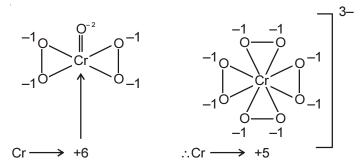


Chapter 8

Redox Reactions


Solutions

SECTION - A

Objective Type Questions

(Oxidation Number, Oxidation, Reduction, Oxidising agent and Reducing agent)

- 1. Oxidation number of Cr atom in CrO₅ and K₃CrO₈ respectively
 - (1) +6, +6 (2) +5, +6(3) +6, +5 (4) +5, +5
- Sol. Answer (3)

- 2. Find the incorrect statement
 - (1) Higher reduction potential of non-metal means stronger reducing agent
 - (2) Lower oxidation potential of a metal means strong oxidising agent
 - (3) Oxidation state of oxygen in O_3 is -1
 - (4) All of these

Sol. Answer (4)

Higher reduction potential means higher tendency to get reduced *i.e.* better oxidizing agent. Lower oxidation potential means higher reduction potential means

- \Rightarrow High tendency to get reduced
- \Rightarrow High tendency to oxidize others

Oxidation state of oxygen in $\rm O_{_3}$ is 0.

3. In case of CH₃COOH, the oxidation number of carbon of carboxylic group is

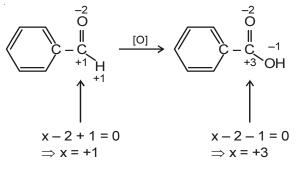
(1)
$$-3$$
 (2) Zero (3) +1 (4) +3
Sol. Answer (4)
 $H = O^{-2}$
 $H = O^$

4. Which compound acts as oxidising agent only?

(1) SO_2 (2) H_2S (3) H_2SO_4 (4) HNO_2 Sol. Answer (3)

In H_2SO_4 , sulphur is in its highest possible oxidation state. Hence it can only undergo reduction and oxidize others.

5. The average oxidation state of chlorine in bleaching powder is


(1) -1 (2) +1 (3) Zero (4) -2 as well as +2 Sol. Answer (3)

Bleaching powder

- $\therefore \text{ Average oxidation state } = \frac{+1-1}{2} = 0$
- 6. When benzaldehyde is oxidised to give benzoic acid then the oxidation state of carbon of aldehydic group is changed from

(1) +2 to +3 (2) +1 to +3 (3) Zero to +2 (4) No change

Sol. Answer (2)

:. Oxidation number changes from +1 to +3.

(Types of Redox reactions, Balancing of Redox reactions)

- 7. When an alkali metal is reacted with hydrogen then metallic hydride is formed. In this reaction
 - (1) Hydrogen is oxidised
 - (3) Hydrogen is neither oxidised nor reduced
- (2) Hydrogen is reduced
- (4) Hydrogen is oxidised as well as reduced

Sol. Answer (2)

$$2M + H_2^0 \longrightarrow 2M^{+1}H^{-1}$$

- $\therefore \quad H^0_2 \longrightarrow H^{-1} \ \ (\text{Reduction})$
- 8. $Cl_2(g) + X\overline{OH} \rightarrow YClO_3^- + ZH_2O + 10e^-$
 - The coefficient X, Y and Z are
 - (1) 6, 2, 2
 - (2) 5, 1, 3
 - (3) 12, 2, 6
 - (4) 12, 1, 6
- Sol. Answer (3)

$$\overset{0}{\text{Cl}_2} \longrightarrow \overset{+5}{2\text{ClO}_3^-} + 10\text{e}^-$$

To balance O and H, we first find out side deficient in 'O' atoms.

 $Cl_2 + 6H_2O \longrightarrow 2ClO_3 + 10e^-$

Then find out side deficient in H and add H₂O, then add equal number of OH⁻ on opposite side.

$$\text{Cl}_2 + 6\text{H}_2\text{O} \longrightarrow 2\text{ClO}_3 + 12\text{H}_2\text{O}$$

Adding OH-,

 $Cl_2 + 12OH^- \longrightarrow 2ClO_3 + 6H_2O + 10e^-$

(Law of equivalence and Titrations, Electrochemical cell)

9. The ratio of number of moles of $KMnO_4$ and $K_2Cr_2O_7$ required to oxidise 0.1 mol Sn^{2+} to Sn^{+4} in acidic medium

