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3 Matrices and
Determinants

KEY FACTS

 1. A Matrix (plural-matrices) is a rectangular array of real numbers, arranged in rows and columns.
  The general form of a matrix with m rows and n columns is

      Am × n = 

11 12 13 1

21 22 23 2

1 2 3

– –
– –

– – – – – –
– – – – – –

– –

 
 
 
 
 
 
  

n

n

m m m mn

aa a a
a a a a

a a a a
which is written in a compact form as Am × n = [aij]m × n
Hence aij is the element of the ith row and jth column.
For example, a12 is element in 1st row and 2nd column.
 a34 is the element in the 3rd row and 4th column.

  Order of a Matrix is the ordered pair having first component as the number of rows and the second component 
as the number of  columns in the matrix. Thus, a matrix of order m × n has m rows and n columns and is called 
an m × n (read “m by n”) matrix.
Thus the generalised form of a 3 × 3 matrix is :

   A3×3 = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
  

 2. Types of Matrices:
 (i) Rectangular Matrix. Any m × n matrix, where m ≠ n is called a rectangular matrix.

  For example, 
1 3
2 4
–6 2

 
 
 
  

 of the order 3×2 is a rectangular matrix.

 (ii) Row Matrix. A matrix having only one row is called a row matrix.
  For example, [3 7 1 –2]1×4, [2 –3]1×2 are row matrices.
 (iii) Column Matrix. A matrix which has a single column is called a column matrix.

  For example, 

3 1 ,
4 1

5
2

7
3

1
4

6×
×

 
   
   −   
     − 

 are column matrices.
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 (iv) Square Matrix. A matrix in which the number of rows is equal to the number of columns is called a square 
matrix. An m × m matrix is termed as a square matrix of order m.

  For example, 
2 2

1 3
6 7 ×

 
 
 

 is a square matrix of order 2.

   

3 3

a b c
d e f
g h i ×

 
 
 
  

 is a square matrix of order 3.

 (v) Diagonal Matrix. It is a square matrix all of whose elements except those in the leading diagonal are zero.
  The leading diagonal elements of square matrix A = [aij]m × n are a11,a22,a33, _____, amn

  For example, 11

22 2 2 ,
3 3

2 0 0
0

0 7 0
0

0 0 1

a
a ×

×

 
   
      − 

 are all diagonal matrices.

  A diagonal matrix of order n, having d1, d2, ______, dn as diagonal elements may be denoted by diagonal 
[d1, d2, ____, dn]

  Thus, the diagonal matrix 
1 0 0
0 2 0
0 0 7

 
 − 
  

 may be denoted by diagonal [1    –2    7]

 (vi) Scalar Matrix. A square matrix in which the diagonal elements are all equal, all other elements being zeros 
is called a scalar matrix.

  For example, 
3 0 0
0 3 0
0 0 3

 
 
 
  

 is a scalar matrix of order 3.

 (vii) Unit Matrix or Identity Matrix. A square matrix in which each diagonal element is unity, all other elements 
being zeros, is called a unit matrix or an identity matrix.

  Unit matrix of order n is denoted by In.

  For example, I2 = 3

1 0 0
1 0

, 0 1 0
0 1

0 0 1
I

 
   =       

 (viii) Zero or Null Matrix. A matrix each of whose elements is zero is called a zero matrix.

  For example, 
0

0 0 0 0 0
, 0 ,

0 0 0 0 0
0

 
    
         

 are all null matrices.

 (ix) Sub-Matrix. A matrix obtained by deleting the rows or columns or both of a matrix is called a sub-matrix.

  For example, A = 
5 7
1 2

 
 − 

 is a sub matrix of B = 
5 7 3
1 2 0

4 1 0

 
 − 
  

 obtained by deleting the third row and third 

column of matrix B.
 (x) Comparable Matrices. Two matrices A and B are said to be comparable if they are of the same order, i.e., 

they have the same number of rows and same number of columns.

  For example, 
1 0 3 1 2 3

and
2 7 4 4 0 5

− −   
   
   

 are comparable matrices each of order 2 × 3.

 (xi) Triangular Matrix. A square matrix of order n is called a triangular matrix if its diagonal elements are all 
equal to zero.



MATRICES AND DETERMINANTS Ch 3-3

  For example, 
0 1 2
2 0 3
4 3 0

 
 − 
 − − 

 is a triangular matrix of order 3.

  (a) Upper Triangular Matrix. A square matrix in which the elements below the principal diagonal are all 
zero is called upper triangular matrix, i.e., aij = 0 for all i > j.

   For example, 
1 4 7

is an upper triangular matrix.0 6 8
0 0 9

− 
 − 
   Principal diagonal

  (b) Lower Triangular Matrix. A square matrix in which the elements above the principal diagonal are all 
zero is called lower triangular matrix, i.e., aij = 0 for all i < j.

   For example, 
1 0 0
2 4 0

8 2 1

 
 − 
  

 is a lower triangular matrix.

 3. Equality of Matrices: Two matrices A and B are equal if and only if both matrices are of same order and 
each  element of one is equal to the corresponding element of the other, i.e.,
A = [aij]m × n and B = [bij]m × n are said to be equal if aij = bij for all i,j

For example, 
.

4 2 12 1 2 1 2 32 , but
3 0 3 0 1 09 0

 −      = ≠            
 4. Addition and Subtraction of Matrices.
 (i) Addition of Matrices. The sum of two matrices A = [aij]m × n and B = [bij]m × n of the same order m × n is 

(A + B)m × n in which the element at ith row and jth column is aij + bij for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
 Thus, if A = [aij]m × n and B = [bij]m × n, then
        A + B = [aij + bij]m × n

 For example, 
.

3 1 2 1 3 2 3 1 1 3 2 2 4 4 4
2 1 4 3 1 4 2 (– 3) 1 1 4 ( 4) 1 2 0

+ + +       
+ = =       − − + + + − −       

 Caution: The sum of two matrices of different orders is not defined.

 (ii) Negative of a matrix. The negative of a matrix Am × n denoted by –Am × n is the matrix formed by replacing   
 each entry in the matrix Am×n by its additive inverse.

   Thus, if A = [aij]m × n be any matrix, then its negative –A = [–aij]m × n.

  For example if A = 

.

3 1 3 1
2 2 , then 2 2
4 5 4 5

A
− −   

   − − = −   
   − −   

 (iii) Additive Inverse. For each matrix A = [aij]m × n, there exists a matrix –A = [– aij]m × n (negative of matrix A), 
called the additive inverse of A, such that A + (–A) = O (null matrix)

  Thus, the additive inverse of 
4 3 4 3 4 3 4 3 0 0

is and
2 1 2 1 2 1 2 1 0 0

− − − −         
+ =         − − − −         

 = O (null matrix).

 (iv) Subtraction of matrices. If A and B are matrices of the same order, then the sum B + (–A) is called the 
difference or subtraction of B and A is denoted by B – A.

  For example, if L = 
2 0 1 2

and M , then
3 6 0 4

−   
=   −   
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 L – M = L + (–M) = 
2 0 1 2
3 6 0 4

− +   
+   − −   

 = 
2 1 0 2 1 2
3 0 6 4 3 2
− +   

=   − + − −   
.

 (v) Properties of Matrix Addition. 
  If A, B and C belong to the set Sm × n of all m × n matrices with real numbers as elements, then
  I. A + B ∈ Sm × n    Closure property of addition
  II. A + B = B + A.    Commutative law of addition

    
2 1 1 3 1 3 2 1
4 3 0 2 0 2 4 3

− −       
+ = +       − −       

  III. (A + B) + C = A + (B + C)    Associative law of addition
  IV. The matrix Om × n has the property that for every matrix Am × n. Additive – identity law
   A + 0 = A and 0 + A = A

     
1 2 1 0 0 0 0 0 0 1 2 1 1 2 1
3 4 5 0 0 0 0 0 0 3 4 5 3 4 5

− − −         
+ = + =         − − −         

  V. For every matrix Am × n, there exists a matrix –Am × n, such that
    A + (–A) = 0 and (–A) + A = 0

    
.

4 5 4 5 0 0
1 2 1 2 0 0

− −     
+ =     − −     

  VI. If A, B and C are three matrices of the same order, then, 
    A + B = A + C ⇒ B = C    Left Cancellation Law
    B + A = C + A ⇒ B = C    Right Cancellation Law
 5. Scalar Multiplication. The product of a real number or scalar k and a matrix A = [aij]m × n is a matrix whose 

elements are the products of k and corresponding elements of A, i.e.
kA = [kaij]m × n V i , j

For example, if  A = , then
a b
c d

 
 
 

 kA = .
ka kb
kc kd

 
 
 

  Properties of scalar multiplication of matrices
  Let A = [aij]m × n and B = [bij]m × n be the two given matrices and k1, k2, k3 the scalars, i.e., k1, k2, k3 ∈ R, then
 I. k1 (A + B) = k1A + k1B
 II. (k1 + k2)A = k1A + k2 A
 III. (k1k2)A = k1(k2 A) = k2(k1A)
 IV. 1A = A and (–1)A = –A
 V. (–k)A = –kA
 VI. OA = O and k1O = O
 6. Multiplication of Matrices
  Matrices need to be conformable or compatible for multiplication, i.e., for the product of two matrices. 

A and B, AB to exist the number of columns of matrix A should be equal to the number of rows of B.
  Then, the product matrix AB has the same number of rows as A and same number of columns as B.
	 		∴  Am × p × Bp × n = Cm × n

Note: If two matrices are conformable for the matrix multiplication A × B then it does not necessarily imply that they are 
conformable for the order B × A also.
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The matrix multiplication follows the “multiply row by column” process which can be shown diagrammatically as:
Let A = [aij]2×3, B = [bij]3×2, Then
No. of columns of A = 3 = No. of rows of B ⇒ AB exists and is of order 2 × 2

   AB = 
11 12

11 12 13
21 22

21 22 23
31 32

 
   
       

b b
a a a

b b
a a a

b b
 = 

11 11 12 21 13 31 11 12 12 22 13 32

21 11 22 21 23 31 21 12 22 22 23 32

a b a b a b a b a b a b

a b a b a b a b a b a b

+ + + + 
 
 
 + + + +
 
 

1 row of ×1 col. of 1 row of × 2 col. of

2 row of ×1 col. of 2 row of × 2 col. of

st A st B st A nd B

nd A st B nd A nd B
  Similarly, No. of columns of B = 2 = No. of rows of A ⇒ BA exists and is of order 3×3.

   BA = 
11 12 11 11 12 21 11 12 12 22 11 13 12 33

11 12 13
21 22 21 11 22 21 21 12 22 22 21 13 22 33

21 22 33 2 3
31 32 31 11 32 21 31 12 32 22 31 13 32 333 2 3 3

×
× ×

+ + +   
    = + + +        + + +   

b b b a b a b a b a b a b a
a a a

b b b a b a b a b a b a b a
a a a

b b b a b a b a b a b a b a

For example, 
2 3 2 2

3 2

1 1
3 1 2 3 1 1 2 2 3 3 ( 1) 1 1 2 1

2 1
1 0 1 1 1 0 2 1 3 1 ( 1) 0 1 1 1

3 1× ×
×

− 
× + × + × × − + × + ×     =     × + × + × × − + × + ×     

         = 
2 2

3 2 6 3 1 2 11 0
1 0 3 1 0 1 4 0 ×

+ + − + +   
=   + + − + +   

   and 
2 3

3 2 3 3

1 1 1 3 ( 1) 1 1 1 ( 1) 0 1 2 ( 1) 1
3 1 2

2 1 2 3 1 1 2 1 1 0 2 2 1 1
1 0 1

3 1 3 3 1 1 3 1 1 0 3 2 1 1×
× ×

− × + − × × + − × × + − ×   
    = × + × × + × × + ×        × + × × + × × + ×   

       = 

3 3

3 1 1 0 2 1 2 1 1
6 1 2 0 4 1 7 2 5
9 1 3 0 6 1 10 3 7 ×

− − −   
   + + + =   
   + + +   

   (i) The product of matrices is not commutative
  (a) Wherever AB exists, BA is not always defined. For example, if A be a 5 × 4 matrix and B be a 4 × 3 matrix, 

then AB is defined and is of order 5 × 3, while BA is not defined. (No. of columns of B = 3 ≠ No. of rows 
of A = 5).

  (b) If AB and BA are both defined, it is not necessary that they are of the same order. For example, if A be a 
4 × 3 matrix and B be a 3 × 4 matrix, then AB is defined and is a 4 × 4 matrix. BA is also defined but is 
a 3 × 3 matrix. AB and BA being of different orders AB ≠ BA.

  (c) Even if AB and BA are both defined and are of the same order, it is not necessary AB = BA.
 (ii) Matrix multiplication is associative if conformability is assured, i.e., A(BC) = (AB)C
 (iii) Matrix multiplication is distributive with respect to matrix addition A(B + C) = AB + AC
  Also, it can be proved that: (B + C)A = BC + CA, A(B – C) = AB – AC, (B – C)A = BA – CA
 (iv) The product of two matrices can be zero without either factor being a zero matrix.

  For example, Let A = 
0

and
0 0 0

a c d
B

b
   

=   
   

 where, a ≠ 0, b ≠ 0, c ≠ 0, d ≠ 0

  Then, AB = 
0 0 0 0 0 0 0

.
0 0 0 0 0 0 0 0 0

a c d c a d a
O

b c b d b
× + × × + ×       

= = =       × + × × + ×       
 (v) Existence of Identity Matrix: For each square matrix A of order n, we have an identity matrix I of order n 

such that An × n In × n = An × n = In × n An × n.
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  For example, 
2 3 1 0 2 1 3 0 2 0 3 1 2 3
1 1 0 1 1 1 1 0 1 0 1 1 1 1

× + × × + ×       
= =       − − × + × − × + × −       

  A2 I2 A2

   
1 0 2 3 1 2 0 –1 1 3 0 1 2 3
0 1 1 1 0 2 1 1 0 3 1 1 1 1

× + × × + ×       
= =       − × + × − × + × −       

  I2 A2 A2
  Thus for any matrix A, there exists an identity matrix I such that AI = A = IA, whenever the products are defined.
 (vi) Zero Matrix: For any matrix A, we have a zero matrix O such that, AO = O = OA, whenever these products 

are defined.
  Thus, for any matrix Ap×n, we have
   Om×p Ap×n = Om×n and Ap×n On×q = Op×q.
 (vii) Positive Integral Power of Matrices: The product A.A is defined only when A is a square matrix.
   A2 = A. A
   A3 = A2. A = A. A. A
   A4 = A3. A = A. A. A. A
	 	   ∴				Am = (A. A. A. A ------- m times)

Note: 1.  Also for an identity matrix I of any order I = I2 = I3 = I4 --------- = In.
            2.  For a square matrix A of order n,
 f(A) = a0I + a1A + a2A

2 + -------- + anA
n is a matrix polynomial.

                 If f(A) is a zero matrix, then A is the root or zero of polynomial f (x)

 7. Transpose Matrix: The matrix obtained from any given matrix A by interchanging its rows and columns is 
called the transpose of the given matrix and is denoted by AT or A'.

