 m/s². If net force action on 1kg, 2kg, 3kg & 4 kg blocks are F_1 , F_2 , F_3 & F_4 respectively then :-

(A) $F_1 = 5 N$ (B) $F_2 = 10 N$ (C) $F_3 = 15 N$ (D) $F_4 = 20 N$ A system of two blocks are connected by the strings as shown in figure. All strings are inextensible and 9. massless and surface is smooth.

=gtan θ

5 Q. [4 M (-2)]

Μ

mmmmmm

10. Shown system is released at t = 0. Select correct statement(s) about subsequent motion of blocks. Here strings are massless and pulley is frictionless & massless. $[g = 10 \text{ m/s}^2]$

(A) Acceleration of A is equal to 1 m/s^2 (C) Tension T₂=9N (B) Tension $T_1=5N$

- 11. A block of m = 10 kg is kept on ground. A vertically upward force F = (10 t)N, where t is the time in seconds starts acting on it at t = 0 as shown in figure. (A) Time at which block losse contact from the surface is 10 sec
 - (A) Time at which block loose contact from the surface is 10 sec.
 - (B) Velocity of block at t = 20 sec is 50 m/s.
 - (C) Velocity of block at t = 20 sec is 200 m/s.
 - (D) Displacement of block in 20 sec is $\frac{500}{3}$ m.
- **12.** For the diagram shown below, $m_1 = 10$ kg then :
 - (A) Tension in string AB is $\frac{2000}{7}$ N
 - (B) Tension in string BC is 1500 N
 - (C) Tension in string CD is $\frac{2400}{7}$ N
 - (D) Tension in string CD is 4800 N

Linked Comprehension Type (Single Correct Answer Type)

(1 Para × 2 Q.) [Marks 3 (0)]

10kg

muhanadam

Paragraph for Question No 13 and 14

A block of mass m connected to a spring on a wedge as shown in figure. Wedge is accelerated towards right.

13. Which of the following free body diagram is CORRECT w.r.t wedge :-

- 14. Which of the following statement is CORRECT (A) If a = g spring will be compressed.
 - (B) If $a = \frac{4g}{3}$ spring wil be in natural length

(C)Normal reaction between block and wedge reduces as acceleration of wedge is increased. (D) None

SECTION-III

Numerical Grid Type (Ranging from 0 to 9)

 Two blocks of masses 4 kg and 5 kg are at rest on the ground. The masses are connected by a massless string passing over a smooth and light pulley. A 200 N force is applied on the pulley. Find the difference in accelerations of blocks in m/s².

2. The system shown in figure is in equilibrium. Masses m_1 and m_2 are 2 kg and 2.5 kg respectively. Spring constants K_1 , K_2 and K_3 are 200 Nm⁻¹, 1000 Nm⁻¹ & 500 Nm⁻¹ respectively. If the elongation in spring A is 20 cm and the compression in spring C is 1 cm then find out the elongation in spring B in cm.

3. In the given figure the maximum value of tension in the string connecting blocks of 1 kg and 2 kg is 50 N. A force varying with time F = 15 t is applied on the 1 kg block as shown. The time (in sec) at which the string breaks is :

3 Q. [4 M (0)]

CLASS TEST # 17 (TNPS)			ANSWER KEY
	SEC	TION-I	
Single Correct Answer Type			7 Q. [Marks 3 (–1)]
1. Ans. (D)	2. Ans. (C)	3. Ans. (B)	4. Ans. (D)
5. Ans. (D)	6. Ans. (C)	7. Ans. (A)	
Multiple Correct Answer Type			5 Q. [4 M (-2)]
8. Ans. (A,B,C,D)	9. Ans. (A,B,C,D)	10. Ans. (A,B,C)	11. Ans. (A,B,D)
12. Ans. (A,C)			
Linked Comprehension Type (1 Pa			ra × 2 Q.) [Marks 3 (0)]
(Single Correct Ans	swer Type)		
13. Ans. (C)	14. Ans. (B)		
SECTION-III			
Numerical Grid Type (Ranging from 0 to 9)			3 Q. [4 M (0)]
1. Ans. 5	2. Ans. 0	3. Ans. 5	