 (1) 6:5
 (2) 5:6
 (3) 1:2
 (4) 2:1

Sol. Answer (1)

$$\Delta O.N. = 5$$

$$MnO_{4}^{-} + Sn^{2+} \longrightarrow Mn^{2+} + Sn^{4+}$$

$$\Delta O.N. = 2$$

2 mole of Sn²⁺ \longrightarrow 5 mole of MnO₄⁻

Then, 0.1
$$\longrightarrow \frac{5 \times 0.1}{2}$$

Since,

Then, ratio =
$$\frac{MnO_4^-}{Cr_2O_4^{2-}} = \frac{\frac{5 \times 0.1}{2}}{\frac{6 \times 0.1}{2}} = 5 : 6$$

10.
$$CI_2 \xrightarrow{NaOH} NaCI + NaCIO_3 + H_2O$$

The equivalent mass of ${\rm Cl}_{\rm 2}$ in the above reaction is

(1) M (2)
$$\frac{M}{3}$$
 (3) $\frac{M}{2}$ (4) $\frac{3M}{5}$

Sol. Answer (4)

$$\left(\operatorname{Cl}_{2} \xrightarrow{+2e^{-}} 2\operatorname{Cl}^{-}\right) \times 5 \qquad \dots (1)$$

$$5Cl_2 \longrightarrow 2ClO_3 + 10e^-$$
 ...(2)

Adding (1) and (2), we get

$$6Cl_2 \longrightarrow 10Cl^- + 2ClO_3^-$$

- \therefore 6 moles of Cl₂ require 10 moles of electrons
- :. 1 mole of Cl_2 require $\frac{10}{6}$ moles of electrons

 \therefore n factor = $\frac{5}{3}$

 $\therefore \quad \text{Equivalent mass} = \frac{\text{Molar mass}}{\frac{5}{3}} = \frac{3}{5} \times \text{Molar mass}$

- 11. KCl is used as an electrolyte in salt bridge because
 - (1) K⁺ and Cl⁻ are isoelectronic
 - (2) Monovalent ions are required
 - (3) Both the ions have almost same velocity
 - (4) They are having similar size

Sol. Answer (3)

KCl is used in salt bridge since K⁺ and Cl⁻ have almost the same ionic velocity.

12. EMF of the given cell

Sol. Answer (1)

$$\begin{split} \mathsf{E}_{\mathsf{cell}}^{0} = \left(\mathsf{E}_{\mathsf{cathode}}^{0}\right)_{\mathsf{SRP}} - \left(\mathsf{E}_{\mathsf{anode}}^{0}\right)_{\mathsf{SRP}} \\ = \left(\mathsf{E}_{\mathsf{anode}}^{0}\right)_{\mathsf{SOP}} - \left(\mathsf{E}_{\mathsf{cathode}}^{0}\right)_{\mathsf{SOP}} \end{split}$$

Where SRP is standard reduction potential

and SOP is standard oxidation potential

:.
$$E_{Cell} = [1.4 - (-1.4)]V$$

= +2.8 V

- 13. Electrode potential depends upon
 - (1) Size of electrode
 - (3) Temperature
- Sol. Answer (3)

Electrode potential depends upon temperature

$$\Delta G = - nFE^{\circ}$$

and ΔG depends upon temperature

- 14. Number of electrons involved in the reaction when 0.1 mol NH₃ dissolved in water
 - (1) 2 (2) 0.4 (3) 0.9 (4) Zero
- Sol. Answer (4)

 $NH_3 + H_2O \longrightarrow NH_4OH$; not a redox reaction.

- (2) Surface area of electrode
- (4) Shape of electrode

15.
$$\frac{1}{2}F_2 + e^- \longrightarrow F^- \quad E^\circ = +3.02 \text{ V}$$

Electrode potential for given reaction

$$F_2 + 2e^- \longrightarrow 2F^-$$

(1) 3.02 V (2) 6.04 V (3) 1.5 V (4) -3.02 V

Sol. Answer (1)

 E° is an intensive property, so it does not change with the amount of substance.