  If A = [aij]m×n ⇒ AT = [aji]n×m

  For example, if   A = 
3 2

2 3

3 1
3 6 2

, then or 6 1
1 1 5

2 5

TA A
×

×

 
   ′ = −   −    

                             A = 
4 1 2 4 7 3
7 6 5 , then 1 6 2
3 2 0 2 5 0

A
− −   

   ′ = − −   
   − −   

Note:  • (i-j)th element of A = (j-i)th element of AT

  • If order of A is m×n, then order of AT is n×m

 Properties of Transpose Matrix
 I. If A is any matrix, then (A′)′ = A

   Let A = 
4 1

4 2 3 4 2 3
2 6 ( )

1 6 5 1 6 5
3 5

A A
 

− − − −    ⇒ ′ = − ⇒ ′ ′ =        − 
  II. If A and B are two matrices of the same order, then (A + B)′ = A′ + B′

  For example, Let  A = 
2 0 6 5

,
1 3 0 8

B
−   

=   −   

   A + B = 
2 0 6 5 2 6 0 ( 5) 8 5
1 3 0 8 1 0 3 8 1 5

− + + − −       
+ = =       − + − +       

   (A + B)′ = 
8 1
5 5

 
 − 
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   A′ + B′ = 
2 1 6 0 2 6 1 0 8 1

.
0 3 5 8 0 ( 5) 3 8 5 5

+ +       
+ = =       − − + − − + −       

 III. If A is m×p matrix and B is p×n matrix then (AB)′ = B′A′.

  For example, let A = [ ]
1
5 , 3 1 2 , then

7
B

 
 − = − 
  

  AB  = [ ]1 3

3 1 3 3

1 1 3 1 1 1 2 3 1 2
5 3 1 2 5 3 5 1 5 2 15 5 10

7 7 3 7 1 7 2 21 7 14
×

× ×

× × × − −     
     − − = − × − × − × − = − −     
     × × × − −     

	 	 	 ∴ (AB)′ = 
3 15 21
1 5 7
2 10 14

− 
 − 
 − − 

  Now  A′ = [ ]
3

1 5 7 , 1
2

B′
 
 − =  
 − 

  So, B′A′ = 1 3

3 1 3 3

3 3 1 3 5 3 7
1 [1 5 7] 1 1 1 5 1 7
2 2 1 2 5 2 7

×

× ×

× × − ×   
   − = × × − ×   
   − − × − × − − ×   

 = 
3 15 21
1 5 7 .
2 10 14

− 
 − 
 − − 

   ⇒ (AB)′ = B′A′
 IV. If A is a matrix and k is a scalar, then (kA)′ = kA′.
 8. (i)   Symmetric Matrices: A square matrix A = [aij] is said to be symmetric if its (i - j)th element is equal to 

its (j - i)th element, i. e., if aij = aji ∀ i, j.

    
2 4 7

1 2
, 4 5 0

2 3
7 0 3

 
   
       

 are symmetric matrices

      then a12 = a21  a12 = a21, a13 = a31, a23 = a32

Note:  • Symmetric matrices are always square matrices.
           • For a matrix A to be symmetric, it is necessary that the matrix is equal to its transpose, i.e., AT = A.
											• Diagonal matrices are always symmetric.

 (ii) Skew-Symmetric Matrices: A square matrix A = [aij] is said to be skew-symmetric if the (i - j)th element of 
A is the negative of (j - i)th element of A, i.e., if aij = – aji ∀ i , j.

  Thus, the matrix 
0

0
0

a b
a c
b c

 
 
 
 − 

 is a skew symmetric matrix.

  Each element on the principal diagonal of a skew-symmetric matrix is zero as:
   aij = – aji ∀ i, j
	 	 ⇒ aii = – aii ∀ i = j ⇒ 2aii = 0 ⇒ aii = 0 ∀ i
	 	 ⇒ a11 = a22 = a33 = ............ = ann = 0.

 Note: 1. For a skew-symmetric matrix, it is necessary that A′ = – A.
          2. A matrix which is both symmetric and skew symmetric is a square null matrix.

A is symmetric as well as skew symmetric.
	 ⇒ A′ = A and A′ = – A.
	 ⇒ A = – A ⇒ 2A = 0 ⇒ A = 0.
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Properties of Symmetric and Skew-Symmetric Matrices:
  I. The sum of two symmetric matrices is a symmetric matrix.
  Let A, B be two symmetric matrices. Then,
  A′ = A, B′ = B
	 	 ∴ (A + B)′ = A′ + B′ = (A + B) ⇒ A + B is symmetric.
  II.  The sum of two skew symmetric matrices is a skew symmetric matrix.
   Let, A, B be two skew symmetric matrices. Then,
  A′ = – A, B′ = –B.

 Then, (A + B)′ = A′ + B′ = –A +(–B) = –(A + B)
	 ⇒ (A + B) is skew symmetric.

  III. For a scalar k and
  (a) a symmetric matrix A, kA is a symmetric matrix.
  (b) a skew symmetric matrix A, kA is a skew symmetric matrix.
  IV.  If A be any square matrix, then A + A′ is symmetric and A – A′ is skew symmetric.
	 •	  (A + A′)′ = A′ + (A′)′

    = A′ + A
  ⇒	A + A′ is symmetric.

 •  (A – A′)′ = A′ – (A′)′
    = A′ –A = – (A – A′)
  ⇒	A – A′ is skew symmetric.

 V. Every square matrix is uniquely expressible as the sum of a symmetric matrix and a skew–symmetric 
matrix.

  Given, a square matrix A, it can be expressed as the sum of a symmetric matrix and a skew symmetric matrix 
as under:

 A = 
1
2

 (A + A′) + 
1
2

 (A – A′)

 where 
1
2

 (A + A′) is a symmetric matrix and

  
1
2

 (A – A′) is a skew symmetric matrix.

  VI. For the symmetric matrices A, B, if AB is a symmetric matrix, then AB = BA and vice versa.
  Given, A′ = A, B′ = B and (AB)′ = AB   ...(i)
  Now (AB)′ = B′A′ = BA   ...(ii)
  From (i) and (ii) AB = BA
  If AB = BA ⇒ AB = B′A′ ⇒ AB = (AB)′	 	 (∴ A1 = A, B1 = B)
	 	 ⇒ AB is a symmetric matrix.
  VII. All positive integral powers of a symmetric matrix are symmetric.

 If A′ = A, then (An)′ = An.
 (An)′ = (A.A.A.A. ...n times)′
  = A′.A′.A′.A′ ...n times  (∴ (A)′ = A)
  = A.A.A.A ...n times = An.
	 ⇒ An is symmetric.

DETERMINANTS
 9. Determinant of a square matrix
  Associated with each square matrix A having real number entries is a real number called the determinant of A and 

is denoted by δA or ∆A or |A| or det(A).
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• For a square matrix A = 1 1

2 2

a b
a b

 
 
 

 of order 2

 det (A) = ∆A = 1 1

2 2

a b
a b

 = a1b2 – a2b1

Note: The determinant of a matrix of order 1, i.e., [a] is a itself.
  If A = [–3], then det. A = |A| = |–3| = –3.

Caution: The determinant  |–3| = –3 should not be confused with the absolute value |–3| = 3.

• For a square matrix A = 
1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

 
 
 
  

 of order 3, the value of determinant A is calculated as explained below.

 Some new concepts that will be used are:
Minors and Cofactors
  Minors: The minor of an element in a determinant is a determinant that is left after removing the row and column 

which intersect at the element, and is of order one less than that of the given determinant.

∴  In the determinant 
1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

 Minor of a1 = 2 2 2 2 2 2
1 1

3 3 3 3 3 3
, Minor of , Minor of= =

b c a c a b
b c

b c a c a b
	 	 ∴	In general, the minor Mij of element aij is the value of the determinant obtained by deleting the ith row and 

jth column of the given determinant.
Cofactor. The cofactor of an element or element aij is the minor of aij with appropriate sign. Thus,
  Cofactor of aij = Aij = (–1)i + j Mij (minor)
where i and j are respectively the row number and column number of the element.

∴ In the determinant 
1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

 Cofactor of a1 = (–1)1 + 1 2 2
2 3 3 2

3 3

b c
b c b c

b c
= −

 Cofactor of a2 = (–1)2 + 1 1 1
1 3 3 1

3 3
( )

b c
b c b c

b c
= − −

 Cofactor of b1 = (–1)1 + 2 2 2
2 3 3 2

3 3
( )

a c
a c a c

a c
= − −

Thus the value of a determinant can be determined by expanding it along any row or column.
Now, the value of a determinant of order 3 can be written as: Expanding along row 1 (R1)

	 	 ∆ = 
1 1 1

2 2 2 2 2 2
2 2 2 1 1 1

3 3 3 3 3 3
3 3 3

a b c
b c a c a b

a b c a b c
b c a c a b

a b c
= − +

   = a1(its cofactor) + b1(its cofactor) + c1(its cofactor) = a1(its cofactor) + a2(its cofactor) + a3(its cofactor)
   = a2(its cofactor) + b2(its cofactor) + c2(its cofactor) = b1(its cofactor) + b2(its cofactor) + b3(its cofactor)
   = a3(its cofactor) + b3(its cofactor) + c3(its cofactor) = c1(its cofactor) + c2(its cofactor) + c3(its cofactor)
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Note:  • The ordered pairs used are (an element, minor) for the same row or column.
 • While expanding a determinant by any row or column using minors, we may keep in mind the following scheme of 

Signs for a determinant of order 3.

    
+ − +
− + −
+ − +

•	If a row or column of a determinant consists of all zeros, the value of the determinant is zero.

 10. Singular matrix. A square matrix A is said to be singular if det [A] = 0, otherwise it is a non-singular matrix.
  For example,

 (a) Let A = 
1 3
2 1

 
 − 

  Then, |A| = 
1 3
2 1−

 = (1×(–1)) – (2 × 3) = –1 –6 = –7 ≠ 0

	 	 ∴		A is a non-singular matrix.

 (b) Let A = 
0 1 1
1 0 1
1 1 0

− 
 
 
  

 Then,

  |A|  = 0 1
0 1 1 1 1 0

1 ( 1) (Expanding along )
1 0 1 0 1 1

R− + −

       = 0 + (–1) (–1) +  (–1) × 1 = 1 – 1 = 0
														∴ |A| = 0 ⇒ A is a singular matrix.
 11. Properties of Determinants.
  Determinants have some properties which help in simplifying the process of finding the value of the determinant. 

In fact in some cases using these properties, we can find the value of the determinant without ever expanding along 
a given row or column. We shall list the properties here and show them with the help of examples.

  Property I: If each entry in any row, or each entry in any column of a determinant is 0, then the determinant 
is equal to 0.

For example, 
3 1 5

1 5 3 5 3 1
0 0 0 0 0 0

4 2 2 2 2 4
2 4 2

= − +
− −

−
  (Expanding by R2)

  = 0
  Property II: If the rows be changed in columns and columns into rows, the determinant remains unaltered.

  
1 1 1 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

aa b c a a
a b c b b b
a b c c c c

=

 LHS = a1 
2 2 1 1 1 1

2 3
3 3 3 3 2 2

b c b c b c
a a

b c b c b c
− +     (Expanding along C1(col. 1))

  = a1(b2c3 – b3c2) –a2(b1c3 – b3c1) + a3(b1c2 – b2c1)

 RHS = a1 
2 3 1 3 1 2

2 3
2 3 1 3 1 2

b b b b b b
a a

c c c c c c
− +  (Expanding along R1(row 1)).

  = a1(b2c3 – b3c2) – a2(b1c3 – b3c1) + a3(b1c2 – b2c1)
 Hence LHS = RHS.
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Property III: If any two rows (or columns) of a determinant are interchanged the resulting determinant is the 
negative of the original determinant.

   
1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

a b c b a c
a b c b a c
a b c b a c

= −

For example, 
1 2 3

1 4 2 4 2 1
2 1 4 1 2 ( 3)

1 2 3 2 3 1
3 1 2

−
= − + −  (Expanding along R1)

  = 1(2 – 4) – 2(4 – 12) –3(2 – 3) = – 2 + 16 + 3 = 17

  
2 1 3

2 4 1 4 1 2
1 2 4 2 1 ( 3)

3 2 1 2 1 3
1 3 2

−
= − + −

  = 2 (4 – 12) –1(2 – 4) –3(3 – 2) = – 16 + 2 – 3 = –17.
Note: If any line (row or column) of a determinant ∆ be passed over in parallel lines, the resulting determinant ∆′ = (–1)m ∆.

 For example, if ∆ = 
1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

and
a b c b c a
a b c b c a
a b c b c a

∆′ = , then

 	 ∆′ = (–1)2 ∆ = ∆.

Property IV: If any two rows (or columns) in a determinant are identical, the determinant is equal to zero.

	 	 ∆ = 
1 1 1

1 1 1

2 2 2

0
a b c
a b c
a b c

=

	 	 ∆ = a1 
1 1 1 1 1 1

1 1
2 2 2 2 2 2

b c a c a b
b c

b c a c a b
− +

   = a1(b1c2 – b2c1) – b1(a1c2 – a2c1) + c1(a1b2 – b1a2)

   = a1b1c2 –a1b2c1 – b1a1c2 + b1a2c1 + c1a1b2 – b1 a2c1 = 0

Property V: If all the elements of any row (or column) be multiplied by a non-zero real number k, then the 
value of the new determinant is k times the value of the original determinant.

Thus if ∆ = 
1 1 1 1 1 1

2 2 2 2 2 2

3 3 2 3 3 3

and
a b c ka kb kc
a b c a b c
a b c a b c

∆′ =

Then  ∆ = k∆′

For example, 
1 3 1 1 3 1 1 3 1
2 1 4 2 1 4 3 2 4 1
6 3 15 3(2) 3( 1) 3(5) 2 1 5

− − −
= =

− − −

Note:   If two parallel lines (rows or columns) be such that the elements of one are equi-multiples of the elements of the other, 
the determinant is equal to zero.

 Let ∆ = 
1 3 2 1 3 2
1 3 4 2 1 3 4 2 0 0 (Two identical rows)
2 6 8 1 3 4

= = × =

 Here elements of row 2 (R3) are equimultiples of elements of R3.
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Property VI: If each entry in a row (or column) of a determinant is written as the sum of two or more terms, 
then the determinant can be written as the sum of two or more determinants.

i.e,  ∆ = 
1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

a x b c a b c x b c
a x b c a b c x b c
a x b c a b c x b c

+
+ = +
+

Property VII: If each entry of one row (or column) of a determinant is multiplied by a real number k and the 
resulting product is added to the corresponding entry in another row (or column respectively) in the determinant, 
then the resulting determinant is equal to the original determinant.

If   ∆ = 
1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

 and ∆′ = 
1 1 1

2 2 2

3 1 3 1 3 1

a b c
a b c

a ka b kb c kc+ + +
 Then ∆ = ∆′.

		 	 	 ∆′ = 
1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 3

3 1 3 1 3 1 3 3 3 1 1 1

= +
+ + +

a b c a b c a b c
a b c a b c a b c

a ka b kb c kc a b c ka kb kc

     = 
1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 1 1 1

a b c a b c
a b c k a b c
a b c a b c

+  = 
1 1 1

2 2 2

3 3 3

0
a b c
a b c k
a b c

+ ×  (	Two rows are identical)

     = 
1 1 1

2 2 2

3 3 3

.

a b c
a b c
a b c

∆=

   This property can be generalised as:
If to each element of a line (row or column) of a determinant be added the equi-multiples of the corresponding 

elements of one or more parallel lines, the determinant remains unaltered.

    
1 2 3 2 3 1 2 3

1 2 3 2 3 1 2 3

1 2 3 2 3 1 2 3

a la ma a a a a a
b lb mb b b b b b
c lc lc c c c c c

+ +
+ + =
+ +

This property provides very powerful methods for simplifying the process for calculating the values of determinants.
R1 → R1 + m R2 + n R3 means to the first row, we add m times the second row and n times the third row. Similarly,
C3 → C3 – C1 means subtracting corresponding elements of column 1 from elements of column 3 and placing 

them in place of elements of column 3.

For example, 
43 1 6 43 7 6 1 6
35 7 4 35 7 4 7 4
17 3 2 17 7 2 3 2

− ×
= − ×

− ×
 and so C1 →	C1 – 7C3 = 

1 1 6
7 7 4
3 3 2

 = 0, C1 and C2 being identical.

    
a b c a b c b c
b c a b c a c a
c a b c a b a b

+ +
= + +

+ +
  Operating C1 → C1 + C2 + C3

                    = (a + b + c) 
1
1
1

b c
c a
a b

 (Taking out (a + b + c) common)

                   = (a + b + c) 
1
0
0

b c
c b a c
a b b c

− −
− −

 Operating R2 → R2 – R1, R3 → R3 – R1
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  = (a + b + c). {(c – b) (b – c) – (a – b) (a – c)} expanding along column 1
  = (a + b + c) {bc – b2 – c2 + cb – (a2 – ab – ac + bc)}
  = (a + b + c) {ab + bc + ca – a2 – b2 – c2}.

