Types of Pair of Angles

Exercise

Solution 1:

Pair of angle	Type of pair of angle	
∠SJR and ∠PJQ	Vertically opposite angles	
∠RJB and ∠AJP	Vertically opposite angles	
∠BJQ and ∠AJS	Vertically opposite angles	
∠PJQ and ∠PJS	Supplementary angles	
∠RJS and ∠SJP	Supplementary angles	
∠AJS and ∠AJQ	Supplementary angles	
∠RJS and ∠RJQ	Supplementary angles	
∠AJP and ∠AJR	Supplementary angles	
$\angle QJP$ and $\angle QJR$	Supplementary angles	
∠SJA and ∠SJB	Supplementary angles	
∠PJA and ∠PJB	Supplementary angles	
∠SJR and ∠SJP	Supplementary angles	
∠BJR and ∠BJP	Supplementary angles	
∠RJB and ∠RJA	Supplementary angles	
∠QJB and ∠QJA	Supplementary angles	
∠SJR and ∠RJB	Complementary angles	
∠AJP and ∠PJQ	Complementary angles	

Solution 2:

1. $27^{\circ} + 63^{\circ} = 90^{\circ}$

If the sum of the measures of two angles is 90°, they form a pair of complementary angles.

∴27°, 63° form a pair of complementary angles.

2. $110^{\circ} + 70^{\circ} = 180^{\circ}$

If the sum of the measures of two angles is 180°, they form a pair of supplementary angles.

:110°, 70° form a pair of supplementary angles.

3. 7° + 83° = 90°

If the sum of the measures of two angles is 90°, they form a pair of complementary angles.

∴7°, 83° form a pair of complementary angles.

4. $135^{\circ} + 45^{\circ} = 180^{\circ}$

If the sum of the measures of two angles is 180°, they form a pair of supplementary angles.

:135°, 45° form a pair of supplementary angles

5. $58^{\circ} + 32^{\circ} = 90^{\circ}$

If the sum of the measures of two angles is 90°, they form a pair of complementary angles.

∴58°, 32° form a pair of complementary angles.

Solution 3:

No.	Measure of an Measure of its complementary angle		Measure of its supplementary angle	
1	72°	90° - 72° = 18°	180° - 72° = 108°	
2	50°	90° - 50° = 40°	180° - 50° = 130°	
3	80°	90° - 80° = 10°	180° - 80° = 100°	
4	87°	90° - 87° = 3°	180° - 87° = 93°	
5	36°	90° - 36° = 54°	180° - 36° = 144°	
6	25°	90° - 25° = 65°	180° - 25° = 155°	
7	48°	90° - 48° = 42°	180° - 48° = 132°	
8	67°	90° - 67° = 23°	180° - 67° = 113°	
9	34°	90° - 34°= 56°	180° - 34° = 146°	
10	71°	90° - 71° = 19°	180° - 71° = 109°	

Solution 4:

Given, $\angle AED$ and $\angle BED$ are angles of a linear pair.

 $m\angle BED = 145^{\circ}$

 $m\angle AED + m\angle BED = 180^{\circ}$

 \Rightarrow m \angle AED + 145°=180°

 \Rightarrow m \angle AED =180° - 145° = 35°

```
m\angle AEC = m\angle BED = 145^{\circ} ....[Vertically Opposite angles] m\angle BEC = m\angle AED = 35^{\circ} ....[Vertically Opposite angles]
```

Solution 5:

- 1. Two pairs of vertically opposite angles are formed.
- 2. ∠XMQ and ∠PMY; ∠XMP and ∠YMQ are vertically opposite angles.
- 3. Four pairs of angles of a linear pair are formed.
- 4. \angle XMQ and \angle QMY; \angle QMY and \angle YMP; \angle YMP and \angle PMX; \angle PMX and \angle XMQ are the angles forming a linear pair.
- 5. Given, m∠XMQ = 90°m∠XMP = m∠XMQ[angles of a linear pair]⇒m∠XMP + 90° = 180°⇒ m∠XMP = 90°

```
m\angleXMP= m\angleYMQ = 90° ....[Vertically Opposite angles]

\Rightarrow m\angleXMP = 180° - 90° = 90°

m\angleXMP + m\angleXMQ = 180°

m\anglePMY = m\angleXMQ = 90° ....[Vertically Opposite angles]
```

