6. QUADRATIC EQUATIONS

Quadratic Equation

An equation of the form

 $ax^2 + bx + c = 0$

where a, b, $c \in R$ and $a \neq 0$ is called a quadratic equation. The numbers a, b, c are called the coefficients of this quation.

.....(i)

• A root of the quadratic Equation

Discriminant $D = b^2 - 4ac$

The roots of Eq (i) are given by the formula

$$x = \frac{-b \pm \sqrt{D}}{2a}$$
 or $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

• Properties of Quardratic Equations

- A quadratic equation has two and only two roots.
- A quadratic equation cannot have more than two different roots.
- If α be a root of the quadratic equation $ax^2 + bx + c = 0$, then $(x \alpha)$ is a factor of $ax^2 + bx + c = 0$.

• Sum and Product of the roots of a Quadratic Equation

Leat α , β be the roots of a quadratic equation $ax^2 + bx + c = 0$, $a \neq 0$, then

$$\alpha + \beta = \frac{-b}{a} = -\left(\frac{\text{coefficient of } x}{\text{coefficient of } x^2}\right)$$
$$\alpha \cdot \beta = \frac{c}{a} = \left(\frac{\text{cons tan t term}}{\text{coefficient of } x^2}\right)$$

and

Therefore,

- If the two roots α and β be reciprocal to each other, then a = c.
- If the two roots α and β be equal in magnitude and opposite in sign b = 0.

• Sign of the Roots

Sign of $(\alpha + \beta)$	Sign of (αβ)	Sign of the α , β
+ve	+ve	α and β are positive
-ve	+ve	α and β are negative
+ve	-ve	α is positive and β is negative if $\alpha > \beta$
-ve	-ve	α is negative and β is positive if $\alpha < \beta$

Nature of Roots

For a quadratic equation $ax^2 + bx + c = 0$ where $a, b, c \in R$ and $a \neq 0$ and $D = b^2 - 4ac$

- ► If a, b, c ∈ R and p + iq is one root of quadratic equation (where q \neq 0) then the other root must be conjugate p iq and vice-versa. (p,q ∈ R and i = $\sqrt{-1}$)
- ► If a, b, c ∈ Q and $p + \sqrt{q}$ is one root of the quadratic equation, then the other root must be the conjugate $p \sqrt{q}$ and vice-versa (where p is a rational and \sqrt{q} is a surd).
- If a = 1 and $b, c \in I$ and the roots of quadratic equation are rational numbers, then these roots must be integers.

• Condition for Common Roots

Consider two quadratic equations

$$ax^{2} + bx + c = 0$$
(i) $a \neq 0$
and $a'x^{2} + b'x + c' = 0$ (ii) $d \neq 0$

(i) If one root is common then,

 $(ab' - a'b) (bc' - b'c) = (ca' - c'a)^2$

(ii) If two roots are common then,

$$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$$

• Condition that $ax^2 + bx + c = 0$, is Factorizable into two Linear Factors

When $D \ge 0$, then the equation $ax^2 + bx + c = 0$ is factorizable into two linear factors.

i.e., $ax^2 + bx + c \Rightarrow (x - a) (x - b) = 0$, where α and β are the roots of quadratic equation.

Formation of a Quadratic Equation

Let α,β be the two roots then we can form a quadratic equation as follows

 x^{2} – (sum of roots) x + (product of roots) = 0

i.e., $x^2 - (\alpha + \beta) x + (\alpha \beta) = 0$

or $(x - \alpha) (x - \beta) = 0$

Formation of a New Quadratic Equation by Changing the roots of a given Quadratic Equation

Let α , β be the roots of a quadratic equation $ax^2 + bx + c = 0$, then we can form a new quadratic equation as per the following rules.

• A quadratic equation whose roots are p more than the roots of the equation $ax^2 + bx + c = 0$ (i.e., the roots are $\alpha + p$ and $\beta + p$).