$$\therefore \quad \frac{1}{2}F_2 + e^- \longrightarrow F^-; E^\circ = +3.02 \text{ V}$$

$$F_2 + 2e^- \longrightarrow 2F; E^\circ = +3.02 \text{ V}$$

$$1000F_2 + 2000e^- \longrightarrow 2000F^-; E^\circ = +3.02 \text{ V}$$

- 16. Three metals A, B and C are arranged in increasing order of standard reduction electrode potential, hence their chemical reactivity order will be
 - (1) A < B < C (2) A > B > C (3) B > C > A (4) A = B = C

Sol. Answer (2)

Increasing order of standard reduction potential

A < B < C

- :. Increasing order of standard oxidation potential
 - A > B > C

Metals have tendency to get oxidized

- :. Higher the tendency to get oxidized, higher the reactivity
- :. Reactivity order:

17. How many moles of KMnO₄ are required to oxidise one mole of SnCl₂ in acidic medium?

(1)
$$\frac{1}{5}$$
 (2) $\frac{2}{5}$ (3) $\frac{3}{5}$ (4) $\frac{4}{5}$

Sol. Answer (2)

$$(\Delta O.N. = +2) \times 5$$

$$\stackrel{+7}{\text{MnO}_{4}} + \text{SnCl}_{2} \longrightarrow \text{Mn}^{2+} + \text{Sn}^{4+}$$

$$(\Delta O.N. = -5) \times 2$$

where $\Delta O.N.$ = change in oxidation number

... The reaction becomes

 $2MnO_4^- + 5SnCl_2 \longrightarrow 2Mn^{2+} + 5Sn^{4+}$

5 moles SnCl₂ require 2 moles of KMnO₄

1 mole $SnCl_2$ requires $\frac{2}{5}$ moles of KMnO₄

- 18. Which of the following is incorrect regarding salt bridge solution?
 - (1) Solution must be a strong electrolyte
 - (2) Solution should be inert towards both electrodes
 - (3) Size of cations and anions of salt should be much different
 - (4) Salt bridge solution is prepared in gelatin or agar-agar to make it semi-solid

Sol. Answer (3)

In salt bridge, size of cations and anions should not be much different, they should be similar.

- Standard electrode potentials of redox couples A²⁺/A, B²⁺/B, C/C²⁺ and D²⁺/D are 0.3 V, -0.5 V, -0.75 V and 0.9 V respectively. Which of these is best oxidising agent and reducing agent respectively?
 - (1) D^{2+}/D and B^{2+}/B (2) B^{2+}/B and D^{2+}/D (3) D^{2+}/D and C^{2+}/C (4) C^{2+}/C and D^{2+}/D

Sol. Answer (1)

Out of the given couples, highest reduction potential means highest tendency to get reduced \Rightarrow Best oxidizing agent (D²⁺/D)

Similarly lowest reduction potential

 \Rightarrow Best reducing agent $(B^{2+} / B \longrightarrow -0.5V)$

Because $C \longrightarrow C^{2+}$; $E^{\circ} = -0.75 V$

- \therefore C²⁻¹ \longrightarrow C; E° = + 0.75 V
- 20. The number of moles of H₂O₂ required to completely react with 400 ml of 0.5 N KMnO₄ in acidic medium are

(1) 0.1 (2) 0.2 (3) 1.0 (4) 0.5 **Sol.** Answer (1)

where,

 $\Delta O.N.$ = Change in oxidation number

... Reaction becomes

 $2MnO_4^- + 5H_2O_2 \longrightarrow 2Mn^{2+} + 5O_2$

 $\Delta O.N. = 5$

 \therefore n factor of KMnO₄ = 5

Given, normality of $KMnO_4 = 0.5 N$

We know, normality = Molarity × n-factor

:. Molarity = 0.1 M.

:. Number of moles of $KMnO_4$ in 400 ml = 0.4 × 0.1 = 0.04 moles

From the reaction,

2 moles of $KMnO_4$ react with 5 moles of H_2O_2

$$\therefore$$
 0.04 moles of KMnO₄ react with $\frac{5}{2} \times 0.04$ moles of H₂O₂ = 0.1

SECTION - B

Previous Years Questions

1.	The oxidation state of Cr		[NEET-2019 (Odisha)]		
	(1) +4	(2) –6	(3) +12	(4) +6	

Sol. Answer (4*)

The most appropriate oxidation state of Cr in CrO₆ is +6 although CrO₆ has doubtful existence.