IIIZPINIT = IIIZXINIQ = 90[Vertically Opposite alignes]

Activity

Solution 1:

Solution 2:

Acute Angle	Right Angle	Obtuse Angle	
(1), (5)	(2), (4), (7), (9)	(3), (6), (8)	

Solution 3:

Figure	Measure of angles	Addition of measures of angle
B C C	m∠ABC = 30°	m∠ABC + m∠DEF = 30° + 60° = 90°
(b) A	m∠DEF = 60°	23
s	m∠PQS = 45°	m∠ABC + m∠DEF = 45° + 45° = 90°
QR	m∠RQS = 45°	

- (1) Measure of ∠ABC is 30°.
- (2) Measure of ∠DEF is 60°.
- (3) The sum of the measures of both angles in fig(a) is 90°.(4) The sum of the measures of both angles in fig(b) is 90°.

Solution 4:

Figure	Measure of angles	Addition of measures of angle
(a)	m∠HIJ = 150°	m∠HIJ+m∠KLM = 150°+30° = 180°
	m∠KLM = 30°	· ·
(b) W	m∠WYZ = 60°	m∠WYZ+m∠WYX = 60° + 120° = 180°
A 1 Z	m∠WYX = 120°	

- (1) The measure of m∠KLM is 30°.
- (2) The sum of m∠KLM and m∠HIJ is 180°.
- (3) Then sum of m∠WYZ and m∠WYX is 180°

Solution 5:

No.	Pair of complementary angles	Pair of supplementary angles
1	35°, 55°	120°, 60°
2	65°, 25°	75°, 105°
3	23°, 67°	81°, 99°
4		145°, 35°

Solution 6:

Figure	Common arm	Opposite rays	Sum of measures of angles
(a) A D B C Figure 2.4	BĀ	BA andBD	m∠ABD + m∠ABC = 120° + 60° = 180°
(b) Q S P R Figure 2.5	₽Q	PS and PR	m∠SPQ + m∠RPQ = 50° + 130° = 180°

Practice - 1

Solution 1(1):

2. 70°

The measure of given angle = 60°

Measure of complementary angle of an angle = 90° – the measure of the given angle = 90° – 20° = 70°

∴ Measure of its complementary angle is 70°.

Solution 1(2):

1 25°

Measure of complementary angle of an angle = 90° – the measure of the given angle The measure of given angle = 55°

∴ Measure of its complementary angle = 90° – 55° = 25°

Solution 1(3):

1.7°

Measure of complementary angle of an angle = 90° – the measure of the given angle The measure of given angle = 83°

 \therefore Measure of its complementary angle = 90° – 83° = 7°

Solution 2:

Calculations:

1. The measure of given angle = 50°

 \therefore Measure of its complementary angle = $90^{\circ} - 50^{\circ} = 40^{\circ}$

2. The measure of given angle = 63°

 \therefore Measure of its complementary angle = $90^{\circ} - 63^{\circ} = 27^{\circ}$

3. The measure of given angle = 47°

∴ Measure of its complementary angle = 90° 47° = 43°

4. The measure of given angle = 56°

∴ Measure of its complementary angle = 90° – 56° = 34°

5. The measure of given angle = 12°

∴ Measure of its complementary angle = 90° – 12° = 78°

6. The measure of given angle = 67°

∴ Measure of its complementary angle = 90° – 67° = 23°

S. No	Angle 1	Angle 2	
1	50°	40°	
2	27°	63°	
3	47°	<u>43°</u>	
4	56°	34°	
5 <u>78°</u>		12°	
6 67°		23°	

Solution 3:

The measure of given angle = 23°

Measure of complementary angle of an angle = 90° – the measure of the given angle = 90° - 23° = 67°

: Measure of its complementary angle is 67°.

Solution 4:

The measure of given angle = 36°

Measure of complementary angle of an angle = 90° – the measure of the given angle = 90° – 36° = 54°

: Measure of its complementary angle is 54°.