The required equation is

 $a(x - p)^2 + b(x - p) + c = 0$

• A quadratic equation whose roots are less by p than the roots of the equation $ax^2 + bx + c = 0$, (i.e., the roots are $\alpha - p$ and $\beta - p$)

The required equation is

$$a(x + p)^2 + b(x + p) + c = 0$$

• A quadratic equation whose roots are p times the roots of the equation $ax^2 + bx + c = 0$ (i.e., the roots are

 $\frac{\alpha}{p}$ and $\frac{\beta}{p}$) The required equation is a(px)²+b(px)+c=0

• A quadratic equation whose roots are the reciprocal of the roots of equation $ax^2+bx+c=0$ (i.e. the roots are

$$\frac{1}{\alpha}$$
 and $\frac{1}{\beta}$). The required equation is $a\left(\frac{1}{x}\right)^2 + b\left(\frac{1}{x}\right) + c = 0$

 \Rightarrow cx² + bx + a = 0

• A quadratic equation whose roots are 1/p times the roots of the equation $ax^2 + bx + c = 0$ (i.e., the roots are $1/\alpha$ and $1/\beta$).

The required equation is $a\left(\frac{x}{p}\right)^2 + n\left(\frac{x}{p}\right) + c = 0$

• A quadratic equation whose roots are the negative of the roots of the equation $ax^2 + bx + c = 0$ (i.e., the roots are $-\alpha$ and $-\beta$)

The required equation is $a(-x)^2 + b(-x) + c = 0$

$$\Rightarrow ax^2 - bx + c = 0$$

• A quadratic equation whose roots are the square of the roots of the equation $ax^2 + bx + c = 0$ (i.e., the roots are α^2 and β^2)

The required equation is $a(\sqrt{x})^2 + b(\sqrt{x}) + c = 0$

 $\Rightarrow ax + b\sqrt{x} + c = 0$

• A quadratic equation whose roots are the cubes of the roots of the equation $ax^2 + bx + c = 0$ (i.e., the roots are α^3 and β^3)

The required equation is $a(x^{1/3})^2 + b(x^{1/3}) + c = 0$

$$\Rightarrow \quad ax^{2/3} + bx^{1/3} + c = 0$$

Maximum or Minimum value of a Quadratic Equation

At $x = \frac{-b}{2a}$ we get the maximum or minimum value of the quadratic expression.

When a > 0 (in the equation $ax^2 + bx + c$) the expression gives minimum value, $y = \frac{4ac - b^2}{4a}$

When a < 0 (in the equation $ax^2 + bx + c$) the expression gives maximum value, $y = \frac{4ac - b^2}{4a}$.

Sign of Quadratic Expression ax^2 + bx + c

- If α , β are the roots of the corresponding quadratic equation, then for $x = \alpha$ and $x = \beta$, the value of the expression is equal to zero. i.e., $f(x) = ax^2 + bx + c = 0$.
- But for other real values of x (i.e., except α and β) the expression is either less than zero or greater than zero, i.e., f(x) < 0 or f(x) > 0.
- But for other real values of x (i.e., except α and β) the expression is either less than zero or greater than zero, i.e., f (x) < 0 or f (x) < 0.
- Thus the sign of $ax^2 + bx + c, x \in R$, is determined by the following rules:
 - If D < 0 i.e., α and β are imaginary, then

 $ax^{2} + bx + c > 0$, if a > 0

and $ax^2 + bx + c < 0$, if a < 0

• If D = 0 i.e., α and β are real and equal, then

 $ax^{2} + bx + c \ge 0$, if a > 0

and $ax^2 + bx + c \le 0$, if a < 0

• If D > 0 i.e., α and β are real unequal ($\alpha < \beta$), then the sign of the expression $ax^2 + bx + c$, $x \in R$ is determined as follows :

Sign is same as that of a	Sign is opposite to that of a	Sign is same as that of a
-∞ 0	ιβ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Relation between roots and coefficients