2. The correct structure of tribromooctaoxide is

[NEET-2019]

[NEET-2019]

Sol. Answer (1)

The correct structure of tribromooctaoxide is

3. Which of the following reactions are disproportionation reaction?

- (a) $2Cu^+ \longrightarrow Cu^{2+} + Cu^0$
- (b) $3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^- + MnO_2 + 2H_2O_4^-$
- (c) $2KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + MnO_2 + O_2$
- (d) $2MnO_4^- + 3Mn^{2+} + 2H_2O \longrightarrow 5MnO_2 + 4H^+$

Select the correct option from the following

Sol. Answer (1)										
(a) $2\overset{+1}{C}u^{+1} \longrightarrow \overset{+2}{C}u^{2(+)} + \overset{0}{C}u^{0}$ Disproportionation	(a) $2\overset{+1}{C}u^{+1} \longrightarrow \overset{+2}{C}u^{2(+)} + \overset{0}{C}u^{0}$ Disproportionation									
(b) $3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^- + 4MnO_2 + 2H_2O$ Disp	(b) $3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^{+7} + MnO_2 + 2H_2O$ Disproportionation									
(c) $2KMnO_4 \xrightarrow{\Lambda} K_2MnO_4 + MnO_2 + O_2^0$ \therefore Not a	disproportionation									
(d) $2 \dot{M} n O_4^- + 3 \dot{M} n^{2+} + 2 H_2 O \longrightarrow 5 \dot{M} n O_2 + 4 H^+ \}$ Con										
 The correct order of N-compounds in its decreasing order 		[NEET-2018]								
	(2) HNO_3 , NO, NH_4CI , N_2	[]								
	(4) HNO_3 , NH_4CI , NO , N_2									
Sol. Answer (1)	(4) $11100_3, 111_401, 110, 11_2$									
$H^{+5}_{NO_3}$, H^{+2}_{NO} , H^{-3}_{N2} , H^{-3}_{H4} Cl										
Hence, the correct option is (1).										
5. For the redox reaction, $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^2$	$^{2+} + CO_2 + H_2O$									
The correct coefficients of the reactants for the balanc	ed equation are	[NEET-2018]								
$MnO_4^ C_2O_4^{2-}$ H^+										
(1) 16 5 2										
(2) 2 5 16										
(3) 5 16 2										
(4) 2 16 5										
Sol. Answer (2)										
Reduction										
+7 +3 +4										

$$MnO_{4}^{+7} + C_{2}O_{4}^{2-} + H^{+} \longrightarrow Mn^{2+} + C_{2}O_{2} + H_{2}O$$

Oxidation

n-factor of $MnO_4^- \Rightarrow 5$

n-factor of $C_2O_4^{2-} \Rightarrow 2$

Ratio of n-factors of MnO_4^- and $C_2O_4^{2-}$ is 5 : 2 So, molar ratio in balanced reaction is 2 : 5

:. The balanced equation is $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_4^-$

- 6. Assuming complete ionization, same moles of which of the following compounds will require the least amount of acidified KMnO₄ for complete oxidation? [Re-AIPMT-2015]
 - (1) FeC_2O_4 (2) $Fe(NO_2)_2$ (3) $FeSO_4$ (4) $FeSO_3$

Sol. Answer (3)