Solution 5:

- 1. The sum of measures of two complementary angles = 90° . The sum of measures of given two angles = $15^\circ + 75^\circ = 90^\circ$
 - Hence, the given pair of angles is a pair of complementary angles.
- 2. The sum of measures of two complementary angles = 90°. The sum of measures of given two angles = 75° + 47° = 123° ≠ 90°
 - Hence, the given pair of angles is not a pair of complementary angles.
- 3. The sum of measures of two complementary angles = 90° . The sum of measures of given two angles = $64^{\circ} + 26^{\circ} = 90^{\circ}$
 - Hence, the given pair of angles is a pair of complementary angles.
- 4. The sum of measures of two complementary angles = 90° . The sum of measures of given two angles = $50^{\circ} + 40^{\circ} = 90^{\circ}$
 - Hence, the given pair of angles is a pair of complementary angles.
- 5. The sum of measures of two complementary angles = 90° . The sum of measures of given two angles = 33° + 66°
 - = 99° ≠ 90°
 - Hence, the given pair of angles is not a pair of complementary angles.
- 6. The sum of measures of two complementary angles = 90° . The sum of measures of given two angles = $20^\circ + 70^\circ = 90^\circ$
 - Hence, the given pair of angles is a pair of complementary angles.

Solution 6:

- 1. The measure of an acute angle = 35°
 - Measure of complementary angle of an angle = 90° the measure of the given angle
 - \therefore Measure of its complementary angle = $90^{\circ} 35^{\circ} = 55^{\circ}$
- 2. The measure of an acute angle = 22°
 - Measure of complementary angle of an angle = 90° the measure of the given

angle

- : Measure of its complementary angle = $90^{\circ} 22^{\circ} = 68^{\circ}$
- 3. The measure of an acute angle = 59°

Measure of complementary angle of an angle = 90° -the measure of the given angle

∴ Measure of its complementary angle = 90° – 59° = 31°

Practice - 2

Solution 1:

1. Measure of supplementary angle of an angle = 180° – the measure of the given angle

The measure of given angle = 47°

- ∴ Measure of its complementary angle = $180^{\circ} 47^{\circ} = 133^{\circ}$
- 2. Measure of supplementary angle of an angle = 180° the measure of the given angle

The measure of given angle = 75°

- \therefore Measure of its complementary angle = $180^{\circ} 75^{\circ} = 105^{\circ}$
- 3. Measure of supplementary angle of an angle = 180° the measure of the given angle

The measure of given angle = 112°

- ∴ Measure of its complementary angle = 180° 112° = 68°
- 4. Measure of supplementary angle of an angle = 180° the measure of the given angle

The measure of given angle = 90°

- \therefore Measure of its complementary angle = $180^{\circ} 90^{\circ} = 90^{\circ}$
- 5. Measure of supplementary angle of an angle = 180° the measure of the given angle

The measure of given angle = 109°

- ∴ Measure of its complementary angle = 180° 109° = 71°
- 6. Measure of supplementary angle of an angle = 180° the measure of the given angle

The measure of given angle = 100°

- ∴ Measure of its complementary angle = 180° 100° = 80°
- 7. Measure of supplementary angle of an angle = 180° the measure of the given angle

The measure of given angle = 81°

- ∴ Measure of its complementary angle = $180^{\circ} 81^{\circ} = 99^{\circ}$
- 8. Measure of supplementary angle of an angle = 180° the measure of the given angle

The measure of given angle = 60°

- \therefore Measure of its complementary angle = $180^{\circ} 60^{\circ} = 120^{\circ}$
- 9. Measure of supplementary angle of an angle = 180° the measure of the given angle

The measure of given angle = 145°

- ∴ Measure of its complementary angle = 180° 145° = 35°
- 10. Measure of supplementary angle of an angle = 180° the measure of the given angle

The measure of given angle = 132°

∴ Measure of its complementary angle = 180° – 132° = 48°

Solution 2:

The sum of measures of a pair of supplementary angles = 180° The measure of given angle = 66°

The measure of its supplementary angle = $180^{\circ} - 66^{\circ} = 114^{\circ}$

Solution 3:

The sum of measures of a pair of supplementary angles = 180° Here the measures of both angles are equal ∴The measure of each given angle = 180 ÷ 2 = 90° The measure of each angle = 90°

Practice - 3

Solution 1:

- 1. Angles forming a linear pair are always supplementary.
 - ∴The sum of measures of angles of a linear pair = 180° The measure of given angle = 20°
 - ∴Measure of angle forming its linear pair = 180° 20° = 160°
- 2. Angles forming a linear pair are always supplementary.
 - ∴The sum of measures of angles of a linear pair = 180° The measure of given angle = 130°
 - ∴Measure of angle forming its linear pair = 180° 130° = 50°
- 3. Angles forming a linear pair are always supplementary.
 - ∴The sum of measures of angles of a linear pair = 180° The measure of given angle = 111°
 - ∴Measure of angle forming its linear pair = 180° 111° = 69°
- 4. Angles forming a linear pair are always supplementary.
 - ∴The sum of measures of angles of a linear pair = 180° The measure of given angle = 50°
 - ∴Measure of angle forming its linear pair = 180° 50° = 130°
- 5. Angles forming a linear pair are always supplementary.
 - ∴The sum of measures of angles of a linear pair = 180° The measure of given angle = 85°
 - ∴Measure of angle forming its linear pair = 180° 85° = 95°

- 6. Angles forming a linear pair are always supplementary.
 - ∴The sum of measures of angles of a linear pair = 180° The measure of given angle = 107°
 - ∴Measure of angle forming its linear pair = 180° 107° = 73°
- 7. Angles forming a linear pair are always supplementary.
 - ∴The sum of measures of angles of a linear pair = 180°
 - The measure of given angle = 155°
- ∴Measure of angle forming its linear pair = 180° 155° = 25°

Solution 2:

The measure of given angle = 82°

Angles forming a linear pair are always supplementary.

- ∴The sum of measures of angles of a linear pair = 180°
- ∴Measure of angle forming its linear pair = 180° 82° = 98°

Solution 3:

Angles forming a linear pair are always supplementary.

- ∴The sum of measures of angles of a linear pair = 180°. The given angle is a right angle.
- ∴The measure of this angle = 90°
- ∴Measure of angle forming its linear pair = 180° 90° = 90°

Solution 4:

Angles forming a linear pair are always supplementary.

- ∴The sum of measures of angles of a linear pair = 180°
- ∴The measure of the given angle = 108°
- ∴Measure of angle forming its linear pair = 180° 108° = 72°

Solution 5:

- 1. 27° and 153° (27° + 153° = 180°)
- 2. 90° and 90° (90° + 90° = 180°)
- 3. 130° and 50° (130° + 50° = 180°)
- 4. 80° and 100° (80° + 100° = 180°)
- 5. 35° and 145° $(35^{\circ} + 145^{\circ} = 180^{\circ})$

Practice - 4

Solution 1:

- 1. Vertically opposite angle of ∠XVZ is ∠WVY
- 2. Vertically opposite angle of ∠XVW is ∠YVZ
- 3. $m \angle XVW = 120^{\circ}$ then,
- i. $m \angle WVY = 60^{\circ}$

Calculation:

∠XVZ and ∠WVY form a linear pair.

∴m∠XVZ + m∠WVY = 180°

 $m \angle XVW = 120^{\circ}$

 $m \leq WVY = 180^{\circ} - 120^{\circ} = 60^{\circ}$

ii. $m \angle XVZ = 60^{\circ}$

Calculation:

∠XVW and ∠XVZ form a linear pair.

 \therefore m \angle XVW+ m \angle XVZ = 180°

m∠XVW = 120°

 $\therefore \text{ m} \angle \text{XVYZ} = 180^{\circ} - 120^{\circ} = 60^{\circ}$

Solution 2:

AB and CD intersect each other at point O forming angle of 56°

$$m\angle$$
 AOC + $m\angle$ AOD = 180°(linear pair)

∠ AOC and ∠ BOD are vertically opposite angles.

Also, ∠ AOD and ∠ BOC are vertically opposite angles.

Hence, measures of the other three angles are :

 $m\angle$ AOD = 124°, $m\angle$ BOD = 56° and $m\angle$ COB = 124°.

Solution 3:

The angles of linear pairs are always supplementary. In the given figure, the two pairs of supplementary angles are: ∠EFH and ∠GFH ∠EFI and ∠GFI