• For quadratic equation $ax^2 + bx + c = 0$, having the roots α and β , then

$$\alpha + \beta = \frac{-b}{a}$$
 and $\alpha \beta = \frac{c}{a}$

• For cubic equation $ax^3 + bx^2 + cx + d = 0$, having roots α , β and γ , then

$$\alpha + \beta + \gamma = \frac{-b}{a}$$
, $\alpha \beta + \beta \gamma + \gamma \alpha = (-1)^2 \frac{c}{a} = \frac{c}{a}$

and

$$\alpha\beta\gamma = (-1)^3 \frac{d}{a} = \frac{-d}{a}$$

QUADRATIC EQUATIONS

If the roots, x_1 and x_2 , of the quadratic equation 1. $x^2 - 2x + c = 0$ also satisfy the equation $7x_2 - 4x_1$ = 47, then which of the following is true ?

> (1) c = -15(2) $x_1 = 5$, $x_2 = 3$

> (3) $x_1 = 4.5$, $x_2 = -2.5$ (4) None of these

2. The integral values of k for which the equation $(k-2)x^2 + 8x + k + 4 = 0$ has both the roots real, distinct and negative is :

If the roots of the equation $\frac{x^2 - bx}{ax - c} = \frac{m - 1}{m + 1}$ are 3. equal and of opposite sign, then the value of m will be :

(1)
$$\frac{a-b}{a+b}$$
 (2) $\frac{b-a}{a+b}$ (3) $\frac{a+b}{a-b}$ (4) $\frac{b+a}{b-a}$

If α , β are the roots of the equation $x^2 + 2x + 4 = 0$, 4.

then
$$\frac{1}{\alpha^3} + \frac{1}{\beta^3}$$
 is equal to :
(1) $\frac{1}{\alpha^3} + \frac{1}{\beta^3} = (2) \frac{1}{\alpha^3} = (3) \frac{32}{\alpha^3} = (4) \frac{1}{\alpha^3}$

$$^{(1)}$$
 2 $^{(2)}$ 4 $^{(3)}$ 32
If α, β are the roots of the equation

5.

 $x^{2} + 7x + 12 = 0$, then the equation whose roots are $(\alpha + \beta)^2$ and $(\alpha - \beta)^2$ is : (1) $x^2 + 50x + 49 = 0$ (2) $x^2 - 50x + 49 = 0$ (3) $x^2 - 50x - 49 = 0$ (4) $x^2 + 12x + 7 = 0$

The value of k (k > 0) for which the equations 6. $x^{2} + kx + 64 = 0$ and $x^{2} - 8x + k = 0$ both will have real roots is :

7. If α , β are roots of the quadratic equation $x^{2} + bx - c = 0$, then the equation whose roots are b and c is

(1) $x^2 + \alpha x - \beta = 0$ (2) $x^2 - [(\alpha + \beta) + \alpha\beta] x - \alpha\beta (\alpha + \beta) = 0$ (3) $x^2 + (\alpha\beta + \alpha + \beta)x + \alpha\beta(\alpha + \beta) = 0$ (4) $x^2 + (\alpha\beta + \alpha + \beta) x - \alpha\beta (\alpha + \beta) = 0$

8. Solve for
$$x : x^6 - 26x^3 - 27 = 0$$

(1) - 1, 3 (2) 1, 3

(3) 1, -3(4) - 1, -3

- Solve : $\sqrt{2x+9} + x = 13$: (2) 8, 20 (4) None of these **10.** Solve : $\sqrt{2x+9} - \sqrt{x-4} = 3$ (2) 8, 20 (3) 2, 8 (4) None
- **11.** Solve for $x : 2\left[x^2 + \frac{1}{x^2}\right] 9\left[x + \frac{1}{x}\right] + 14 = 0$:

(1)
$$\frac{1}{2}$$
, 1, 2 (2) 2, 4, $\frac{1}{3}$ (3) $\frac{1}{3}$, 4, 1 (4) None

12. Solve for $x: \sqrt{x^2 + x - 6} - x + 2 = \sqrt{x^2 - 7x + 10}$. $x \in R$:

(1) 2, 6,
$$-\frac{10}{3}$$
 (2) 2, 6

- (3) 2, -6(4) None of these
- **13.** The number of real solutions of ${\rm x}-\frac{1}{{\rm x}^2-4}=2-\frac{1}{{\rm x}^2-4}\ \, {\rm is}\,:$ (1)0(2) 1 (3) 2(4) Infinite
- 14. The equation $\sqrt{x+1} \sqrt{x-1} = \sqrt{4x-1}$ has :
 - (1) No solution

9.