	In option, (1) Ee^{2+} Ee^{3+}	Cha	and $in O N = 1$)					
	(1) Fe ²⁺ \longrightarrow Fe ³⁺ ; C ₂ O ₄ ²⁻ \longrightarrow 2CO ₂ ;	Cha	ange in $O.N. = 1$	3					
	(2) $\operatorname{Fe}^{2+} \longrightarrow \operatorname{Fe}^{3+}$	Cha	ange in $ON = 1$)					
	(2) $Fe^{2+} \longrightarrow Fe^{3+};$ $2NO_2^- \longrightarrow 2NO_3^-;$	Cha	ange in O.N. = 4	}5					
	(3) $Fe^{2+} \longrightarrow Fe^{3+};$	Cha	ange in O.N. = 1	}1					
	(4) $Fe^{2+} \longrightarrow Fe^{3+};$ $SO_3^{2-} \longrightarrow SO_4^{2-};$	Cha Cha	ange in O.N. = 1 ange in O.N. = 2	3					
7.	Which of the following pro	ocesse	es does not involve	e oxidation	of iron?		[AIPMT-2		
	(1) Liberation of H ₂ from	steam	n by iron at high te	mperature					
	(2) Rusting of iron sheet	S							
	(3) Decolourization of blu	ue Cu	SO ₄ solution by irc	n					
	(4) Formation of Fe(CO)	5 from	Fe						
Sol.	. Answer (4)								
8.	(a) $H_2O_2 + O_3 \rightarrow H_2O + 2C$) ₂							
	(b) $H_2O_2 + Ag_2O \rightarrow 2Ag + H_2O + O_2$								
	Role of hydrogen peroxide	e in the	e above reactions i	s respectiv	rely		[AIPMT-2		
	(1) Oxidizing in (a) and re	educin	g in (b)	(2)	Reducing in (a) a	and oxidizi	ing in (b)		
	(3) Reducing in (a) and (B	c)		(4)	Oxidizing in (a) a	nd (b)			
Sol.	. Answer (3)								
9.	In which of the following c	ompo	unds, nitrogen exh	ibits highe	st oxidation state?	[/	AIPMT (Prelims)-2		
	(1) N ₃ H	(2)	NH ₂ OH	(3)	N_2H_4	(4)) NH ₃		
Sol.	. Answer (1)								
10.	A solution contains Fe^{2+} , V and E° for $I_2/2I^{-} = 0.536$					at 35°C. E	E° for Fe³⁺/Fe²⁺ is + [AIPMT (Mains)-2		
	(1) I^- will be oxidised to I_2	2		(2)	Fe ²⁺ will be oxidi	sed to Fe	3+		
	(3) I_2 will be reduced to I^-			(4)	There will be no i	edox read	ction		
Sol.	. Answer (1)								
	Favourable redox reactio	n is or	ne for which E° = -	+ve becau	se only then				
	ΔG would be -ve.								
	$\Delta G^{\circ} = - nFE^{\circ}$								
	$E^{\circ_{cell}} = E^{\circ_{Fe^{3+}/Fe^{2+}}} - E^{\circ_{l_2/2}}$	2I [_] [E _{cell}	=E _{cathode} -E _{anode}]=	+ 0.234 \	/				
	Cathode (reduction)								

11.	Oxidation states of P in $H_4P_2O_5$, $H_4P_2O_6$, $H_4P_2O_7$ are respectively [AIPMT (Prelims)-2010							
	(1) +3, +5, +4		+5, +3, +4			(4)	+3, +4, +5	
Sol.	Answer (4)							
12.	Oxidation numbers of P in	PO ₄ ³	, of S in SO_4^{2-} and th	at of (Cr in $Cr_2O_7^{2-}$, are respec	ctively		
						-	PMT (Prelims)-2009]	
Sol.	(1) + 3, + 6 and + 5 Answer (4)	(2)	+ 5, + 3 and + 6	(3)	- 3, + 6 and + 6	(4)	+ 5, + 6 and + 6	
13.	The number of moles of KI	MnO ₄	that will be needed to	react	with one mole of sulphite		n acidic solution is PMT (Prelims)-2007]	
			3		م	-		
	(1) 1	(2)	5	(3)	- 5	(4)	<u>2</u> 5	
Sol.	Answer (4)							
14.	Standard reduction potenti	als of	the half reactions are	given	below			
	${\sf F}_{2(g)}$ + 2e ⁻ $ ightarrow$ 2F ⁻ _(aq) ;							
	$\text{Cl}_{2(g)}$ + 2e^- \rightarrow 2Cl $_{(aq)}^-$;							
	$\operatorname{Br}_{\operatorname{2(I)}}$ + 2e ⁻ $ ightarrow$ 2Br ⁻ _(aq) ;							
	$\mathrm{I_{2(s)}}$ + 2e^- \rightarrow 2I^{(aq)};							
	The strongest oxidising an			-				
	(1) F_2 and I^-	(2)	Br ₂ and Cl⁻	(3)	Cl ₂ and Br⁻	(4)	Cl_2 and l_2	
Sol.	Answer (1)							
	Highest reduction potential				2			
	Lowest reduction potential							
15.	Standard electrode pot -0.74 V. These two couple							
	(1) +1.83 V	(2)	+1.19 V	(3)	+0.89 V	(4)	+0.18 V	
Sol.	Answer (3)							
	$E^{\circ}_{Cell} = E^{\circ}_{anode} - E^{\circ}_{anode} = E^{\circ}_{eduction} - E^{\circ}_{oxidation}$							
	For the cell to be functional, E [°] must be positive							
	\therefore E° in the formula is always taken in terms (E°) _{SRP} <i>i.e.</i> standard reduction potential.							
	Here E° would be positive when							
	$\operatorname{Sn}^{4+} \longrightarrow \operatorname{Sn}^{2+}$; $E^\circ = + 0.15 \text{ V}$							
	And $Cr \longrightarrow Cr^{3+}$; $E^{\circ} = -(-0.74 \text{ V}) = +0.74 \text{ V}$							
	U Oxidation potential							
			$(E^{\circ}_{SOP} = -E^{\circ}_{S})$,				
	$\therefore E^{\circ} = E^{\circ}_{Sn^{4+}/Sn^{2+}} - E^{\circ}_{Cr^{3+}/Cr} = 0.15 \ V - (-0.74 \ V) = +0.89 \ V$							

