PERMUTATION & COMBINATION

1. FUNDAMENTAL PRINCIPLE OF COUNTING (counting without actually counting):

If an event can occur in 'm' different ways, following which another event can occur in 'n' different ways, then the total number of different ways of

- (a) Simultaneous occurrence of both events in a definite order is m x n. This can be extended to any number of events (known as multiplication principle).
- **(b)** Happening of exactly one of the events is m + n (known as addition principle).

2. FACTORIAL :

A Useful Notation : $n! = n (n - 1) (n - 2) \dots 3. 2. 1;$

n! = n. (n - 1)! where $n \in W$

0! = 1! = 1

 $(2n)! = 2^n \cdot n! [1 \cdot 3 \cdot 5 \cdot 7 \dots (2n-1)]$

Note that :

- (i) Factorial of negative integers is not defined.
- (ii) Let p be a prime number and n be a positive integer, then exponent of p in n! is denoted by E_n (n!) and is given by

$$E_{p}(n!) = \left[\frac{n}{p}\right] + \left[\frac{n}{p^{2}}\right] + \left[\frac{n}{p^{3}}\right] + \dots$$

3. **PERMUTATION**:

(a) nP_r denotes the number of permutations (arrangements) of n different things, taken r at a time (n \in N, r \in W, n \geq r)

ⁿP_r = n (n - 1) (n - 2) (n - r + 1) = $\frac{n!}{(n - r)!}$

(b) The number of permutations of n things taken all at a time when p of them are similar of one type, q of them are similar of second type, r of them are similar of third type and the remaining

$$n - (p + q + r)$$
 are all different is : $\frac{n!}{p! q! r!}$.

- (c) The number of permutation of n different objects taken r at a time, when a particular object is always to be included is r! . ${}^{n-1}C_{r-1}$
- (d) The number of permutation of n different objects taken r at a time, when repetition be allowed any number of times is $n \times n \times n$ r times = n^{r} .
- (e) (i) The number of circular permutations of n different things taken all at a time is ; $(n 1)! = \frac{{}^{n}P_{n}}{n}$.

If clockwise & anti-clockwise circular permutations are considered to be same, then it is $\frac{(n-1)!}{2}$.

(ii) The number of circular permutation of n different things taking r at a time distinguishing clockwise & anticlockwise

arrangement is $\frac{{}^{n}P_{r}}{r}$

4. COMBINATION:

(a) ${}^{n}C_{r}$ denotes the number of combinations (selections) of n different n!

things taken r at a time, and ${}^{n}C_{r} = \frac{n!}{r!(n-r)!} = \frac{{}^{n}P_{r}}{r!}$ where $r \le n$

$$n \in N \text{ and } r \in W . \ ^{n}C_{r} \text{ is also denoted by } \binom{n}{r} \text{ or } A_{r}^{n} \text{ or } C \text{ (n, r)}.$$

- **(b)** The number of combination of n different things taking r at a time.
 - (i) when p particular things are always to be included = ${}^{n-p}C_{r-p}$
 - (ii) when p particular things are always to be excluded = ${}^{n-p}C_{r}$
 - (iii) when p particular things are always to be included and q particular things are to be excluded = ${}^{n-p-q}C_{r-p}$

- (c) Given n different objects, the number of ways of selecting atleast one of them is, ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + \dots + {}^{n}C_{n} = 2^{n} 1$. This can also be stated as the total number of non-empty combinations of n distinct things.
- (d) (i) Total number of ways in which it is possible to make a selection by taking some or all out of p + q + r +.....things, where p are alike of one kind, q alike of a second kind, r alike of third kind & so on is given by : (p + 1) (q + 1) (r + 1)......-1.
 - (ii) The total number of ways of selecting one or more things from p identical things of one kind, q identical things of second kind, r identical things of third kind and n different things is $(p + 1) (q + 1) (r + 1) 2^n 1$

5. DIVISORS :

- Let $N = p^a$. q^b . r^c where p, q, r..... are distinct primes & a, b, c..... are natural numbers then :
- (a) The total numbers of divisors of N including 1 & N is = (a + 1) (b + 1) (c + 1).....
- **(b)** The sum of these divisors is $(p^0 + p^1 + p^2 + ...+ p^a)$ $(q^0 + q^1 + q^2 + ...+ q^b) (r^0 + r^1 + r^2 + ...+ r^c)...$
- (c) Number of ways in which N can be resolved as a product of two factors is

 $\frac{1}{2}$ (a + 1) (b + 1) (c + 1)..... if N is not a perfect square

$$\frac{1}{2}$$
 [(a+1) (b+1) (c+1).....+1] if N is a perfect square

(d) Number of ways in which a composite number N can be resolved into two factors which are relatively prime (or coprime) to each other, is equal to 2^{n-1} where n is the number of different prime factors in N.

6. DIVISION INTO GROUPS AND DISTRIBUTION :

(a) (i) The number of ways in which (m + n) different things can be divided into two groups containing m & n things respectively

is :
$$\frac{(m+n)!}{m! n!}$$
 (m \neq n).

(ii) If m = n, then number of ways in which 2n distinct objects

can be divided into two equal groups is $\frac{(2n)!}{n! n! 2!}$; as in

any one way it is possible to inter change the two groups without obtaining a new distribution.

(iii) If 2n things are to be divided equally between two persons

then the number of ways = $\frac{(2n)!}{n! n! (2!)} \times 2!$.

(b) (i) Number of ways in which (m + n + p) different things can be divided into three groups containing m, n & p things

respectively is
$$\frac{(m+n+p)!}{m! n! p!}$$
, $m \neq n \neq p$.

(ii) If m = n = p then the number of such grouping

$$= \frac{(3n)!}{n! \ n! \ n! \ 3!}.$$

(iii) If 3n things are to be divided equally among three people

then the number of ways in which it can be done is $\frac{(3n)!}{(n!)^3}$.

(c) In general, the number of ways of dividing n distinct objects into ℓ groups containing p objects each ,m groups containing q objects

each is equal to $\frac{n!}{(p!)^{\ell} (q!)^{m} \ell! m!}$ Here $\ell p + mq = n$

- (d) Number of ways in which n distinct things can be distributed to p persons if there is no restriction to the number of things received by them is p^n
- (e) Number of ways in which n identical things may be distributed among p persons if each person may receive none, one or more things is ${}^{n+p-1}C_{n}$.

7. DERANGEMENT :

Number of ways in which n letters can be placed in n directed envelopes so that no letter goes into its own envelope is

$$= n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots + (-1)^n \frac{1}{n!} \right]$$

8. IMPORTANT RESULT :

(a) Number of rectangles of any size in a square of size $n \times n$ is

$$\sum_{r=1}^{n} r^{3}$$
 & number of squares of any size is $\sum_{r=1}^{n} r^{2}$

(b) Number of rectangles of any size in a rectangle of size $n \, \times \, p$

$$(n < p)$$
 is $\frac{np}{4}(n + 1)(p + 1)$ & number of squares of any size is

$$\sum_{r=1}^{n} (n+1-r)(p+1-r)$$

(c) If there are n points in a plane of which m(<n) are collinear :

- (i) Total number of lines obtained by joining these points is ${}^{n}C_{2} {}^{m}C_{2} + 1$
- (ii) Total number of different triangle ${}^{n}C_{3} {}^{m}C_{3}$
- (d) Maximum number of point of intersection of n circles is ${}^{n}P_{2}$ & n lines is ${}^{n}C_{2}$.