(1) 4, 16

(3) 2, 8

(1) 4, 16

- (2) One solution
- (3) Two solutions
- (4) More than two solutions
- 15. The number of real roots of the equation $(x - 1)^{2} + (x - 2)^{2} + (x - 3)^{2} = 0$:

If the equation $(3x)^2 + (27 \times 3^{1/k} - 15)x + 4 = 0$ has 16. equal roots, then k =

(1)
$$-2$$
 (2) $-\frac{1}{2}$ (3) $\frac{1}{2}$ (4) 0

17. Equation $ax^2 + 2x + 1$ has one double root if : (1) a = 0 (2) a = -1 (3) a = 1 (4) a = 2**18.** Solve for x : (x + 2) (x - 5) (x - 6) (x + 1) = 144(1) -1, -2, -3(2) 7, -3, 2 (3) 2, -3, 5(4) None of these

EXERCISE

19. What does the following graph represent?

- (1) Quadratic polynomial has just one root.
- (2) Quadratic polynomial has equal roots.
- (3) Quadratic polynomial has no root.
- (4) Quadratic polynomial has equal roots and constant term is non-zero.
- **20.** Consider a polynomial $ax^2 + bx + c$ such that zero is one of it's roots then

(1)
$$c = 0, x = \frac{-b}{a}$$
 satisfies the polynomial equation

(2)
$$c \neq 0, x = \frac{a}{b}$$
 satisfies the polynomial equation
(2) $x = \frac{-b}{b}$ satisfies the necknowical equation

(3) x = — satisfies the polynomial equation.
(4) Polynomial has equal roots.

21. Consider a quadratic polynomial $f(x)=ax^2-x+c$ such that ac > 1 and it's graph lies below x-axis then:

(1) a < 0, c > 0(2) a < 0, c < 0(3) a > 0, c > 0(4) a > 0, c < 0

22. If α,β are the roots of a quadratic equation $x^2 - 3x + 5 = 0$ then the equation whose roots are $(\alpha^2 - 3\alpha + 7)$ and $(\beta^2 - 3\beta + 7)$ is : (1) $x^2 + 4x + 1 = 0$ (2) $x^2 - 4x + 4 = 0$

$$(1) x^{2} + 4x + 1 = 0 \qquad (2) x^{2} - 4x + 4 = 0 (3) x^{2} - 4x - 1 = 0 \qquad (4) x^{2} + 2x + 3 = 0 (5) x^{2} - 4x - 1 = 0 \qquad (4) x^{2} + 2x + 3 = 0$$

23. The expression $a^2x^2 + bx + 1$ will be positive for all $x \in R$ if : (1) $b^2 > 4a^2$ (2) $b^2 < 4a^2$

(3)
$$4b^2 > a^2$$
 (4) $4b^2 < a^2$

- **24.** For what value of a the curve $y = x^2 + ax + 25$ touches the x-axis : (1) 0 (2) ± 5
 - (3) ± 10 (4) None
- **25.** The value of the expression $x^2 + 2bx + c$ will be positive for all real x if :