 Standard reduction electrode potential of three metals X, Y and Z are –1.2 V, +0.5 V and –3.0 V respectively. The reducing power of these metals will be

(1) X > Y > Z (2) Y > Z > X (3) Y > X > Z (4) Z > X > Y

Sol. Answer (4)

Higher reduction potential \Rightarrow stronger oxidizing power

- \Rightarrow Weaker reducing power
- ∴ Reducing power : Y < X < Z
- 17. In the reaction

 $2H_2O_2 \rightarrow 2H_2O + O_2$

- (1) Oxygen is oxidised only
- (3) Oxygen is neither oxidised nor reduced
- (2) Oxygen is reduced only
- (4) Oxygen is both oxidised and reduced

Sol. Answer (4)

 $H_2O_2^{-1} \longrightarrow H_2O^{-2} + O_2^0$

Oxygen is both oxidised and reduced.

- *i.e.* this is a disproportion reaction.
- 18. Which change requires an oxidising agent?
 - (1) $2S_2O_3^{2-} \xrightarrow{} S_4O_6^{2-}$ (2) $Zn^{2+} \xrightarrow{} Zn$ (3) $CIO^- \xrightarrow{} CI^-$ (4) $SO_3 \xrightarrow{} SO_4^{2-}$

Sol. Answer (1)

 $2S_2O_3^{2-} \xrightarrow{} S_4O_6^{2-}$ $2x - (3 \times 2) = -2 \qquad \qquad 4x + (-2 \times 6) = -2$ $\Rightarrow x = +2 \qquad \qquad \Rightarrow x = +2.5$

So, sulphur undergoes oxidation from +2 to +2.5 and hence requires an oxidizing agent.

- 19. Given the following reactions involving A, B, C and D
 - (i) $C + B^+ \rightarrow C^+ + B$ (ii) $A^+ + D \rightarrow No$ reaction
 - (iii) $C^+ + A \rightarrow No$ reaction (iv) $D + B^+ \rightarrow D^+ + B$

The correct arrangement of A, B, C, D in order of their decreasing ability as reducing agent

(1) D > B > C > A (2) A > C > D > B (3) C > A > B > D (4) C > A > D > B

Sol. Answer (4)