Property VIII : Product of two determinants

 
1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 3 1 3 1 3

2 2 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 2 2 3 2 3 2 3

3 3 3 3 3 3 3 1 3 1 3 1 3 2 3 2 3 2 3 3 3 3 3 3

a b c a b c a b c a b c
a b c a b c a b c a b c
a b c a b c a b c a b c

α β γ α + β + γ α + β + γ α + β + γ
α β γ = α + β + γ α + β + γ α + β + γ
α β γ α + β + γ α + β + γ α + β + γ

 12. Adjoint of a square matrix
Let A = [aij]3 × 3 be the given square matrix of order 3.
Then,

   A = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
  

If Aij be the cofactor aij, the adjoint of matrix A denoted by adj. A is defined as:

  adj. A = 
11 12 13

21 22 23

31 32 33

TA A A
A A A
A A A

 
 
 
  

 = 
11 21 31

12 22 32

13 23 33

A A A
A A A
A A A

 
 
 
  

So, the adjoint of a square matrix A is the transpose of the matrix obtained by replacing each element of A by  
its cofactor in |A| (det A).

For example,

(a) If A = 
3 1
4 2

− 
 − 

, then to find adj A, we find the cofactors.

 A11 = (–1)+1 |–2| = –2   (Missing out entries in first row and first column)
 A12 = (–1)1 + 2 |4| = – 4
 A21 = (–1)2 + 1 |–1| = + 1
 A22 = (–1)2 + 2 |3| = 3

	 ∴ adj. A = 11 12 11 21

21 22 12 22

2 1
4 3

TA A A A
A A A A

−     
= =     −    

(b) Find the adjoint of matrix A = 
1 4 3
4 2 1
3 2 2

 
 
 
  

 Let Aij be the cofactor of aij. Then,

 A11 = + 
2 1
2 2

 = (4 – 2) = 2   Remember the signs of cofactor by

 A12 = – 
4 1
3 2

 = – (8 – 3) = –5  (–1)i + j  or  
+ − +
− + −
+ − +

 A13 = 
4 2
3 2

 = (8 – 6) = 2

 A21 = – 
4 3

(8 6) 2
2 2

= − − = −   A22 = 
1 3

(2 9) 7
3 2

= − = −

 A23 = – 
1 4

(2 12) 10
3 2

= − − =    A31 = 
4 3

(4 6) 2
2 1

= − = −



Ch 3-14 IIT FOUNDATION MATHEMATICS CLASS – X

 A32 = – 
1 3

(1 12) 11
4 1

= − − =   A33 = 
1 4

(2 16) 14
4 2

= − = −

	 ∴ adj A = 
11 12 13

21 22 23

31 32 33

TA A A
A A A
A A A

 
 
 
  

  = 
11 21 31

12 22 32

13 23 33

2 2 2
5 7 11
2 10 14

A A A
A A A
A A A

− −   
   = − −   
   −  

Properties of adjoint of a square matrix
 1. If A be a square matrix of order n, then (adj A) A = A (adj A) = |A| In, where |A| = determinant value of matrix A 

and In is the identity matrix of order n.
For a 3 × 3 square matrix, let

  A = 
1 1 1 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

, Then adj
a b c A A A
a b c A B B B
a b c C C C

   
   =   
      

where A1, B1, C1 ..... are the respective cofactors of a1, b1, c1 .......

	 ∴ A (adj A) = 
1 1 1 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

a b c A A A
a b c B B B
a b c C C C

   
   
   
      

   = 
1 1 1 1 1 1 1 2 1 2 1 2 1 3 1 3 1 3

2 1 2 1 2 1 2 2 2 2 2 2 2 3 2 3 2 3

3 1 3 1 3 1 3 2 3 2 3 2 3 3 3 3 3 3

a A b B c C a A b B c C a A b B c C
a A b B c C a A b B c C a A b B c C
a A b B c C a A b B c C a A b B c C

+ + + + + + 
 + + + + + + 
 + + + + + + 

 = 
| | 0 0
0 | | 0
0 0 | |

A
A

A

 
 
 
  

 

  ( a1A2 + b1B2 + c1C2 = a1(b1c3 – b3c1) + b1(a1c3 – a3c1) + c1(a1b3 – a3b1) = 0)

    Similarly for all the entries besides the entries of the principal diagonal.

   = 3

1 0 0
| | 0 1 0 | |

0 0 1
A A I

 
  = 
  

Also it can be shown similarly that (adj A) A = |A| I3

Note: Adj I = I and Adj 0 = 0.

   II. If A and B are two non-singular matrices of the same order, then adj (AB) = (adj B) (adj A).
 13. Inverse of a square matrix
	 •	 	If A and B are square matrices such that AB = BA = I, then B is called the inverse of A and is written as  

A–1 = B and A is the inverse of B, written as B–1 = A.
  Thus, A–1A = A A–1 = I.
	 • If A is a non-singular square matrix of order n, then

  A–1 = 
1

| |A
 (adj A)      (|A| ≠ 0)

 Note:  If AB = BA = I, then B is inverse of A, i.e, B = A–1

Also, we know by the property of adjoint of a square matrix that, A(adj A) = (adj A) A = |A| I

 ⇒ A 
( )

| | | |
adj A adj A A I

A A
 

= =  
(as |A| ≠ 0, A being singular)

 ⇒ A–1 = 
1 ( ( ))

| |
adj A

A
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 •  Properties of matrices and inverses
  I. If A and B are two non-singular matrices of order n, then AB is also a non - singular matrix of order n 

such that
    (AB)–1 = B–1 A–1

    (Reversal law for the inverse of a product)
   II. (AT)–1 = (A–1)T

For example, If A = 
3 0 2
1 5 9
6 4 7

 
 
 
 − 

 and AB = BA = I, find B.

If AB = BA = I, then B = A–1.
For A–1 to exists, A should be a non-singular matrix.

We have,	 |A| = 
3 0 2
1 5 9
6 4 7−

= 3 
5 9 1 9 1 5

0 2
4 7 6 7 6 4

− +
− −

 = 3(35 – 36) + 2(4 + 30) = – 3 + 68 = 65 ≠ 0

⇒ A is a non-singular matrix
Now we need to find adj A,

∴  A11 = 
5 9

(35 36) 1
4 7

= − = −  A12 = 
1 9

– (7 54) 61
6 7

= − + = −
−

 A13 = 
1 5

4 30 34
6 4

= + =
−

 A21 = – 
0 2

(0 8) 8
4 7

= − − =

 A22 = 
3 2

21 12 33
6 7

= + =
−

 A23 = – 
3 0

(12 0) 12
6 4

= − − = −
−

 A31 = 
0 2

0 10 10
5 9

= − = −  A32 = – 
3 2

(27 2) 25
1 9

= − − = −

 A33 = 
3 0

15
1 5

=

∴ adj A = 
11 12 13

21 22 23

31 32 33

TA A A
A A A
A A A

 
 
 
  

  = 
1 61 34 1 8 10
8 33 12 61 33 25

10 25 15 34 12 15

T− − − −   
   − = − −   
   − − −   

⇒ A–1 = 
1 8 10

1 1 61 33 25
| | 65

34 12 15
adj A

A

− − 
 = − − 
 − 

.

 14. Some more special matrices :
  1. Nilpotent Matrix: A square matrix A such that An = 0 is called a nilpotent matrix of order n.
  If there exists a matrix such that A2 = 0, then A is nilpotent of order 2.
 2. Idempotent Matrix: A square matrix A, such that A2 = A is called an idempotent matrix.
  If AB = A and BA = B, then A and B are idempotent matrices.
 3. Orthogonal Matrix: A square matrix A, such that AAT = I is called an orthogonal matrix.
  If A is an orthogonal matrix, then AT = A–1

 4. Involuntary Matrix: A square matrix A, such that A2 = I is called an involuntary matrix.
Note:  (i) A matrix A is involuntary ⇔	(I – A) (I + A) = 0
 (ii) A matrix A is involuntary matrix then A–1 = A.
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  15. Application of matrices to the solution of linear equations
  Consider the two simultaneous equations in two variables x and y.

  a1x + b1y = c1
  a2x + b2y = c2
These can be written in the matrix form as:

  1 1 1

2 2 2

a b cx
a b cy

    
=    

    
  A X = B

where A = 1 1

2 2
is a 2 2 matrix and

a b
a b

 
× 

 

 X = 1

2
and are both 2 ×1 matrices and

cx
B

cy
  

=   
   

Similarly the three simultaneous equations
  a1x + b1y + c1z = d1
  a2x + b2y + c2z = d2
  a3x + b3y + c3z = d3  can be written in the matrix form as:

  
1 1 1 1

2 2 2 2

3 3 3 3
BXA

a b c x d
a b c y d
a b c z d

=

    
     =    
        

where A is a square matrix of order 3 (3 × 3) and X and B are (3 × 1) column matrices.
Now,  AX = B
⇒  A–1 AX = A–1 B
⇒  IX = A–1 B ⇒ X = A–1 B

⇒  X = 1 ( ) .
| |

adj A B
A

 

The conditions for unique solution, no solution and infinite number of solution can be summarized as under:
  AX = B

  Find |A|

 |A| ≠ 0   |A| = 0
 Unique solution consistent   No solution or infinite 
 X = A–1 B   number of solutions
 
    Find (adj A)B

   

   (adj A)B ≠ 0  (adj A) B = 0

   No solution  Infinitely many 
   Inconsistent   solutions 
     Consistent  (dependent)
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Special case: When B = 
0
0
0

 
 
 
  

In this case, |A| ≠ 0 ⇒ x = 0, y = 0, z = 0 we say that the system has trivial solution.
If |A| = 0, then the system has infinitely many solutions.
Note: We shall deal with equations in two variables only in this book.

 Ex. 1. Use matrix method to solve the system of equations :
     4x – 3y = 11, 3x + 7y = –1.

 Sol. The given system of equations can be written in the matrix form as:

    
4 3 11
3 7 1

A X B

x
y

=

−     
=     −     

  |A| = 
4 3

28 9 37 0
3 7

−
= + = ≠

	 	 ⇒ A is a non-singular matrix and the system has an unique solution.
   X = A–1 B.
	 	 ∴ We need to find adj A and hence the cofactors of A.
   A11 = 7, A12 = –3, A21 = – (–3) = 3, A22 = 4

	 	 ∴ A–1 = 11 12

21 22

1 1
| | | |

TA A
adj A

A AA A
 

=  
 

	 	 	 	 = 	 11 21

12 22

7 31 1
3 4| | 37

A A
A AA

   
=   −  

	 	 ∴ 1

77 3 74
7 /37 3/37 11 237 37 37
3/37 4 /37 1 33 4 37 1

37 37 37

x
A B

y
−

   −          
= = = = =          − − − − −          −      

  ⇒	 x = 2, y = –1.

 Ex. 2. Use matrix method to examine the consistency or inconsistency of the system of equations
    6x + 4y = 2, 9x + 6y = 3.

 Sol. Writing the given system of equations in the matrix form, we have

        
6 4 2
9 6 3

A X B

x
y

=

     
=     

     

  Now,  |A| = 
6 4

36 36 0
9 6

= − =

  ⇒ A is a singular matrix ⇒ Either the system has no solution or infinite number of solutions.
   To check that we find (adj A) B.
    A11 = 6, A12 = – 9, A21 = – 4, A22 = 6

	 	 ∴  adj A = 11 21

12 22

6 4
9 6

A A
A A

−   
=   −  

    (adj A) B = 
6 4 2 12 12 0

0.
9 6 3 –18 18 0

− −       
= = =       − +       
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  Since (adj A) B = 0, the given system is consistent and has infinite number of solutions.
  Let y = k in the first equation. Then,

    6x + 4k = 2 ⇒ 6x = 2 – 4k ⇒ x = 2 4 1 (1 2 )
6 3

k k− = −

  Putting this value of x in the second equation, we have

  9. 1
3

 (1 – 2k) + 6k = 3 ⇒ 3 – 6k + 6k = 3 ⇒ 3 = 3, which is true

  Hence the given system has infinitely many solutions given by

    x = 
1
3

 (1 – 2k), y = k

 Ex. 3. Use matrix method to examine the given system of equations for consistency or inconsistency.
  3x – 2y = 5
  6x – 4y = 9

 Sol. Writing the given system of equations in the matrix form we have

     
3 2 5
6 4 9

A X B

x
y

=

−     
=     −     

  Now, |A| = 
3 2
6 4

−
−

 = –12 – (–12) = –12 + 12 = 0

	 	 ⇒ A is a singular matrix
	 	 ⇒ Either the system has no solution or infinitely many solutions.
   To check that we find (adj A) B.
    A11 = – 4, A12 = – 6, A21 = – (–2) = 2, A22 = 3

    adj A = 11 21

12 22

4 2
6 3

A A
A A

−   
=   −  

    (adj A) B = 
4 2 5 20 18 2

0
6 3 9 30 27 3

− − + −       
= = ≠       − − + −       

	 	 ⇒ The system of equations is inconsistent and has no solution.

 16. Application of determinants to the solution of linear equations. (Cramer's Rule)
Consider the simultaneous equations,
  a1 x + b1 y = c1
  a2 x + b2 y = c2
⇒  a1 x + b1 y – c1 = 0
  a2 x + b2 y – c2 = 0
Solving these equations by cross-multiplication method, we have

  
1 2 2 1 2 1 1 2 1 2 2 1

1x y
b c b c a c a c a b a b

= =
− + − + −

	 ∴ x = 2 1 1 2 1 2 2 1

1 2 2 1 1 2 2 1
,b c b c a c a cy

a b a b a b a b
− −=
− −

The solutions can be expressed in the determinant form as :

  x = 

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

,

c b a c
c b a cDx Dyy
a b a bD D
a b a b

= = =
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The determinant D is the determinant of the coefficients of variables x and y, while in Dx, the coefficients of x, 
i.e., a1 and a2 are replaced by constant terms c1 and c2 and in determinant Dy, the coefficients of y, i.e., b1 and b2 are 
replaced by the constant terms.

The solutions to the above given equations will exist only when D ≠ 0. Likewise, for the system of linear equations 
in three variables.

  a1x + b1y + c1z = d1

  a2x + b2y + c2z = d2

  a3x + b3y + c3z = d3

We have the solutions for x, y and z in the determinant form as:

  x = 

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

, ,

d b c a d c
d b c a d c
d b c a d cDx Dyy
a b c a b cD D
a b c a b c
a b c a b c

= = =  z = 

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

a b d
a b d
a b d Dz
a b c D
a b c
a b c

=

Here the important conditions are:
 (i) For a solution to exist, |D| ≠ 0
 (ii) The constant terms are on the Right Hand Side of the given equations.
  Conditions of consistency and inconsistency of linear equations.

A system of equations is said to be consistent if its solution exists whether unique or not, otherwise it is 
inconsistent.

The conditions for unique solution, infinitely many solutions and no-solution can be summarized as under:
  (i) If D ≠ 0, then the given system of equations is consistent and has a unique solution, namely,

    x = ,Dx Dyy
D D

=

  (ii) If D = 0 and Dx = Dy = 0, then the system may be consistent with infinitely many solutions or inconsistent.
  (iii) If D = 0 and at least one of Dx and Dy is non-zero, then the system has no solution, i.e., the system is inconsistent. 

Note: We shall limit the conditions of consistency and inconsistency in this book only to equations with two variables.

Ex. 1.  Solve 7x + 2y – 25 = 0 and 2x – y – 4 = 0 by Cramer’s Rule.
 Sol. The given equations are:
    7x + 2y = 25
    2x – y = 4
	 	 ∴  D = 

7 2
2 1−

 = –7 – 4 = –11 ≠ 0

	 	 D ≠ 0, therefore the solution exists.