(1)
$$b^2 - 4c > 0$$
 (2) $b^2 - 4c < 0$
(3) $c^2 < b$ (4) $b^2 < c$

- If the roots of the quadratic equation $ax^2 + bx + c$ 26. = 0 are imaginary then for all values of a, b, c and $x \in R$, the expression $a^2x^2 + abx + ac$ is (1) Positive (2) Non-negative (3) Negative (4) May be positive, zero or negative The value of k, so that the equations $2x^2 + kx - 5 = 0$ 27. and $x^2 - 3x - 4 = 0$ have one root in common is : $(2) - 3, -\frac{27}{4}$ (1) - 2, -3(3) - 5, -6(4) None of these If the expression $x^2 - 11x + a$ and $x^2 - 14x + 2a$ 28. must have a common factor and $a \neq 0$, then the common factor is : (1) (x - 3) (2) (x - 6) (3) (x - 8) (4) None The value of m for which one of the roots of 29. $x^2 - 3x + 2m = 0$ is double of one of the roots of $x^2 - x + m = 0$ is : (2) 0, -2 (3) 2, -2 (4) None (1) 0, 2If the equations $x^2 + bx + c = 0$ and $x^2 + cx + b = 0$, 30. $(b \neq c)$ have a common root then : (1) b + c = 0(2) b + c = 1(3) b + c + 1 = 0(4) None of these **31.** If both the roots of the equations $k(6x^2 + 3) + rx + 2x^2 - 1 = 0$ and $6k(2x^2 + 1) + px + 4x^2 - 2 = 0$ are common, then 2r - p is equal to : (2) - 1(1) 1(3) 2(4) 0**32.** If $x^2 - ax - 21 = 0$ and $x^2 - 3ax + 35 = 0$; a > 0have a common root, then a is equal to : (1) 1(2) 2(3) 4(4)533. The values of a for which the quadratic equation $(1 - 2a) x^2 - 6ax - 1 = 0$ and $ax^2 - x + 1 = 0$ have at least one root in common are :
 - (1) $\frac{1}{2}, \frac{2}{9}$ (2) 0, $\frac{1}{2}$
 - (3) $\frac{2}{9}$ (4) 0, $\frac{1}{2}, \frac{2}{9}$

34. If the quadratic equation $2x^2 + ax + b = 0$ and $2x^2 + bx + a = 0$ (a \neq b) have a common root, the value of a + b is :

$$(1) - 3$$
 $(2) - 2$ $(3) - 1$ $(4) 0$

35. If the equation $x^2 + bx + ca = 0$ and $x^2 + cx + ab = 0$ have a common root and $b \neq c$, then their other roots will satisfy the equation :

(1) $x^2 - (b + c) x + bc = 0$ (2) $x^2 - ax + bc = 0$

(3) $x^2 + ax + bc = 0$

(4) None of these

36. If both the roots of the equations $x^2 + mx + 1 = 0$ and $(b - c) x^2 + (c - a) x + (a - b) = 0$ are common, then :

(1) m = -2 (2) m = -1 (3) m = 0 (4) m = 1

37. For the equation $3x^2 + px + 3 = 0$, p > 0, if one of the roots is square of the other, then p =

(1)
$$\frac{1}{3}$$
 (2) 1

(3) 3

38. The roots of the equation $|x^2 - x - 6| = x + 2$ are (1) - 2, 1, 4 (2) 0, 2, 4 (3) 0, 1, 4 (4) -2, 2, 4

(4) $\frac{2}{3}$

39. The equation $x - \frac{2}{x-1} = 1 - \frac{2}{x-1}$ has

(1) Two roots

- (2) Infinitely many roots
- (3) Only one root

(4) No root

40. The value of x which satisfy the expression :

$$(5 + 2\sqrt{6})^{x^{2}-3} + (5 - 2\sqrt{6})^{x^{2}-3} = 10$$

$$(1) \pm 2, \pm \sqrt{3} \qquad (2) \pm \sqrt{2}, \pm 4$$

$$(3) \pm 2, \pm \sqrt{2} \qquad (4) 2, \sqrt{2}, \sqrt{3}$$

41. Find all the integral values of a for which the quadratic equation (x - a) (x - 10) + 1 = 0 has integral roots :

(1) 12, 8	(2) 4, 6
(3) 2, 0	(4) None

42. Graph of $y = ax^2 + bx + c$ is given adjacently. What conclusions can be drawn from the graph?

(i)
$$a > 0$$

(ii) $b < 0$
(iii) $c < 0$
(iv) $b^2 - 4ac > 0$
(iv) $b^2 - 4ac > 0$

- (1) (i) and (iv) (2) (ii) and (iii) (3) (i), (ii) & (iv) (4) (i), (ii), (iii) & (iv)
- **43.** The adjoining figure shows the graph of $y = ax^2 + bx + c$. Then which of the following is correct :