From the data, it is concluded that

D cannot reduce A⁺

A cannot reduce C⁺

 \Rightarrow Reducing power $\longrightarrow C > A > D$

Also, It is seen that D reduces B⁺

 \therefore Reducing power \longrightarrow C > A > D > B

20.	Which element undergoes disproportionation in water?								
	(1) Cl ₂	(2)	F ₂	(3)	К	(4)	Cs		
Sol.	Sol. Answer (1)								
	Cl ₂ in water disproportionates to give HCI and HOCI								
	$CI_2 + H_2O \longrightarrow HCI + HC$	CI							
21.	Standard reduction potentia -2.37 volt respectively. Whi				• •	re –3.	.05, –2.90, –2.71 and		
	(1) Ba ²⁺	(2)	Mg ²⁺	(3)	Na ⁺	(4)	Li ⁺		
Sol.	Answer (2)								
	Strongest oxidizing agent								
	\Rightarrow Highest reduction pote	ntial							
	Out of the given values, M	g²+ ha	as the highest reduction	on pot	ential.				
22.	Which substance is serving	g as a	a reducing agent in the	e follo	wing reaction?				
	$14H^{+} + Cr_{2}O_{7}^{2-} + 3Ni \rightarrow 7$	H ₂ O ·	+ 3Ni ²⁺ + Cr ³⁺						
	(1) H ⁺	(2)	Cr ₂ O ₇ ²⁻	(3)	H ₂ O	(4)	Ni		
Sol.	Answer (4)								
	$cr^{+6} \longrightarrow Cr^{+3}$ (Oxidizing agent)								
	$Ni \longrightarrow Ni^{2+}$ (Reducing a	gent)	1						
	i.e. Ni acts as reducing ag	ent s	ince if reduces Cr⁺6 to	Cr ³⁺					
23.	The oxide, which cannot ac	ct as a	a reducing agent, is						
	(1) CO ₂	(2)	CIO ₂	(3)	NO ₂	(4)	SO2		
Sol.	Answer (1)								
	CO ₂ cannot act as a reducing agent because to reduce others, it itself has to get oxidized. This is not possible because carbon is already in its highest possible oxidation state.								
24.	Oxidation state of Fe in Fe	e ₃ O ₄ i	S						
	(1) $\frac{5}{4}$	(2)	$\frac{4}{5}$	(3)	$\frac{3}{2}$	(4)	<u>8</u> 3		
Sol.	Answer (4)								
	$Fe_{3}O_{4}$ $3x + (-2 \times 4) = 0$								

 $\Rightarrow x = \frac{+8}{3}$ 25. Oxidation numbers of A, B, C are +2, +5 and -2 respectively. Possible formula of compound is

(1) $A_2(BC_2)_2$ (2) $A_3(BC_4)_2$ (3) $A_2(BC_3)_2$ (4) $A_3(B_2C)_2$ Sol. Answer (2)

Possible formula for the compound would be $A_3(BC_4)_2$

$$A_3 \longrightarrow 3 \times +2 = +6$$
$$BC_4 \longrightarrow +5 + (-2 \times 4) = -3$$
$$2(BC_4) \longrightarrow -3 \times 2 = -6$$

Combining A_3 and $2BC_4$, we get net charge of 0 *i.e.* Electrical neutrality of compound is maintained. In the other options, electrical neutrality is not maintained.

- 26. The oxidation states of sulphur in the anions SO_3^{2-} , $S_2O_4^{2-}$ and $S_2O_6^{2-}$ follow the order
 - (1) $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-}$ (2) $SO_3^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$ (3) $S_2O_4^{2-} < S_2O_6^{2-} < SO_3^{2-}$ (4) $S_2O_6^{2-} < S_2O_4^{2-} < SO_3^{2-}$

Sol. Answer (1)

Sol.

 $SO_3^{2-} \longrightarrow x + (-2 \times 3) = -2 \Rightarrow x = +4$ $S_2O_4^{2-} \longrightarrow 2x + (-2 \times 4) = -2 \Rightarrow x = +3$ $S_2O_6^{2-} \longrightarrow 2x + (-2 \times 6) = -2 \Rightarrow x = +5$

:. Oxidation state follows the order, $S_2O_6^{2-} > SO_3^{2-} > S_2O_4^{2-}$

27. Electrode potential for the following half-cell reactions are

$$\begin{array}{ll} Zn \to Zn^{2+} + 2e^{-}; \ E^{\circ} = + \ 0.76 \ V; \\ Fe \to Fe^{2+} + 2e^{-}; \ E^{\circ} = + \ 0.44 \ V \\ The EMF for the cell reaction \ Fe^{2+} + Zn \to Zn^{2+} + Fe \ will \ be \\ (1) \ - \ 0.32 \ V \\ (1) \ - \ 0.32 \ V \\ (2) \ + \ 1.20 \ V \\ (3) \ - \ 1.20 \ V \\ (4) \ + \ 0.32 \ V \\ Answer \ (4) \end{array}$$

$$\mathbf{E}_{cell}^{\circ} = \left(\mathbf{E}_{reduction}^{\circ}\right)_{SRP} - \left(\mathbf{E}_{oxidation}^{\circ}\right)_{SRP}$$
$$= -\left(\mathbf{E}_{reduction}^{\circ}\right)_{SOP} + \left(\mathbf{E}_{oxidation}^{\circ}\right)_{SOP}$$
$$= \mathbf{E}_{oxidation}^{\circ} - \mathbf{E}_$$

- (1) +5 (2) +3 (3) +6 (4) -10 **Sol.** Answer (3)

SECTION - C

Assertion - Reason Type Questions

1. A: Fluorine acts as a stronger oxidising agent than chlorine.

- R: Standard reduction potential of fluorine is higher than Cl₂
- Sol. Answer (1)

Standard reduction potential of F₂ is higher than that of Cl₂

- ... Fluorine is a stronger oxidizing agent than Cl₂
- 2. A: Oxidation number of carbon in HCN is +4.
 - R : Oxidation state and valency is same for carbon.