    Dx = 
25 2
4 1−

 = –25 – 8 = –33

    Dy = 
7 25
2 4

 = 28 – 50 = –22

    x = 
33 223, 2.
11 11

Dx Dyy
D D

− −= = = = =
− −

   Hence, x = 3, y = 2
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 Ex. 2. Check whether the given system of equations is consistent or inconsistent.
  (i) x + 3y = 2 (ii) 2x + 7y = 9
   2x + 6y = 7  4x + 14y = 18

  Sol. (i) x + 3y = 2  ...(1)
      2x + 6y = 7  ...(2)

  D = 
1 3
2 6

 = 6 – 6 = 0

  Dx = 
2 3
7 6

 = 12 – 21 = –9 ≠ 0

  Dy = 
1 2
2 7

 = 7 – 4 = 3 ≠ 0

 Since, D = 0 and Dx ≠ 0, Dy ≠ 0, (at least one of the determinant Dx ≠ 0), the given system of equations is 
inconsistent, i.e., it has no solution,

 (ii)  2x + 7y = 9    ...(1)
        4x + 14y = 18    ...(2)

  D = 
2 7
4 14

 = 28 – 28 = 0

  Dx = 
9 7

18 14
 = 126 – 126 = 0

  Dy = 
2 9
4 18

 = 36 – 36 = 0

 Since, D = 0 and Dx = Dy = 0, therefore the system has infinitely many solutions or is inconsistent.

 Let x = k, Then from (1), 2k + 7y = 9 ⇒ y = 
9 2

7
k−

 Substituting this value in (2), 4(k) + 4 9 2
7

k− 
  

 = 18

	⇒ 4k + 18 – 4k = 18 ⇒ 18 = 18.

∴ The system has infinitely many solutions given by x = k, y = 
9 2

7
k−

SOLVED EXAMPLES

 Ex. 1. If a matrix has 12 elements, what are the possible orders it can have?
 Sol. We know that a matrix of order m × n has mn elements. Hence to find all possible orders of a matrix having 

12 elements, we will have to find all ordered pairs the product of whose components is 12. The possible ordered 
pairs satisfying the above given condition are (1, 12), (12, 1), (2, 6), (6, 2), (3, 4), (4, 3).

  Hence, the possible orders are 1 × 12, 12 × 1, 2 × 6, 6 × 2, 3 × 4, and 4 × 3.

 Ex. 2. Construct a 2 × 2 matrix A = [aij] whose elements are given by aij = 
1 2 – 3
2

i j .

 Sol. Let A = [aij] = 11 12

21 22

 
 
 

a a
a a

	 	∴  a11 = 
1 1 1 1 1| 2 1 3 1| | 2 3 | | 1| 1
2 2 2 2 2

× − × = − = − = × =

   a12 = 
1 1 1 1| 2 1 3 2 | | 2 6 | | 4 | 4 2
2 2 2 2

× − × = − = − = × =
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     a21 = 
1 1 1 1| 2 2 3 1| | 4 3 | 1
2 2 2 2

× − × = − = × =

    a22  = 
1 1 1| 2 2 3 2 | | 4 6 | 2 1
2 2 2

× − × = − = × =

	 ∴ A = 

1 2
2
1 1
2

 
 
 
 
  

.

 Ex. 3. Find the values of x and y so that the matrices A = 
 +  + +=   − −   

2

2
2 1 3 3 2,

0 5 0 6
x y x yB

y y
 may be equal ?

 Sol. A = [aij] = B = [bij] ⇒ aij = bij
  ∴ 2x + 1 = x + 3 ⇒ x = 2
   3y = y2 + 2 ⇒ y2 – 3y + 2 = 0 ⇒ (y – 1) (y – 2) = 0 ⇒ y = 1 or 2
   y2 – 5y = – 6 ⇒ y2 – 5y + 6 = 0 ⇒ (y – 3) (y – 2) = 0 ⇒ y = 3 or 2
   Since, 3y = y2 + 2 and y2 – 5y = – 6 must hold simultaneously, we take the common solution of the two 

equations, i.e., y = 2.
  ∴ A = B ⇒ x = 2, y = 2

 Ex. 4. Solve the equation –2
    
    + = +    
        

1 2 3 1 0 0
0 1 2 3 0 0 0
0 0 1 0 0 1

x x , over S3 × 3.

 Sol. Given equation becomes,   –2 x + –2 
1 2 3 1 0 0
0 1 2 3 0 0 0
0 0 1 0 0 1

x
   
   = +   
      

	 	 ⇒ 
2 4 6 1 0 0
0 2 4 0 0 0 5
0 0 2 0 0 1

x
− − −   

   − − − =   
   −   

 ⇒ 5x = 
2 1 4 0 6 0
0 0 2 0 4 0
0 0 0 0 2 1

− − − − − − 
 − − − − − 
 − − − − 

  ⇒ 5x = 
3 4 6
0 2 4
0 0 3

− − − 
 − − 
 − 

 ⇒ 
3 5 4 5 6 5

0 2 5 4 5
0 0 3 5

x
− − − 

 = − − 
 − 

 Ex. 5. If A = diag [3 –2 1]  and B = diag [1 3 – 2] , find 2A – 3B.

 Sol. A = diag 
3 0 0

[3 2 1] 0 2 0
0 0 1

 
 − = − 
  

 B = diag 
1 0 0

[1 3 2] 0 3 0
0 0 2

 
 − =  
 − 

  ⇒ 2A – 3B = 2 
3 0 0 1 0 0
0 2 0 3 0 3 0
0 0 1 0 0 2

   
   − −   
   −   

 = 
6 0 0 3 0 0
0 4 0 0 9 0
0 0 2 0 0 6

   
   − −   
   −   

    = 
6 3 0 0 3 0 0

0 4 9 0 0 13 0
0 0 2 6 0 0 8

diag [3 –13 8]
−   

   − − = − =   
   +   

.
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 Ex. 6. Find a and b, if 
 

 − −        − =       −         − 

2
2 1 3 1 2 0

3 2 0 .
1 4 2 2 1 3

1

a
b

 Sol. LHS = 
2

2 1 3 1 2 0
3 2 0

1 4 2 2 1 3
1

 
 − −      −      −       − 

 = 
2

6 3 9 2 4 0
0

3 12 6 4 2 6
1

 
 − −      −      −       − 

   = 
2

6 2 3 4 9 0
0

3 4 12 2 6 6
1

 
− + − −   

   − + −   − 

 = 
2

4 7 9 4 2 7 0 9 1 17
0

1 14 0 1 2 14 0 0 1 2
1

 
− × + × − × −       = =      − − × + × + × − −      − 

  Given, 
17

2
= 17, = – 2a b   

= ⇒   −   

a
b

.

 Ex. 7. If A, B, C are three matrices such that A = [ ]
   
   = =   
      

, ,
a h g x

x y z B h b f C y
g f c z

 evaluate ABC

 Sol. AB = [ ]1 3

3 3

a h g
x y z h b f

g f c
×

×

 
 
 
  

 = [ ]1 3×+ + + + + +xa yh zg xh yb zf xg yf zc

	 	 ⇒  ABC = [ ]1 3

3 1

x
xa yh zg xh yb zf xg yf zc y

z
×

×

 
 + + + + + +  
  

   = [ ]1 1( ) ( ) ( )x xa yh zg y xh yb zf z xg yf zc ×+ + + + + + + +

   = [ax2 + by2 + cz2 + 2hxy + 2gzx + 2fyz].

 Ex. 8. If A = 
 
 − 

2 3
1 2

 and f(x) = x2 – 4x + 7, show that f(A) = 0. Use this result to find A5.

 Sol. f (A) = A2 – 4A + 7I2

  A2 = A.A = 
2 3 2 3 2 2 3 1 2 3 3 2
1 2 1 2 1 2 2 1 1 3 2 2

× + × − × + ×     
=     − − − × + × − − × + ×     

 = 
4 3 6 6 1 12
2 2 3 4 4 1

− +   
=   − − − + −   

  ∴ f (A) = A2 – 4A + 7I2 = 
1 12 2 3 1 0

4 7
4 1 1 2 0 1

     
− +     − −     

    = 
1 12 8 12 7 0 1 8 7 12 12 0

0.
4 1 4 8 0 7 4 4 0 1 8 7

− + − +       
− + = =       − − − + + − +       

  Now f (A) = 0 ⇒ A2 – 4A + 7I2 = 0
  ⇒ A2 = 4A – 7I2

  ∴ A3 = A2. A = (4A – 7I2) A = 4A2 – 7I2A = 4A2 – 7A ( I2A = A)
  ⇒ A3 = 4(4A – 7I2) – 7A = 9A – 28I2 (Replacing A2 by 4A – 7 I2)
  ∴ A4 = (9A – 28I2) A = 9A2 – 28I2A = 9(4A – 7I2) – 28A = 36A – 63I2 – 28A = 8A – 63I2

  ∴ A5 = (8A – 63I2)A = 8A2 – 63I2A = 8(4A – 7I2) – 63A = 32A – 56I2 – 63A = – 31A – 56I2

	 	 ∴	 A5 = –31 
2 3 1 0 62 93 56 0

56
1 2 0 1 31 62 0 56

− −       
− = −       − −       
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        = 
62 56 93 0

31 0 62 56
–118 –93

31 –118
− − − −   

=   − − −   

 Ex. 9. If A = 
   
   =   
   −   

2 3 4 4 0 5
5 7 9 , 1 2 0
2 1 1 0 3 1

B , verify that (AB)T = BTAT.

 Sol. A = 
2 3 4 2 5 2
5 7 9 3 7 1
2 1 1 4 9 1

TA
−   

   ⇒ =   
   −   

  B = 
4 0 5 4 1 0
1 2 0 0 2 3
0 3 1 5 0 1

TB
   
   ⇒ =   
      

  Now, AB =  
2 3 4 4 0 5
5 7 9 1 2 0
2 1 1 0 3 1

   
   
   
   −   

 = 
8 3 0 0 6 12 10 0 4

20 7 0 0 14 27 25 0 9
8 1 0 0 2 3 10 0 1

+ + + + + + 
 + + + + + + 
 − + + + + − + + 

 = 
11 18 14
27 41 34

7 5 9

 
 
 
 − − 

    (AB)T = 
11 27 7
18 41 5
14 34 9

− 
 
 
 − 

  Now, BTAT = 
4 1 0 2 5 2
0 2 3 3 7 1
5 0 1 4 9 1

−   
   
   
      

 = 
8 3 0 20 7 0 8 1 0 11 27 7

0 6 12 0 14 27 0 2 3 18 41 5
10 0 4 25 0 9 10 0 1 14 34 9

+ + + + − + + −   
   + + + + + + =   
   + + + + − + + −   

  ∴  (AB)T = BTAT.

 Ex. 10. If A = 
 
 
 

1 2
3 4

, show that A – AT is a skew-symmetric matrix. 

 Sol. A square matrix A = [aij] is said to be a skew-symmetric matrix if AT = –A.

    A = 
1 2 1 3
3 4 2 4

   
⇒ =   

   
TA

  ∴  A – AT = 
1 2 1 3 0 1
3 4 2 4 1 0

−     
− =     

     

    (A – AT)T = 
0 1 0 1

( ).
1 0 1 0

TA A
−   

= − = − −   −   
  Hence, A – AT is a skew-symmetric matrix.

 Ex. 11. Express the matrix A = 
 
 
 
 − 

2 1 3
1 1 4
1 6 2

 as a sum of a symmetric and a skew-symmetric matrix. 

 Sol. We know that symmetric part of the matrix A is 
1
2

 (A + AT) and the skew-symmetric part is 
1
2

 (A – AT).

  Here A = 
2 1 3 2 1 1
1 1 4 1 1 6
1 6 2 3 4 2

TA
−   

   ⇒ =   
   −   
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  Symmetric part = 
2 1 3 2 1 1

1 1( ) 1 1 4 1 1 6
2 2

1 6 2 3 4 2

 −   
    + = +        −    

TA A = 
4 2 2 2 1 1

1 2 2 10 1 1 5
2

2 10 4 1 5 2

   
   =   
      

  Skew-symmetric part = 
2 1 3 2 1 1

1 1( ) 1 1 4 1 1 6
2 2

1 6 2 3 4 2

TA A
 −   
    − = −        −    

 = 
0 0 4 0 0 2

1 0 0 2 0 0 1
2

4 2 0 2 1 0

   
   − = −   
   −   

 ∴	 A = 
1
2

 (A + AT) + 
1
2

 (A – AT) = 
2 1 1 0 0 2
1 1 5 0 0 1
1 5 2 2 1 0

   
   + −   
      

 Ex. 12. Find the adjoint of A, where A = 
− 

 
 
 − 

1 1 2
2 3 5
2 0 1

 .

 Sol. Adj A is the transpose of the matrix obtained by replacing the elements of A by their corresponding cofactors.

    A = 
1 1 2

[ ] 2 3 5
2 0 1

ija
− 

 =  
 − 

  ∴  A11 = cofactor of a11 (1) = (–1)1 + 1 
3 5

3 0 3
0 1

= − =

    A12 = cofactor of a12(–1) = (–1)1 + 2 
2 5

(2 10) 12
2 1

= − + = −
−

    A13 = cofactor of a13(2) = (–1)1 + 3 
2 3

0 6 6
2 0

= + =
−

    A21 = cofactor of a21(2) = (–1)2 + 1 
1 2

( 1 0) 1
0 1

−
= − − − =

    A22 = cofactor of a22(3) = (–1)2 +2 
1 2

1 4 5
2 1

= + =
−

    A23 = cofactor of a23(5) = (–1)2 + 3 
1 1

(0 2) 2
2 0

−
= − − =

    A31 = cofactor of a31(–2) = (–1)3 + 1 
1 2

5 6 11
3 5

−
= − − = −

    A32 = cofactor of a32(0) = (–1)3 + 2 
1 2

(5 4) 1
2 5

= − − = −

    A33 = cofactor of a33(1) = (–1)3 + 3 
1 1

3 2 5
2 3

−
= + =

  ∴ adj. A = 
11 12 13 11 21 31

21 22 23 12 22 32

31 32 33 13 23 33

   
   =   
      

TA A A A A A
A A A A A A
A A A A A A

 = 
3 1 11

12 5 1 .
6 2 5

− 
 − − 
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 Ex. 13. If A = 
 
 
 
  

1 3 1
2 1 0
3 2 3

, find the value of (adj. A) A without finding adj. A. 

 Sol. We know that A(adj. A) = (adj. A) A = |A| I
  ∴ Here (adj. A) A = |A| I3

    A = 
1 3 1 1 3 1

1 0 2 0 2 1
2 1 0 | | 2 1 0 1 3 1

2 3 3 3 3 2
3 2 3 3 2 3

 
  ⇒ = = − + 
  

A

     = 1(3 – 0) –3 (6 – 0) +1 (4 – 3) = 3 – 18 + 1 = –14

  ∴ (adj. A) A = |A| I3 = –14 
1 0 0
0 1 0 .
0 0 1

–14 0 0
0 –14 0
0 0 –14

=

 Ex. 14. Find the inverse of the matrix 
− 

 
 

2 5
3 4

. 

 Sol. Let A = 
2 5
3 4

− 
 
 

    Then |A| = –2 × 4 – 5 × 3 = –23 ≠ 0
 ∴ |A| ≠ 0 ⇒ A is a non-singular matrix ⇒ A–1 exists.
 ∴ A11 = (–1)1 + 1 |4| = 4 A21 = (–1)2 + 1 |5| = –5
  A12 = (–1)1 + 2 |3| = –3 A22 = (–1)2 + 2 |–2| = –2

	 ∴ adj. A = 11 12 11 21

21 22 12 22

4 5
3 2

TA A A A
A A A A

−     
= =     − −    

 ∴ A–1 = 
4 5. 1 .
3 2| | 23

adj A
A

−   
= =   − −−    

– 4 /23 5 /23
3 /23 2 /23

 Ex. 15. Let F(a) = 
cos sin 0 cos 0 sin
sin cos 0 and ( ) 0 1 0

0 0 1 sin 0 cos

α α β β
α α β

β β
G

−   
   =   
   −   

, show that [F(α). G(β)]–1 = G(–β). F(–α). 