(iv) b² < 4ac

(ii) b > 0

44. If
$$x^2 - (a + b) x + ab = 0$$
, then the value of $(x - a)^2 + (x - b)^2$ is
(1) $2 + 1^2 = (0) (x + 1)^2 = (2) (x + 1)^2 = (4) + 2 + 2$

(1)
$$a^2+b^2$$
 (2) $(a+b)^2$ (3) $(a-b)^2$ (4) a^2-b^2

45. The sum of the roots of $\frac{1}{x+a} + \frac{1}{x+b} = \frac{1}{c}$ is zero.

The product of the roots is

(1) 0 (2)
$$\frac{1}{2}(a+b)$$

(3)
$$-\frac{1}{2}(a^2 + b^2)$$
 (4) $2(a^2 + b^2)$

46. If the roots of the equations $(c^2-ab)x^2-2(a^2-bc)x+(b^2-ac)=0$ for $a \neq 0$ are real and equal, then the value of $a^3+b^3+c^3$ is (1) abc (2) 3abc

(3) zero	(4) None of these
(3) zero	(4) None of these

- **47.** If, α , β are the roots of $X^2 8X+P=0$ and $\alpha^2+\beta^2=40$. then the value of P is
 - (1) 8 (2) 10 (3) 12 (4) 14

48 .	If, $\ell,$ m, n are real and $\ell{=}m,$ then the roots of the	5
	equations	

 $(\ell - m)x^2 - 5(\ell + m)x - 2(\ell - m) = 0$ are

(1) Real and Equal

(2) Complex

- (3) Real and Unequal
- (4) None of these
- **49.** In a family, eleven times the number of children is greater than twice the square of the number of children by 12. How many children are there ?
 - (1) 3 (2) 4
 - (3) 2 (4) 5
- **50.** The sum of all the real roots of the equation

$$|x-2|^2 + |x-2| - 2 = 0$$
 is
(1) 2 (2) 3
(3) 4 (4) None of these

51. If the ratio between the roots of the equation $\ell x^2 + mx + n = 0$ is p:q, then the value of

$\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{\ell}}$ is	
(1) 4	(2) 3
(3) 0	(4) –1

52. Find the root of the quadratic equation bx²-2ax+a=0

(1)
$$\frac{\sqrt{b}}{\sqrt{b} \pm \sqrt{a-b}}$$
 (2) $\frac{\sqrt{a}}{\sqrt{b} \pm \sqrt{a-b}}$
(3) $\frac{\sqrt{a}}{\sqrt{a} \pm \sqrt{a-b}}$ (4) $\frac{\sqrt{a}}{\sqrt{a} \pm \sqrt{a+b}}$

- **53.** If 4 is a solution of the equation $x^2+3x+k=10$, where k is a constant, what is the other solution ? (1) -18 (2) -7 (3) -28 (4) None of these
- **54.** The coefficient of x in the equation $x^2+px+p=0$ was wrongly written as 17 in place of 13 and the roots thus found were -2 and -15. The roots of the correct equation would be

55. If α and β are the roots of the quadratic equation ax² + bx + c = 0, then the value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is

(1)
$$\frac{2bc - a^3}{b^2c}$$
 (2) $\frac{3abc - b^3}{a^2c}$

(3)
$$\frac{3abc - b^2}{a^3c}$$
 (4) $\frac{ab - b^2c}{2b^2c}$

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1
Ans.	1	3	1	2	2	2	3	1	2	2	1	2	1	1	
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	3	2	4	1	2	2	2	3	4	1	2	3	2	
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	4	3	3	2	1	1	3	4	4	3	1	4	2	3	
Que.	46	47	48	49	50	51	52	53	54	55			-		-
Ans.	2	3	3	2	3	1	3	2	2	2					