Sol. Answer (4)

Valency of carbon is 4 while oxidation state of carbon varies from compound to compound.

In HCN, $\overset{+1}{H} \overset{+2}{C} \overset{-3}{\cong} N$

 $C \longrightarrow +2$ state

- 3. A : Equivalent weight of KMnO₄ in acidic medium is $\frac{M}{5}$.
 - R : In acidic medium 1 mol of MnO_4^- gains 5 electron.
- Sol. Answer (1)

In acidic medium, $\stackrel{+7}{MnO_4^-} \xrightarrow{+5e^-} Mn^{2+}$ *i.e.* 1 mole of KMnO₄ accepts 5 electrons

- \therefore n factor of KMnO₄ = 5
- 4. A: Electrons flow in external circuit of galvanic cell while ions flow in internal circuit.
 - R : Direction of current flow is reverse that of electron flow.

Sol. Answer (2)

Direction of conventional current is opposite to flow of electrons.

Also, electrons flow in the external circuit while ions flow in the internal circuit.

5. A: Sn²⁺ and Fe³⁺ can't remain together in a solution.

R: Sn²⁺ and Fe³⁺ will react mutually to form Sn⁴⁺ and Fe²⁺.

Sol. Answer (1)

Sn²⁺ and Fe³⁺ will react to give Sn⁴⁺ and Fe²⁺ because $E_{Fe^{3+}/Fe^{2+}}^{\circ} > E_{Sn^{4+}/Sn^{2+}}^{\circ}$ So, they cannot remain mutually in a solution.

- 6. A: The oxidation number of S is +6 in H_2SO_4 .
 - R : H_2SO_4 has one peroxide linkage.

Sol. Answer (3)

 $ln H_2 SO_4, +2 + x + (-2 \times 4) = 0$ $\Rightarrow x = +6$

Oxidation state of sulphure = + 6

Structure of H₂SO₄ is

If does not have any peroxide linkage.

7. A : HNO_2 acts as reducing agent only.

R: HNO₂ oxidises to HNO₃ only but not reduce by any reducing agent.

Sol. Answer (4)

In HNO₂, oxidation state is +3 for nitrogen.

Hence it can be oxidized to +5 or be reduced upto -3.

:. If can act as both reducing as well as oxidizing agent.

- 8. A : In alkaline medium, KMnO₄ acts as powerful oxidising agent.
 - R: KMnO₄ reduces to give Mn²⁺ in alkaline medium.

Sol. Answer (3)

 $KMnO_4$ acts as a powerful oxidizing agent in both acidic and alkaline medium.

KMnO₄ reduces to Mn⁺⁶ in alkaline medium.

9. A: When Cu_2S is converted into $Cu^+ \& SO_2$, then equivalent weight of Cu_2S will be M/8 (M = Mol. wt. of Cu_2S)

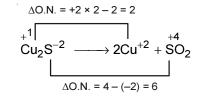
HO – S – OH

R : Cu^+ is converted Cu^{++} , during this one electrons is lost.

Sol. Answer (2)

- :. For 1 mole Cu₂S, net change in oxidation number = 2 + 6 = 8
- :. n-factor = 8
- \therefore Equivalent weight = $\frac{M}{8}$

Also, $Cu^+ \longrightarrow Cu^{2+} + e^-$


:. 1 electron is lost.

- 10. A : I_2 is a mild oxidising agent.
 - R : I_2 can be used for titrating sodium thiosulphate.

Sol. Answer (2)

 I_2 is indeed a mild oxidizing agent. It has positive (low) value of E° = 0.54 V It is used for titrating sodium thiosulphate

 $l_2^{} + S_4^{}O_6^{2-} \xrightarrow{} 2l^- + 4SO_4^{2-}$