 Sol. F(a), F(–a) = 
cos sin 0 cos( ) sin( ) 0
sin cos 0 sin( ) cos( ) 0

0 0 1 0 0 1

α − α −α − −α   
   α α −α −α   
      

   = 
cos sin 0 cos sin 0
sin cos 0 sin cos 0

0 0 1 0 0 1

α − α α α   
   α α − α α   
      

 = 

2 2

2 2

cos sin 0 0 1 0 0
0 sin cos 0 0 1 0
0 0 1 0 0 1

I

 α + α     α + α = =         
  ∴ F(a). F(–a) = I ⇒ [F(a)]–1 = F(–a)

 Similarly, G(b). G(–b) = 
cos 0 sin cos( ) 0 sin( )

0 1 0 0 1 0
sin 0 cos sin( ) 0 cos( )

β β −β −β   
   
   
   − β β − −β −β   

 =  
cos 0 sin cos 0 sin

0 1 0 0 1 0
sin 0 cos sin 0 cos

β β β − β   
   
   
   − β β β β   
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     = 

2 2

2 2

cos 0 sin 0 0
0 1 0

0 0 sin 0 cos

 β + + β
 
 
 β + + β 

 = 
1 0 0
0 1 0
0 0 1

I
 
  = 
  

  ∴ G(b). G(–b) = I ⇒ [G(b)]–1 = G(–b) ((AB)–1 = B–1A–1)
  ∴ {F(a). G(b)}–1 = {G(b)}–1. {F(a)}–1

     = G(–b). F(–a)

 Ex. 16.  For the matrix A = 
− 

 
 

1 1
2 3

 show that A2 – 4A + 5I = 0. Hence obtain A–1.

 Sol. A2 – 4A + 5I = 
1 1 1 1 1 1 1 0

4 5
2 3 2 3 2 3 0 1

− − −       
− +       

       
 = 

1 2 1 3 4 4 5 0
2 6 2 9 8 12 0 5

− − − −     
− +     + − +     

    = 
1 4 4 4 5 0
8 7 8 12 0 5

− − − +     
+ +     − −     

 = 
1 4 5 4 4 0 0 0

0
8 8 0 7 12 5 0 0

− − + − + +   
= =   − + − +   

  Now premultiplying both the sides of A2 – 4A + 5I by A–1, we get
   A–1 A2 – 4A–1 A + 5A–1I = 0
  ⇒ (A–1 A) A – 4I + 5A–1 = 0 ( A–1A = I and A–1I = A–1)
  ⇒ IA – 4I + 5A–1 = 0
  ⇒ A – 4I + 5A–1 = 0 ⇒ 5A–1 = 4I – A

  ⇒ 5A–1 = 4 
1 0 1 1
0 1 2 3

−   
−   

   
 = 

4 0 1 1 3 1
0 4 2 3 2 1

−     
− =     −     

  ∴	 	 A–1 = 
3 11 .
2 15

 
 − 

 Ex. 17.  Find the inverse of the matrix A = 
 
 + 
  

1
a b

bcc
a

 and show that aA–1 = (a2 + bc + 1) I2 – aA.

 Sol. For A–1 to exist, |A| ≠ 0.

   |A| = 
1 1 1 01

+ = − = + − = ≠+   

a b
bca bc bc bcbc ac

a

  ⇒ A–1 exists and A–1 = 
1 . .

| |
adj A

A
×

   A11 = 
1 bc

a
+

, A12 = –c, A21 = –b, A22 = a

  ∴ adj. A = 11 12 11 21

21 22 12 22

1T bcA A A A b
a

A A A A c a

+ −     = =         − 

  ∴ A–1 = 
1 1

1
1

bc bcb b
a a

c a c a

+ +   − −   =   
− −   

  LHS = 1
2

1 1bc bc abb
aA a a

ac ac a

−
+  + − − = =    − − 
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  RHS = (a2 + bc + 1) I2 – aA

   = 2 1 0
( 1) 10 1

a b
a bc a bcc

a

    + + − +      
 = 

2 2

2

1 0
10 1

a bc a ab
ac bca bc

   + +
−   

++ +    

   = 
2 2

2

1 0

0 1 1

a bc a ab

ac a bc bc

 + + − −
 

− + + − −  
 = 2

1
LHS.

bc ab

ac a

+ − 
= 

− 

 Ex. 18.  Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25.

 Sol. Writing the given equations in the matrix form AX = B, we have 
5 3 1 16
2 1 3 19 , where
1 2 4 25

x
y
z

     
     =     
          

  A = 
5 3 1 16
2 1 3 , , 19
1 2 4 25

x
X y B

z

     
     = =     
          

  |A| = 
5 3 1
2 1 3
1 2 4

 = 5(4 – 6) –3(8 – 3) + 1(4 – 1) = –10 – 15 + 3 = –22 ≠ 0

  ∴ A is non – singular.
  ∴ The given system of equations has a unique solution X = A–1B.

    A11 = 
1 3
2 4

 = 4 – 6 = –2, A12 = 
2 3
1 4

−  = – (8 – 3) = –5, A13 = 
2 1
1 2

 = 4 – 1 = 3

    A21 = 
3 1
2 4

−  = – (12 – 2) = –10, A22 = 
5 1
1 4

 = 20 – 1 = 19, A23 = 
5 3
1 2

−  = – (10 – 3) = –7

    A31 = 
3 1
1 3

 = (9 – 1) = 8, A32 = 
5 1
2 3

−  = – (15 – 2) = –13, A33 = 
5 3
2 1

 = 5 – 6 = –1

  ∴  A–1 =
11 21 31

12 22 32

13 23 33

. 1
| | | |

A A A
adj A A A A

A A
A A

 
 =  
  

 = 
2 10 8

1 5 19 13
22

3 7 1

− − 
 − − −  − − 

 = 
2 22 10 22 8 22
5 22 19 22 13 22
3 22 7 22 1 22

− 
 − 
 − 

  ∴  X = A–1B

  ⇒  
2 22 10 22 8 22 16
5 22 19 22 13 22 19
3 22 7 22 1 22 25

x
y
z

−     
     = −     
     −     

 = 

32 190 200 22
22 22 1

80 361 325 44 2
22 22

548 133 25 110
22 22

+ −   
   

    
− +     = =     

      − + +   
      

  ∴ x = 1, y = 2, z = 5.

 Ex. 19. Use matrix method to examine the following system of equations for consistency or inconsistency.
2x + 5y = 7, 6x + 15y = 13

 Sol. Writing the given equations in the matrix form, we have 
2 5 7
6 15 13

x
y

     
=     

     
 or AX = B, where
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    A = 
2 5 7

, ,
6 15 13

x
X B

y
     

=     
     

  Now |A| = 
2 5
6 15

 = 30 – 30 = 0 ⇒ A is singular

  ⇒ Further the system has no solution or infinite number of solutions. So now we find (adj. A) B.
  A11 = 15, A12 = –6, A21 = –5, A22 = 2

 ∴ adj. A  = 11 21

12 22

15 5
6 2

A A
A A

−   
=   −  

 ∴ (adj. A) B = 
15 5 7 105 65 40

0
6 2 13 42 26 16

− −       
= = ≠       − − + −       

 ∴ The given system has no solution and is therefore inconsistent.

Note: If | A | = 0 and (adj. A) B = 0, then the given system is consistent and has infinite number of solutions.

Based on Properties of Determinants
 Ex. 20. Without expanding, i.e., using properties of determinants, show that :

(a) 
1 /
1 / 0
1 /

a a bc
b b ca
b c ab

=            (b) 3
3 2

4 3 3 3
5 6 4 6

x y x x
x y x x x
x y x x

+
+ =
+

 Sol. (a) Given,  ∆ = 
1/
1 /
1 /

a a bc
b b ca
c c ab

   Multiply R1 by a, R2 by b, R3 by c. Then,

	 	 	 	 ∆ = 

2

2

2

1
1 1

1

a abc

b abc
abc

c abc

 = 

2

2

2

1 1
1 1 1

1 1

a

abc b
abc

c

×  (Taking out abc common from C3)

     = 1 × 0 = 0 (Two columns being identical)

  (b)  ∆ = 
3 2
4 3 3 3
5 6 4 6

x y x x
x y x x
x y x x

+
+
+

 = 
3 2 2
4 3 3 3 3 3
5 4 6 6 4 6

x x x y x x
x x x y x x
x x x y x x

+

     = x3 2
3 2 1 1 2 1
4 3 3 3 3 3
5 4 6 6 4 6

x y+  = 3 2
3 2 1
4 3 3 0
5 4 6

x x y+ ×  ( Two columns C1 and C3 are identical)

     = x3 [3 (18 – 12) –2 (24 – 15) +1 (16 – 15)] = x3 (18 – 18 + 1) = x3.

 Ex. 21. For positive number x, y and z, show that the numerical value of the determinant 
1 log log

log 1 log 0

log log 1

x x

y y

z z

y z
x z

x y

=

(IIT 1993)
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 Sol. Let ∆ = 
1 log log

log 1 log

log log 1

x x

y y

z z

y z
x z

x y
 = 

log log1
log log

log log1
log log
log log 1
log log

y z
x x

x z
y y
x y
z z

 (Using lognm = 
log
log

m
n

)

    = 
log log log

1 log log log
log . log . log

log log log

x y z
x y z

x y z
x y z

 

(Multiplying R1, R2, R3 by log x, log y and log z respectively)

    = 
1 0 0

log . log . logx y z
× =  [ R1, R2 and R3 are identical].

 Ex. 22.  Prove that 
+ +

+ + = + +
+ +

3
2

2 2( )
2

a b c a b
c b c a b a b c
c a c a b

.

 Sol. Given determinant ∆ = 
2

2
2

+ +
+ +

+ +

a b c a b
c b c a b
c a c a b

  Applying C1 → C1 + (C2 + C3), we get

	 	 	 	 ∆ = 
2( )
2( ) 2
2( ) 2

a b c a b
a b c b c a b
a b c a c a b

+ +
+ + + +
+ + + +

 = 
1

2 ( ) 1 2
1 2

a b
a b c b c a b

a c a b
+ + + +

+ +

  Applying R2 → R2 – R1 and R3 → R3 – R1

	 	 	 	 ∆ = 
1

2( ) 0 0
0 0

a b
a b c b c a

c a b
+ + + +

+ +
 = 

0
2( ) 1

0
b c a

a b c
c a b

+ +
+ + ×

+ +

     = 2 (a + b + c) × {(b + c + a). (c + a + b) – 0 × 0} = 2(a + b + c)3.

 Ex. 23.  Solve the following equations: =
3 7

2 2 0
7 6

x
x

x
                                                             (EAMCET 1992, IIT

 Sol. Given, 
3 7

2 2 0
7 6

=
x

x
x

	 	 ⇒ 
9 9 9

2 2 0
7 6

x x x
x

x

+ + +
=  (Applying R1 → R1 + R2 +R3)

	 	 ⇒ 
1 1 1

( 9) 2 2 0
7 6

x x
x

+ =
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	 	 ⇒ 
1 0 0

( 9) 2 2 0 0
7 1 7

x x
x

+ − =
− −

 (Applying C2 → C2 – C1, C3 → C3 – C1)

  ⇒ 
( 2) 0

( 9) 0
1 ( 7)

x
x

x
−

+ =
− −

 (Expanding along R1)

  ⇒ (x + 9) (x – 2) (x – 7) = 0
  ⇒ x = – 9 or 2 or 7.
  ∴ The solution set is {– 9, 2, 7}.

 Ex. 24. Without expanding prove that 
α + β α + β α + β
α + β α + β α + β =
α + β α + β α + β

1 1 1 1 1 2 1 2 1 3 1 3

2 1 2 1 2 2 2 2 2 3 2 3

3 1 3 1 3 2 3 2 3 3 3 3

0
a b a b a b
a b a b a b
a b a b a b

 

 Sol. We know that, 
1 1 1 1

2 2 2 2

3 3 3 3

0 0
0 0 0 0 0
0 0

α β
α β = × =
α β

a b
a b
a b

 (Using row by row multiplication of determinants)

	 	 ⇒ 
1 1 1 1 1 2 1 2 1 3 1 3

2 1 2 1 2 2 2 2 2 3 2 3

3 1 3 1 3 2 3 2 3 3 3 3

0 0 0
0 0 0 0
0 0 0

a b a b a b
a b a b a b
a b a b a b

α + β + α + β + α + β +
α + β + α + β + α + β + =
α + β + α + β + α + β +

	
	⇒ 

1 1 1 1 1 2 1 2 1 3 1 3

2 1 2 1 2 2 2 2 2 3 2 3

3 1 3 1 3 2 3 2 3 3 3 3

0
a b a b a b
a b a b a b
a b a b a b

α + β α + β α + β
α + β α + β α + β =
α + β α + β α + β

.

 Ex. 25. Express 
− − −
− − −
− − −

2 2 2

2 2 2

2 2 2

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

a x a y a z
b x b y b z
c x c y c z

 as a product of two determinants and hence factorize it. 

 Sol. 

2 2 2

2 2 2

2 2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

− − −

− − −

− − −

a x a y a z

b x b y b z

c x c y c z

 = 

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

2 2 2

2 2 2

a ax x a ay y a az z

b bx x b by y b bz z

c cx x c cy y c cz z

− + − + − +

− + − + − +

− + − + − +

    = 

2 2

2 2

2 2

2 1 1

2 1 1 .

2 1 1

a a x x

b b y y

c c z z

−

−

−

  (Row by row multiplication)

    = 

2 2

2 2

2 2

1 1

2 1 1

1 1

a a x x

b b y y

c c z z

−  = 

2 2

2 2

2 2

1 1

2 1 1

1 1

a a x x

b b y y

c c z z

 (Interchanging C1 and C3 of first determinant)

  Now  

2 2 2

2 2 2

2 2

1 0

1 0

1 1

a a a b a b

b b b c b c

c c c c

− −

= − −  (Applying R1 → R1 – R2 ; R2 → R2 – R3)
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    = 
2

0 ( ) ( ) ( )
0 ( ) ( ) ( )

1

a b a b a b
b c b c b c

c c

− − +
− − +

     = (a – b) (b – c) 
2

0 1
0 1

1

a b
b c

c c

+
+  [Taking (a – b) common from R1, (b – c) common from R2]

    = 
1

( ) ( ).1.
1

a b
a b b c

b c
+

− −
+

  (Expanding along C1)

    = (a – b) (b – c) (b + c – a – b) = (a – b) (b – c) (c – a)

  Similarly, we have 

2

2

2

1

1 ( ) ( ) ( )

1

x x

y y x y y z z x

z z

= − − −

	 	 ∴ 

2 2

2 2

2 2

1 1

2 1 1 2

1 1

a a x x

b b y y

c c z z

=  (a – b) (b – c) (c – a) (x – y) (y – z) (z – x).

PRACTICE SHEET  

 1. If aij = 
i
j

 
 
 

, where [x] stands for the greatest integer 

function, then a matrix A2 × 2 = [aij] will be

  (a) 
1 1
2 1

 
 
 

 (b) 
2 1
3 2

 
 
 

 (c) 
1 0
2 1

 
 
 

 (d) 
1 1
2 1

− 
 
 

 2. If A = 
1
0 1

k 
 
 

, then An is equal to

  (a) 
0
n nk

n
 
 
 

 (b) 
1
0 1

nk 
 
 

 (c) 
0

nn k
n

 
 
 

 (d) 
1
0 1

nk 
 
 

 3. If A = 
1

1 0
x 

 
 

 and A2 is the unit matrix, then the value of 

x3 + x – 2 is equal to 
  (a) –8 (b) –2 (c) 0 (d) 6

(Kerala PET 2011)

 4. If A = 
1 0 0
0 1 0

1a b

 
 
 
 − 

 and I is the unit matrix of order 3, then 

A2 + 2A4 + 4A6 is equal to:
  (a) 7 I (b) 8 A7 (c) 8 A8 (d) 7 A8

 5. Matrix A is such that A2 = 2A – I, where I is the identity 
matrix, then for n ≥ 2, An is equal to

  (a) nA – (n – 1) I (b) nA – I
  (c) 2n – 1A – I  (d) 2n – 1A – (n – 1) I

 6. If 
1 2 3

[1 1] 0 5 1 1 0
0 3 2 2

x
x

   
    =   
   −   

, then x is equal to

  (a) 
1
4

 (b) 
3
4

 (c) 1 (d) 
5
4

(Odisha JEE 2008)
 7. Let M be a 3 × 3 matrix satisfying

  
0 1 1 1 1 0
1 2 , 1 1 and 1 0 .
0 3 0 1 1 12

M M M
−           

           = − = =           
           −           

 Then the 

sum of the diagonal entries of M is  
  (a) 1 (b) 3 (c) 6 (d) 9

(IIT 2011)

 8. If A = diag (1  –4   8), B = diag ( 2 3 5)−  and  
C = diag ( 3 7 10)− , find B + 2C – A

  (a) diag ( 4 1 12)−  (b) diag ( 9 21 17)−

  (c) diag ( 7 13 30)−  (d) diag ( 4 9 7)− − −

 9. If A = 
1 1
1 1

 
 
 

, then An =

  (a) 2n + 1 . A (b) 2n – 1 . A (c) 2n + 2 . A (d) 2n – 2 . A

 10. If the matrix 
4 2

4k
− 

 − 
 is nilpotent of order 2, then k equals

  (a) 2 (b) 8 (c) –1 (d) 0
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 11. If A = 
3 1
1 2

 
 − 

, then

  (a) A2 – 5A – 7I2 = 0 (b) A2 + 5A – 7I2 = 0
  (c) A2 – 5A + 6I2 = 0 (d) A2 – 5A + 7I2 = 0

 12. If A = 
cos sin
sin cos

α α 
 − α α 

, then AT. A is a

  (a) Null matrix (b) Identity matrix
  (c) Diagonal matrix (d) None of these

 13. If A = 
1 2 2
2 1 2

2a b

 
 − 
  

 is a matrix satisfying AAT = 9I3, then 

the values of a and b are respectively
  (a) –2, –1 (b) –1, 2 (c) 1, –2 (d) 2, –1

(Kerala PET 2011)
 14. If the orders of the matrices A, B and C are 5 × 4, 5 × 6 and 

7 × 4 respectively, then the order of (AT × B)T × CT is of 
order

  (a) 4 × 6 (b) 6 × 5 (c) 6 × 7 (d) 4 × 4
 15. If A is 3 × 4 matrix and B is a matrix such that AT B and 

BT A are both defined, then B is of the order
  (a) 3 × 3 (b) 3 × 4 (c) 4 × 3 (d) 4 × 4
 16. If matrix A is symmetric as well as skew-symmetric, then 

A is a
  (a) Unit matrix (b) Null matrix
  (c) Triangular matrix (d) Diagonal matrix
 17. Let A and B be symmetric matrices of the same order. Then,
  (a) A + B is a symmetric matrix
  (b) AB – BA is a skew-symmetric matrix
  (c) AB  + BA is a symmetric matrix
  (d) All of these

 18. If matrix A = 
a b c
b c a
c a b

 
 
 
  

, where a, b and c are real positive 

numbers, abc = 1 and AT. A = I, then find the value of 
a3 + b3 + c3.    

  (a) 0 (b) 1 (c) 3 (d) 4
(IIT 2003)

 19. The matrix A = 
cos sin
sin cos

θ − θ 
 θ θ 

 is which of the following:

  (a) Nilpotent  (b) Orthogonal
  (c) Idempotent (d) Involuntary
 20. If A and B are square matrices of the same order such that 

AB = A and BA = B, then A and B are both
  (a) Singular  (b) Idempotent
  (c) Involuntary (d) Non-singular

 21. If A = 
cos sin
sin cos

θ − θ 
 θ θ 

, then det. A is equal to

  (a) 0 (b) 1 (c) –1 (d) 2

 22. Find x if 
0 1

2 1 4
1 2 0

x 
 − 
  

 is a singular matrix?

  (a) 
3
4

 (b) 
2
3

 (c) 
5
8

 (d) 
1
8

 23. For the matrix A = 
1 1 1
2 3 0

18 2 10

− 
 
 
  

, A . (adj . A) is equal to

  (a) | A | I3  (b) I3
  (c) Null matrix (d) None of these

 24. Let A = 
0 0 1
0 1 0
1 0 0

− 
 − 
 − 

. Then the only correct statement 

about the matrix A is
  (a) A is a zero matrix
  (b) A2 = I
  (c) A = (–1) I, where I is a unit matrix
  (d) A–1 does not exist.

 25. If A = 
2 3
5 2

 
 − 

, then A–1 equals

  (a) A (b) 
1
11

A  (c) 
1

19
A  (d) AT

 26. If A = 
1 2 3
0 1 4
2 2 1

− 
 − 
 − 

, then (AT)–1 equals

  (a) 
1 0 2
2 1 2
3 4 1

− 
 − − 
  

 (b) 
9 8 2
8 7 –2
5 4 1

− 
 − 
 − 

  (c) 
9 8 5
8 7 4
2 2 –1

− − 
 − − 
 − 

 (d) 
9 8 2
8 7 2
5 4 1

− − − 
 
 
 − − − 

 27. The value of determinant 
log 1

1 log
 
 
 

y

x

x

y
 is equal to

  (a) –1 (b) 0 (c) 1 (d) 3

 28. If A = 
0 3
0 0

 
 
 

 and f (x) = 1 + x + x2 + ... + x20, then f (A) =

  (a) 
1 3
0 0

 
 
 

 (b) 
0 3
1 3

 
 
 

 (c) 
1 0
0 1

 
 
 

 (d) 
1 3
0 1

 
 
 

 29. If 
2 1

0,
a

bc ab c
=

+
 then a, b, c are in

  (a) A.P.  (b) G.P.
  (c) H.P.  (d) None of these
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 30. If A = 
1 1
1 1

− 
 − 

, then I + A + A2 + ..... + ∞ = .....

  (a) 
2 3 1 3
1 3 2 3

− 
 − 

 (b) 
2 3 1 3
1 3 2 3

 
 
 

  (c) 
2 3 1 3
1 3 2 3

− 
 
 

 (d) 
2 3 1 3
1 3 2 3

 
 − 

 31. If A = 
8 1 4

1 4 4 7
9

1 8 4

− 
 
 
 − 

 then A–1 is equal to

  (a) A2 (b) I (c) AT (d) 0

 32. The value of the determinant 
0 tan 1
1 sec 0

sec tan 1

θ
− θ

θ θ
 is

  (a) tan2 q (b) cos2 q (c) sec2 q (d) 1

 33. 
9 9 12
1 3 4
1 9 12

− −  is equal to

  (a) –121 (b) 136 (c) 0 (d) 10

 34. The determinant 

2

2

2

1

1

1

a a

b b

c c
 is equal to

  (a) (a + b) (b + c) (c – a) (b) (a + b) (b + c) (c + a)
  (c) (a – b) (b – c) (c – a) (d) (a + b) (b – c) (c + a)
 35. If a + b + c = 0, then the determinant 

  

2 2
2 2
2 2

a b c a a
b b c a b
c c c a b

− −
− −

− −
 is equal to 

  (a) 0  (b) abc
  (c) 2(a + b + c) (d) a2 + b2 + c2

(IAS 2001)

 36. The value of the determinant 

2 3

2 3 4

3 4 5

log log log

log log log

log log log

e e e

e e e

e e e
 is

  (a) 0 (b) 1 (c) 4 log e (d) 5 log e
(EAMCET 2006)

 37. The value of the determinant 
1 ( )
1 ( )
1 ( )

ab c a b
bc a b c
ca b c a

+
+
+

 is equal to

  (a) 0 (b) abc (c) a + b + c (d) ab + bc + ca

 38. One root of the equation 0
x a b c

b x c a
c a x b

+
+ =

+
 is

  (a) – (ab + bc + ca) (b) – (a + b + c)
  (c) – abc  (d) – (a2 + b2 + c2)

 39. The value of the determinant 
1 log log log

log 1 log log is
log log 1 log

a b c
a b c
a b c

+
+

+
  (a) log (abc)  (b) 1 – log (abc)
  (c) log (a + b + c) (d) 1 + log (abc)
 40. If A is a 2 × 2 matrix and | A | = 2, then the matrix represented 

by A (adj. A) is equal to 

  (a) 
1 0
0 1

 
 
 

 (b) 
2 0
0 2

 
 
 

 (c) 
1 2 0
0 1 2

 
 
 

 (d) 
0 1
1 0

 
 
 

(J&K CET 2011)
 41. If l, m, n are the p th, q th and r th terms of a GP, then 

log 1
log 1
log 1

l p
m q
n r

 is equal to 

  (a) 0 (b) l + m + n (c) pqr (d) lmn
(EAMCET 2009)

 42. If A is an invertible matrix which satisfies the relation 
A2 + A – I = 0, then A–1 equals 

  (a) A2 (b) I + A (c) I – A (d) I – A2

(MPPET 2009)
 43. For non-singular square matrices A, B and C of same order, 

(AB–1 C)–1 is equal to
  (a) C–1 BA (b) C–1 BA–1 (c) A–1 BC–1 (d) CB A–1

 44. If A = 12 0 1 0
and

1 2
x

A
x x

−   
=   −   

, then x equals

  (a) 
1
2

−  (b) 
1
2

 (c) 1 (d) 2

(UPSEE 2008)
 45. If the system of equations x + ay = 0, az + y = 0 and 

ax + z = 0 has infinite solutions, then the value of a is 
  (a) –1  (b) 0
  (c) 1  (d) no real values

(IIT 2003)
 46. If the system of linear equations
  x + 2ay + az = 0, x + 3by + bz = 0, x + 4cy + cz = 0 has a 

non-zero solution, then a, b, c. 
  (a) are in A.P.  (b) are in G.P.
  (c) are in H.P.  (d) satisfy a + 2b + 3c = 0.
 (AIEEE 2003)
 47. If 3x – 2y = 5 and 6x – 4y = 9, then the system of equations 

has
  (a) Unique solution (b) No solution
  (c) Infinitely many solutions (d) None of these
 48. If x + 5y = 3, 2x + 10y = 6, then the system of equations has
  (a) Unique solution (b) No solution
  (c) Infinitely many solutions  (d) None of these
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ANSWERS

 1. (c) 2. (b) 3. (b) 4. (d) 5. (a) 6. (d) 7. (d) 8. (b)  9. (b)  10. (b)
 11. (d) 12. (b) 13. (a) 14. (c) 15. (b) 16. (b) 17. (d) 18. (d)  19. (b)  20. (b)
 21. (b) 22. (c) 23. (c) 24. (b) 25. (c) 26. (d) 27. (b) 28. (d)  29. (c)  30. (a)
 31. (c) 32. (c) 33. (c) 34. (c) 35. (a) 36. (a) 37. (a) 38. (b)  39. (d)  40. (b)
 41. (a) 42. (b) 43. (b) 44. (b) 45. (a) 46. (c) 47. (b)  48. (c)  49. (b) 50. (d)

HINTS AND SOLUTIONS

 1. Given, aij = 
i
j

 
 
 

 where [x] stands for greatest integer 
function.

  ∴	 	 A2 × 2 = 11 12

21 22

a a
a a

 
 
 

    a11 = 12
1 11, [0.5] 0
1 2

a   = = = =      

    a21 = 22
2 22, 1
1 2

a   = = =      

  ∴  A2 × 2 = 
1 0

.
2 1

 
 
 

 2. A = 
1
0 1

k 
 
 

  ∴	 	 A2 = 
1 1
0 1 0 1

k k   
   
   

    = 
1 0 1 2

0 1 0 1
k k k+ +   

=   
   

    A3 = A2 . A = 
1 2 1
0 1 0 1

k k   
   
   

    = 
1 0 2 1 3

0 1 0 1
k k k+ +   

=   
   

  ∴ On generalisation, An = 
1

.
0 1

nk 
 
 

 3. Given, A2 = I

  ⇒	
1 1 1 0

1 0 1 0 0 1
x x     

=     
     

  ⇒ 
2 1 01 0

0 10 1
x x
x

   + + =   +   
( Two matrices are equal if their 
corresponding elements are equal)

  ⇒ x2 + 1 = 1 and x = 0 ⇒ x2 = 0 ⇒ x = 0.
  ∴ x3 + x – 2 = – 2.

 4. Given, A = 
1 0 0
0 1 0

1a b

 
 
 
 − 

	 	∴	 A2 = A . A = 
1 0 0 1 0 0
0 1 0 0 1 0

1 1a b a b

   
   
   
   − −   

    = 
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0

0 0 0 0 1a a b b

+ + + + + + 
 + + + + + + 
 + − + − + + 

    = 
1 0 0
0 1 0 .
0 0 1

I
 
  = 
  

  ∴  A4 = A2 . A2 = I .  I = I
    A6 = A2 . A2 . A2 = I .  I .  I = I
    A8 = A2 . A2 . A2 . A2 = I
  ⇒ A2 + 2A4 + 4A6 = I + 2I + 4I = 7I = 7A8.
 5. A2 = 2A – I   ...(i)
	 	∴	 	 A3 = A . A2 = A . (2A – I)
      = 2A2 – AI = 2A2 – A
    = 2 (2A – I) – A = 3A – 2I [Using (i)]
    A4 = A . A3  = A (3A – 2 I)
      = 3A2 – 2 AI = 3 (2A – I) – 2A
      = 6A – 3I – 2A = 4A – 3I
  ⇒ An = nA – (n – 1) I

 6. 1 3

3 3 3 1

1 2 3
[1 1] 0 5 1 1 0

0 3 2 2

x
x ×

× ×

   
    =   
   −   

  Using associative law and multiplying the first two matrices, 
we have

   1 3

3 1

[1 0 0 2 5 3 3 2] 1 0
2

x
x x ×

×

 
 + + + + + + = 
 − 

 49. The system of equations 5x + 3y + z = 16, 2x + y + 3z = 19 
and x + 2y + 4z = 25 has

  (a) No solution (b) Unique solution
  (c) Infinitely many solutions (d) None of these.

 50. Let P = [aij] be a 3 × 3 matrix and let Q = [bij], where bij = 
2i+ j aij for 1 < i, j < 3. If the determinant of P is 2, then the 
determinant of matrix Q is 

  (a) 210 (b) 211 (c) 212  (d) 213

(IIT JEE 2012)
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	 	⇒	 [ ]1 3

3 1

1 5 5 5 1 0
2

x
x x ×

×

 
 + + = 
 − 

	  ⇒ [x + 5 + 5x – 10 – 2x]1 × 1 = 0
  ⇒ [4x – 5] = [0]

  ⇒ 4x – 5 = 0 ⇒ x = .5
4

 7. Let M = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
  

 be the required 3 × 3 matrix.

  Then, according to the first condition,

   
11 12 13

21 22 23

31 32 33

0 1
1 2
0 3

a a a
a a a
a a a

−     
     =     
         

  ⇒ 
12 12

22 22

32 32

1 1
2 2
3 3

a a
a a
a a

− = −   
   = ⇒ =         =   

 ...(i)

  According to second condition,

	 		
11 12 13

21 22 23

31 32 33

1 1
1 1
0 1

a a a
a a a
a a a

     
     − =     
         

	 	⇒	
11 12 11 12

21 22 21 22

31 32 31 32

1 1
1 1
1 1

a a a a
a a a a
a a a a

− − =   
   − = ⇒ − =   
   − − − = −  

  ∴ Using (i), we have
   a11 – (–1) = 1 ⇒ a11 = 0
    a21 – 2 = 1 ⇒ a21 = 3
    a31 – 3 = –1 ⇒ a31 = 2
  According to the third condition,

   
11 12 13

21 22 23

31 32 33

1 0
1 0
1 12

a a a
a a a
a a a

     
     =     
         

  ⇒ 
11 12 13

21 22 23

31 32 33

0
0

12

a a a
a a a
a a a

+ +   
   + + =   
   + +   

  ⇒ a11 + a12 + a13 = 0, a21 + a22 + a23 = 0,
   a31 + a32 + a33 = 12
  ⇒ 0 – 1 + a13 = 0, 3 + 2 + a23 = 0,
   2 + 3 + a33 = 12
  ⇒ a13 = 1, a23 = –5, a33 = 7
  ∴ Sum of diagonal elements of
    M = a11 + a22 + a33 = 0 + 2 + 7 = 9.
 8. Given, A = diag. [1 –4 8], B = diag [–2 3 5] and
  C = diag [–3 7 10]. Then,

  B + 2C – A = 
2 0 0 3 0 0 1 0 0
0 3 0 2 0 7 0 0 4 0
0 0 5 0 0 10 0 0 8

− −     
     + − −     
          

	 		 	 =	

2 6 1 0 0
0 3 14 4 0
0 0 5 20 8

− − − 
 + + 
 + − 

	 		 	 =	

9 0 0
0 21 0 diag [ 9 21 17]
0 0 17

− 
  = − 
  

.

 9. A = 
1 1
1 1

 
 
 

	 	⇒	 	 A2 = A . A = 
1 1 1 1
1 1 1 1

   
   
   

    = 
1 1 1 1 2 2 1 1

2
1 1 1 1 2 2 1 1

+ +     
= =     + +     

    = 2 1 2 11 1
2 2 .

1 1
A− − 

= 
 

    A3 = 2 1 1 2 2
.

1 1 2 2
A A    

=    
   

    = 
2 2 2 2 4 4
2 2 2 2 4 4

+ +   
=   + +   

    = 21 1 1 1
4 2

1 1 1 1
   

=   
   

    = 3 1 3 11 1
2 2 .

1 1
A− − 

= 
 

  ∴ An = 2n – 1 A.
 10. Given, a matrix A is nilpotent of order 2 ⇒ A2 = 0.

  ⇒	
4 2 4 2 0 0

4 4 0 0k k
− −     

=     − −     

	 	⇒	
16 2 8 8 0 0
4 4 2 16 0 0

k
k k k

− − +   
=   − − +   

  ⇒ 16 – 2k = 0 ⇒ k = 8.

 11. Given, A = 
3 1
1 2

 
 − 

, then

    A2 = 
3 1 3 1
1 2 1 2

   
   − −   

    = 
9 1 3 2 8 5
3 2 1 4 5 3

− +   
=   − − − + −   

    A2 – 5A = 
8 5 3 1

5
5 3 1 2

   
−   − −   

    = 
8 5 15 5 8 15 5 5
5 3 5 10 5 5 3 10

− −     
− =     − − − + −     
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    = 
7 0 1 0

– 7
0 7 0 1

−   
=   −   

 = –7 I

	 	∴	 A2 – 5A + 7 I = 0.

 12. A = 
cos sin
sin cos

α α 
 − α α 

  ⇒ AT = 
cos sin
sin cos

α − α 
 α α 

	 	⇒	 AT . A = 
cos sin cos sin
sin cos sin cos

α − α α α   
   α α − α α   

   = 
2 2

2 2

cos sin cos sin sin cos
sin cos – cos sin sin cos

 α + α α α − α α
 

α α α α α + α  

   = 
1 0

.
0 1

I 
= 

 

 13. Given, AAT = 9 I3 

	 	⇒	

1 2 2 1 2 1 0 0
2 1 2 2 1 2 9 0 1 0

2 2 2 0 0 1

a

a b b

     
     − =     
     −     

	 	⇒	
2 2

1 4 4 2 2 4 4 2 9 0 0
2 2 4 4 1 4 2 2 2 0 9 0

0 0 94 2 2 2 2 4

a b
a b

a b a b a b

 + + + − + +  
   + − + + + − =   
   + + + − + +   

	 	⇒	
2 2

9 0 4 2 9 0 0
0 9 2 2 2 0 9 0

0 0 94 2 2 2 2 4

 + +  
   + − =   
   + + + − + +   

a b
a b

a b a b a b
  ∴ Equating the corresponding elements of both the matrices,
   a + 4 + 2b = 0 ...(i)
   2a + 2 – 2b = 0 ...(ii)
   a2 + 4 + b2 = 9 ...(iii)
  ⇒ a + 2b = –4 ...(i)
   2a – 2b = –2 ...(ii)
  On adding (i) and (ii)
    3a = –6 ⇒ a = –2
  Substituting a = –2 in (i), we get
    –2 + 2b = –4 ⇒ 2b = –2 ⇒ b = –1
  ∴ a = –2, b = –1.
 14. A is of order 5 × 4 ⇒ AT is of order 4 × 5
  B is of order 5 × 6 ⇒ BT is of order 6 × 5
  C is of order 7 × 4 ⇒ CT is of order 4 × 7

  ∴ (AT × B) is of order 4 × 5 5 × 6
BAT

 4 × 6

	 	∴	 (AT × B)T is of order 6 × 4
  ⇒ (AT × B)T

 × CT is of order  6 × 4 4 × 7  = 6 × 7.
 15. A is of order 3 × 4 ⇒ AT is of order 4 × 3.
  Let the order of B be p × q.
  Since, ATB is defined. So,
  No. of rows of B = No. of columns of AT ⇒ p = 3

  Also, BAT is defined. So,
  No. of columns of B = No. of rows of AT ⇒ q = 4
  ∴ B is of order 3 × 4.
 16. A is a symmetric matrix ⇒ AT = A ...(i)
  A is a skew-symmetric matrix ⇒ AT = –A ...(ii)
	 	∴	 From (i) and (ii),
    A = –A ⇒ A + A = 0 ⇒ 2A = 0 ⇒ A = 0
  ⇒ A is null matrix.
 17. Given, A and B are symmetric matrices of same order.
  ∴  AT = A and BT = B.
  ∴ (A + B)T = AT + BT

    = A + B ⇒ (A + B) is a symmetric matrix
   (AB – BA)T = (AB)T – (BA)T

    = BTAT – AT BT = BA – AB = – (AB – BA)
  ⇒ AB – BA is a skew-symmetric matrix
   (AB + BA)T = (AB)T + (BA)T

    = BTAT + ATBT = BA + AB = AB + BA
  ⇒	 (AB + BA) is a symmetric matrix.
	 	∴	 All the given options hold.
 18. AT. A = I

  ⇒ 
1 0 0
0 1 0
0 0 1

a b c a b c
b c a b c a
c a b c a b

     
     =     
          

  ⇒ 

2 2 2

2 2 2

2 2 2

a b c ab bc ca ac ab cb

ba cb ac b c a cb ca ab

ca ab bc cb ac ba c a b

 + + + + + +
 

+ + + + + + 
 

+ + + + + +  

   = 
1 0 0
0 1 0
0 0 1

 
 
 
  

  ⇒ 

2 2 2

2 2 2

2 2 2

a b c ab bc ca ab bc ac

ab bc ac a b c ab bc ac

ab bc ac ab bc ac a b c

 + + + + + +
 

+ + + + + + 
 

+ + + + + +  

   = 
1 0 0
0 1 0
0 0 1

 
 
 
  

  ⇒ a2 + b2 + c2 = 1, ab + bc + ca = 0
(On equating corresponding elements of equal matrices)

  Now, we know that
   (a + b + c)2 = a2 + b2 + c2 + 2 (ab + bc + ca)
	 		 = 1 + 0 = 1
  ⇒ a + b + c = 1
  Also, a3 + b3 + c3 – 3abc
   = (a + b + c) {a2 + b2 + c2 – (ab + bc + ca)}
   = 1 {1 – 0} = 1
	 	∴	 a3 + b3 + c3 = 1 + 3abc = 1 + 3 × 1 = 4  

    ( Given, abc = 1)
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 19. A = 
cos sin
sin cos

θ − θ 
 θ θ 

   AT = 
cos sin
sin cos

θ + θ 
 − θ θ 

   A . AT = 
cos sin cos sin
sin cos sin cos

θ − θ θ θ   
   θ θ − θ θ   

   = 
2

2 2

cos sin 0

0 sin cos

 θ + θ
 

θ + θ  
 = 

1 0
0 1

I 
= 

 
  ∴	 A is an orthogonal matrix.
 20. AB = A
  ⇒  (AB) A = A . A (Multiplying by A on both the sides)
  ⇒  A (BA) = A2 (Associative law)
  ⇒  AB = A2 ( BA = B)
  ⇒  A = A2 ( AB = A)
  ⇒ A is idempotent.
  Similarly,
    BA = B ⇒ (BA) B = B. B ⇒ B (AB) = B2

    ⇒ BA = B2 ⇒ B = B2 ⇒ B is idempotent.

 21. Given, A = 
cos sin
sin cos

θ − θ 
 θ θ 

  Then, det. A = 
cos sin
sin cos

θ − θ
θ θ

    = cos q	. cos q – (– sin q) . sin q
    = cos2 q + sin2 q = 1

      
| | –

a b
A

c d
a b

A ad bc
c d

  
=  

  
 
 ⇒ = =
  



 22. Let,  A = 
0 1

2 1 4
1 2 0

x 
 − 
  

  Then, det. A = 
0 1

2 1 4
1 2 0

x
−

  Now expanding along the first row, we have

    det. A = 
1 4 2 4 2 1

0 1
2 0 1 0 1 2

x
− −

− +

    = x (–1 × 0 – 4 × 2) + 1 (2 × 2 – (–1) × 1)
    = x × (–8) + 5 = –8x + 5
  For matrix A to be a singular matrix det. A = 0

	 	∴	 	 –8x + 5 = 0 ⇒ x = 
5 .
8

 23. We know that A–1 = 
adj .
| |

A
A

 where | A | = det. A

  ⇒  A–1 . | A | = adj . A

  ⇒  A . (adj . A) = A . (A–1 . | A |)
    = AA–1 . | A |
    = I | A | = | A | I ;
  where I is the identity matrix (AA–1 = I)
  So to find A . adj . A. we need to find det. A.

	 	∴	 	 A = 
1 1 1
2 3 0

18 2 10

− 
 
 
  

  ∴  det. A = 
1 1 1
2 3 0

18 2 10

−

  Expanding along the first row, we have

   det. A = | A | = 
3 0 2 0 2 3

1 ( 1) 1
2 10 18 10 18 2

− − +

    = 1 × 30 + 1 × 20 + 1 × (4 – 54)
    = 30 + 20 – 50 = 0
  ∴  A . adj A = | A | I = 0 × I = 0
  ⇒ A . adj A is a null matrix.
 24. Let us examine each statement separately.
  • A is not a zero matrix

  • A2 = A . A = 
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0

− −   
   − −   
   − −   

   = 
0 0 1 0 0

0 0 1 0 0
0 0 0 0 1

+ + 
 + + 
 + + 

 = 
1 0 0
0 1 0
0 0 1

I
 
  = 
  

  • (–1) I = 
1 0 0 1 0 0

( 1) 0 1 0 0 1 0
0 0 1 0 0 1

A
−   

   − = − ≠   
   −   

  • For A–1 to exist, det A = | A | ≠ 0 (Expanding | A | along the 
first row R1), we have

	 	∴	 |	A | = 
0 1

1 1 1 1 0
1 0

−
− = − × − = ≠

−
  ⇒ A–1 exists.
  ∴ The only correct statement is (b).

 25. A = 
2 3
5 2

 
 − 

    | A | = (2 × –2) – (3 × 5) = –4 – 15 = –19 ≠ 0
  As | A | ≠ 0, therefore A is non-singular and hence A–1 exists.

    A–1 = 
adj
| |

A
A

    adj A = 11 21

12 22

A A
A A

 
 
 

  ∴ A11 = (–1)1 + 1 | –2 | = –2,  A12 = (–1)1 + 2 | 5 | = –5
   A21 = (–1)2 + 1 | 3 | = –3,   A22 = (–1)2 + 2 | 2 | = 2
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	 	∴	 	 A–1 = –
2 31
5 219

− − 
 − 

 = 
2 31 1 .
5 219 19

A 
= − 

Note: Do not confuse here |  |, i.e., determinant sign with 
absolute value sign.

 26. A = 
1 2 3 1 0 2
0 1 4 2 1 2
2 2 1 3 4 1

TA
−   

   − ⇒ = − −   
      

  ∴ Let B = 
1 0 2

det. 2 1 2
3 4 1

TA
−

= − −

    = 
1 2 2 2 2 1

1 0 2
4 1 3 1 3 4

− − − −
− −

    = 1 (–1 – 8) – 2 (–8 + 3)
    = –9 – (2 × –5) = –9 + 10 = 1 ≠ 0.
  | B | ≠ 0 ⇒ B is non-singular ⇒ B–1, i.e, (AT)–1 exists

  ∴  B–1 = 
adj
| |

B
B

    adj B = 
11 12 13 11 21 31

21 22 23 12 22 32

31 32 33 13 23 33

TB B B B B B
B B B B B B
B B B B B B

   
   =   
      

    B11 = 1 1 1 2
( 1) ( 1 8) 9

4 1
+ −

− = − − = −

    B12 = 1 2 2 2
( 1) ( 2 6) 8

3 1
+ −

− = − − − =

    B13 = 1 3 2 1
( 1) 8 3 5

3 4
+ − −

− = − + = −

    B21 = 2 1 0 2
( 1) (0 8) 8

4 1
+ −

− = − + = −

    B22 = 2 2 1 2
( 1) 1 6 7

3 1
+ −

− = + =

    B23 = 2 3 1 0
( 1) (4 0) 4

3 4
+− = − − = −

    B31 = 3 1 0 2
( 1) (0 2) 2

1 2
+ −

− = − = −
−

     B32 = 3 2 1 2
( 1) (2 4) 2

2 2
+ −

− = − − = +
−

    B33 = 3 3 1 0
( 1) 1

2 1
+− = −

− −

	 	∴	 	 (AT)–1 = B–1 = 
 
 
 
  

–9 –8 –2
1 8 7 2
1 –5 –4 –1

.

 27. 
log 1

log log 1 1
1 log

y
y x

x

x
x y

y
= × − ×

    = 
log log· 1
log log

x y
y x

−  = 1 – 1 = 0.

 28. A = 
0 3
0 0

 
 
 

  ⇒  A2 = 
0 3 0 3

.
0 0 0 0

A A    
=    

   
 = 

0 0
0 0

O
 

= 
 

  ⇒  A3 = A2 . A = O . A = O
  ⇒  A2 = A3 = A4 = A5 = ....... = O
  ∴  f (A) = I + A + A2 + ....... + A20

    = 
1 0 0 3

........
0 1 0 0

O O
   

+ + + +   
   

 = 
 
 
 

1 3
0 1

.

 29. 
2 1

0
a

bc ab c
=

+
    ⇒	 2ac – (bc + ab) = 0
  ⇒ 2ac = ab + bc ⇒ 2ac = b (a + c)

  ⇒ b = 
2 1 1 1 1

2 2
ac a c

a c b ac c a
+  ⇒ = = + +  

  ⇒ a, b, c are in H.P.
 30. I + A + A2 + ....... + ∞ is the sum of an infinite G.P. with first 

term (a) = I and common ration (r) = A.

  As we know that, sum of an infinite G.P. = 
1

a
r−

  ∴ I + A + A2 + ....... + ∞ = 
I

I A−
 = I . (I – A)–1 = (I – A)–1

  Now, I – A = 
1 0 1 1
0 1 1 1

−   
−   −   

 = 
2 1
1 2

− 
 − 

  ∴ (I – A)–1 = 
adj ( )
det ( )

−
−

. I A

. I A
   det. (I – A) = 4 – 1 = 3 ≠ 0.

   adj. (I – A) = 
2 1 2 1
1 2 1 2

T− −   
=   − −   

  ∴ (I – A)–1 = 
2 1 2 3 1 31 .
1 2 1 3 2 33

− −   
=   − −   

 31. If A–1 = AT then,

  A . A–1 = I ⇒ AAT = I. Where I = unit matrix = 
1 0 0
0 1 0
0 0 1

 
 
 
  

  A . AT = 
8 1 4 8 4 1

1 14 4 7 . 1 4 8
9 9

1 8 4 4 7 4

− −   
   −   
   −   

    = 
64 1 16 32 4 28 8 8 16

1 32 4 28 16 16 49 4 32 28
81

8 8 16 4 32 28 1 64 16

+ + − + + − − + 
 − + + + + − + 
 − − + − + + + 

    = 
81 0 0 1 0 0

1 0 81 0 0 1 0
81

0 0 81 0 0 1

   
   =   
      

 = I.

	 	∴	 AT = A–1.
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 32. Let ∆ = 
0 tan 1
1 sec 0

sec tan 1

θ
− θ

θ θ

  Expanding along Row 1 (R1)

  Then, ∆ = 
sec 0 1 0

0 tan
tan 1 sec 1

− θ
− θ

θ θ

      
1 sec

1
sec tan

− θ
+

θ θ
    = –tan q × 1 + (tan q + sec2 q) = sec2 θ.

 33. Let ∆ = 
9 9 12
1 3 4 .
1 9 12

− −

  Taking out 3 common from C2 and 4 common from C3, we 
have

	 	∆ = 
9 3 3

(3 4) 1 1 1 12 0
1 3 3

× − − = × = 0.  2 3and are
now identical
C C 

  


 34. Let ∆ = 

2

2

2

1

1

1

a a

b b

c c

  Operating R1 → R1 – R2 and R2 → R2 – R3, we have

	 	∆ = 

2 2

2 2

2

0

0

1

a b a b

b c b c

c c

− −

− −  = 
2

0 1 ( )
( ) ( ) 0 1 ( )

1

a b
a b b c b c

c c

+
− − +

      [Taking out (a – b) common from R1
      and (b – c) common from R2]

   = 
1 ( )

( ) ( ) .1
1 ( )

a b
a b b c

b c
+

− −
+

 (Expanding along C1)

   = (a – b) (b – c) (b + c – a – b)
   = (a – b) (b – c) (c – a).

 35. Let ∆ = 
2 2

2 2
2 2

a b c a a
b b c a b
c c c a b

− −
− −

− −

  Operating C1 → C1 – C3 and C2 → C2 – C3, we have

  ∆ = 
0 2

0 2
a b c a

b c a b
c a b c a b c a b

− − −
− − −

+ + + + − −
 

   = 
( ) 0 2

0 ( ) 2
a b c a

a b c b
a b c a b c c a b

− + +
− + +

+ + + + − −

   = 
0 0 2
0 0 2 0
0 0

a
b

c a b
=

− −
 ( a + b + c = 0 is given)

 36. Let ∆ = 

2 3

2 3 4

3 4 5

log log log

log log log

log log log

e e e

e e e

e e e

    = 
log 2 log 3 log
2 log 3 log 4 log
3 log 4 log 5 log

e e e
e e e
e e e

 = 
1 2 3
2 3 4
3 4 5

       ( log e = 1)
  Operating C2 → C2 – C1, C3 → C3 – C1, we have

	 	∆ = 
1 1 2 1 1 1
2 1 2 2 2 1 1
3 1 2 3 1 1

=

      (Taking out 2 common from C3)
   = 2 × 0 = 0  ( Two columns are identical)

 37. Let ∆ = 
1 ( )
1 ( )
1 ( )

ab c a b
bc a b c
ca b c a

+
+
+

  Operating R1 → R1 – R2 and R2 → R2 – R3, we have

	 		 ∆ = 
0
0
1 ( )

ab bc ca cb ab ac
bc ca ab ac bc ba

ca b c a

− + − −
− + − −

+

    = 
0 ( ) ( )
0 ( ) ( )
1 ( )

b a c b a c
c b a c b a

ca b c a

− − −
− − −

+

  Taking out b (a – c) common from R1 and c (b – a) common 
from R2, we have

	 		 ∆	= 
0 1 1

( ) . ( ) 0 1 1 0
1 ( )

b a c c b a
ca b c a

−
− − − =

+

      ( Two rows are identical)

 38. Let ∆ = 
x a b c

c x b a
a b x c

+
+

+

  Operating C1 → C1 + C2 + C3

	 		 ∆ = 
x a b c b c
x a b c x b a
x a b c b x c

+ + +
+ + + +
+ + + +

    = 
1

( ) 1
1

b c
x a b c x b a

b x c
+ + + +

+

  Operating R2 → R2 – R1 and R3 → R3 – R2, we have

 		 ∆ = 
1

( ) 0
0 –

b c
x a b c x a c

x x c a
+ + + −

− +
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    = (x + a + b + c) [x (x + c – a) – x (c – a)]
       (On expanding by C1)
    = (x + a + b + c) x2

  ∴ 0
x a b c

c x b a
a b x c

+
+ =

+
 ⇒ x2 (x + a + b + c) = 0

  ⇒ x = 0 or x = – (a + b + c).

 39. Let ∆ = 
1 log log log

log 1 log log
log log 1 log

a b c
a b c
a b c

+
+

+

  Operating C1 → C1 + C2 + C3, we have

	 		 ∆ = 
1 log log log log log
1 log log log 1 log log
1 log log log log 1 log

a b c b c
a b c b c
a b c b c

+ + +
+ + + +
+ + + +

    = 
1 log ( ) log log
1 log ( ) 1 log log
1 log ( ) log 1 log

abc b c
abc b c
abc b c

+
+ +
+ +

  Taking out 1 + log abc common from C1

	 		 	∆ = 
1 log log

(1 log ( )) 1 1 log log
1 log 1 log

b c
abc b c

b c
+ +

+

  Operating R2 → R2 – R1 and R3 → R3 – R1, we have

	 		 	 ∆ = 
1 log log

(1 log ( )) 0 1 0
0 0 1

b c
abc+

    = 
1 0

1 log ( ) .1.
0 1

abc+

    = 1 + log (abc) (Expanding along C1)
 40. A (adj. A) = | A | I where I is the identity matrix, so

  A (adj. A) = 
1 0

2 .
0 1

=
2 0
0 2

 41. Let the first term of the GP be a and common ratio k. As,
   Tn (nth term of a GP) = akn –1, here
   l = ak p – 1, m = ak q – 1, n = ak r –1

  Let,   ∆ = 
log 1
log 1
log 1

l p
m q
n r

 = 

1

1

1

log 1

log 1

log 1

p

q

r

ak p

ak q

ak r

−

−

−

     = 
log ( 1) log 1
log ( 1) log 1
log ( 1) log 1

a p k p
a q k q
a r k r

+ −
+ −
+ −

     = 
log 1 ( 1) log 1
log 1 ( 1) log 1
log 1 ( 1) log 1

a p p k p
a q q k q
a r r k r

−
+ −

−

  Taking out log a common from C1 of first determinant and 
log k common from C1 of second determinant we have

	 		 ∆ = 
1 1 ( 1) 1

log 1 1 log ( 1) 1
1 1 ( 1) 1

p p p
a q k q q

r r r

−
+ −

−

   =  
1 1 1

log 0 log 1 1 1
Two columns 1 1 1
are identical

p p p
a k q q q

r r r 
 
  

− − +
× + − − +

− − +

   Using C1 → C1 – C2 + C3 in second determinant.

    = log k 
0 1
0 1 .
0 1

p
q
r

= 0

 42. Given, A2 + A – I = O
  Premultiplying by A–1 on both the sides, we have
   A–1A2 + A–1A – A–1 I = A–1O
  ⇒ (A–1 A) A + I – A–1 = O ( A–1 A = I, A–1 O = O)
  ⇒ IA + I – A–1 = O
  ⇒ A + I – A–1 = O ( IA = A)
  ⇒ A + I = O + A–1

  ⇒ A + I = A–1  ( O + A–1 = A–1)
 43. (AB–1 C)–1

   = [(AB–1) C]–1 = C–1. (AB–1)–1 ( (XY)–1 = Y–1 X–1)
   = C–1 . (B–1)–1 A–1 

   = C–1 BA–1.  ( (X–1)–1 = X)
 44. We know that (A–1)–1 = A
   | A–1 | = 2 ≠ 0, Hence (A–1)–1 exists.
  Now, we find the cofactors of the elements of the matrix A–1.

  Let B = A–1 = 
1 0
1 2−

. Then,

   B11 = 2, B12 = – (–1) = 1, B21 = – (0) = 0, B22 = 1

  ∴ adj. B = adj (A–1) = 11 21

12 22

B B
B B

 = 
2 0
1 1

  ∴ (A–1)–1 = 
2 0 1 01
1 1 1 2 1 22

=

  ∴ A = (A–1)–1

  ⇒ 
2 0 1 0

1 2 1 2
x

x x
= ⇒ 1= .

2
x

 45. The given system of equations can be written as:
    x + ay + 0 . z = 0
    0 . x + y + a . z = 0
    ax + 0 . y + z = 0
  These in matrix form can be written as: AX = O, where,

   A = 
1 0 0
0 1 , and 0

0 1 0

a x
a X y O

a z

     
     = =     
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  Now, the given system of equations will have an infinite 
number of solutions, if | A | = 0.

   | A | = 
1 0

1 0 0 1
0 1 1 0

0 1 1 0
0 1

a
a a

a a
a a

a
= − +

      (Expanding along R1)
     = 1 × 1 –a(0 – a2) + 0 = 1 + a3

  ∴ | A | = 0 ⇒ 1 + a3 = 0 ⇒ a3 = –1 ⇒ a = –1.
 46. The given system of linear equations are:
   x + 2ay + az = 0
   x + 3by + bz = 0
   x + 4cy + cz = 0
  These can be written in the matrix form as AX = O, i.e.,

   
1 2 0
1 3 0
1 4 0

a a x
b b y
c c z

     
     =     
          

  Here A = 
1 2
1 3 ,
1 4

a a x
b b X y
c c z

   
   
   
      

.

  The system will have a non-zero solution if | A | = 0

  | A | = 
1 2
1 3
1 4

a a
b b
c c

 = 1 
3 2 2

1 1
4 4 3
b b a a a a
c c c c b b

− +

   = 3bc – 4cb – (2ac – 4ac) + 2ab – 3ba
   = –bc + 2ac – ab
  ∴  | A | = 0 ⇒ –bc + 2ac – ab = 0 ⇒ 2ac = ab + bc

    ⇒ 
2 1 1
b c a

= +  ⇒ a, b, c are in H.P.

 47. The system of equations is:
     3x – 2y = 5
    6x – 4y = 9
  Writing the system of equations in matrix form, we have

   
3 2 5
6 4 9

x
y

−     
=     −     

   A X = B

  where A = 
3 2 5

, ,
6 4 9

x
X B

y
−     

= =     −     
  To check the consistency of system of equations, find | A |
    | A | = –12 – (–12) = 0
  ⇒ Either the system of equations has infinitely many 

solutions or no solution.
  Now we find (adj. A) B

    adj. A = 11 21

12 22

A A
A A

 
 
 

    A11 = –4, A12 = –6, A21 = 2, A22 = 3

  ∴   (adj A) B = 
4 2 5 20 18 2

0
6 3 9 30 27 3

− − + −       
= = ≠       − − + −       

  ⇒ No solution (inconsistent).
 48. The system of equations is:
    x + 5y = 3
    2x + 10y = 6

  Writing in matrix form, we have

    AX = B ⇒ 
1 5 3
2 10 6

x
y

     
=     

     

    A = 
1 5 3

, ,
2 10 6

x
X B

y
     

= =     
     

    | A | = 10 – 10 = 0
  ⇒ Either the system of equations have no solution or 

infinitely many solutions.

    adj A = 11 21

12 22

10 5
2 1

A A
A A

−   
=   −  

   (adj. A) B = 
10 5 3 30 30

0
2 1 6 6 6

− −     
= =     − − +     

  ∴ The system of equations has infinitely many solutions.
 49. The system of equations is:
    5x + 3y + z = 16
    2x + y + 3z = 19
    x + 2y + 4z = 25

  Here, D = 
5 3 1
2 1 3
1 2 4

    = 
1 3 2 3 2 1

5 3 1
2 4 1 4 1 2

− +

    = 5 (4 – 6) – 3 (8 – 3) + 1 (4 – 1)
    = 5 × –2 – 3 × 5 + 1 × 3 = –10 – 15 + 3 = –22 ≠ 0
   D ≠ 0, the system has a unique solution.

Note: x = 
Dx
D

, y = 
Dy
D

, z = 
Dz
D

, where

Dx = 
16 3 1 5 16 1 5 3 16
19 1 3 , 2 19 3 , 2 1 19
25 2 4 1 25 4 1 2 25

Dy Dz =

 50. Here,

  P = [aij]3×3 = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
  

 

  Q = [bij]3×3 = 
11 12 13

21 22 23

31 32 33

b b b
b b b
b b b

 
 
 
  

 where bij = 2i+j aij 

  ∴          |Q| = 

2 3 4
11 12 13

3 4 5
21 22 23

4 5 6
31 32 33

2 2 2

2 2 2

2 2 2

a a a

a a a

a a a

                     = 22.23.24 
11 12 13

21 22 23

31 32 33

2 4
2 4
2 4

a a a
a a a
a a a

                     = 29 × 2 × 4 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

                     = 212. | P | = 212.2 = 213.
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 1. If A = 
4 3
2 5

 
 
 

, find x and y such that A2 – xA + y I = 0

  (a) x = 9, y = –14  (b) x = 14, y = 9
  (c) x = 9, y = 14 (d) x = –9, y = 14
 2. If A and B are two square matrices of the same order such 

that AB = B and BA = A, then A2 + B2 is always equal to
  (a) I  (b) A + B  (c) 2 AB (d) 2 BA 

 3. If 
4 3

1 5 34 30
1 0 ,

3 4 1 42
7 6

a
b

 
− −     =    − −    − 

 then (a, b) is equal to

  (a) (1, 3)  (b) (–2, 4)  (c) (0, 6) (d) (2, –3) 

 4. If A = 
0 3 4 3
3 0 1 4

4 3 1 4 0

− − 
 − 
  

, then det. (A + AT) is equal to

   (a) 0  (b) 1  (c) 2 (d) 3
 5. If every element of a determinant of order 3 of value ∆ is 

multiplied by 5, then the value of the new determinant is
  (a) ∆  (b) 5 ∆  (c) 25 ∆ (d) 125 ∆ 

 6. If M = and
a l p p q r
b m q N a b c
c n r l m n

= , then

  (a) M ′ = N  (b) M = – N  (c) M = N 2 (d) M = N 3 

 7. If 

2

2

2

a ab ac

ab b bc

ac bc c

−

−

−

 = k a2 b2 c2, then k is equal to

  (a) –4  (b) 2  (c) 4 (d) 8

 8. The matrix 
1 4

3 0 1
1 1 2

λ − 
 − 
 − 

 is invertible if

  (a) l	≠	-20  (b) l ≠ –19  (c) l ≠ –18 (d) l ≠ –17 
 9. The element in the first row and third column of the inverse 

of the matrix 
1 2 3
0 1 2
0 0 1

− 
 
 
  

 is

  (a) –2  (b) 0  (c) 1 (d) 7 
 10. The system of linear equations 2x + 2y = 5, 5x + ky = 9 has 

a unique solution if
  (a) k ≠ 5  (b) k = 0  (c) k ≠ –1 (d) k ≠ 2 
 11. The system of equations 3x + 4y = 2 and 6x + 8y = 4 has
  (a) No solution  (b) a unique solution
  (c) two distinct solutions (d) infinitely many solutions. 
 12. The system of equations x + 3y = 5, 2x + 6y = 8 has
  (a) No solution     (b) a unique solution
  (c) infinitely many solutions (d) None of these
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ANSWERS

 1. (c) 2. (b) 3. (c) 4. (a) 5. (d) 6. (a) 7. (c) 8. (d)  9. (d)  10. (a)
 11. (d) 12. (a)

HINTS AND SOLUTIONS

 1. A = 
4 3
2 5

 
 
 

 ⇒ A2 = A . A = 
4 3 4 3
2 5 2 5

   
   
   

      = 
16 6 12 15 22 27
8 10 6 25 18 31

+ +   
=   + +   

  Given A2 – xA + yI = 0 ⇒ A2 – xA = –y I

  ⇒ 
22 27 4 3 1 0
18 31 2 5 0 1

x y
     

− = −     
     

  ⇒	
22 4 27 3 0
18 2 31 5 0

x x y
x x y

− − −   
=   − − −   

  ⇒ 22 – 4x = –y, 27 – 3x = 0
  Now 27 – 3x = 0 ⇒ 3x = 27 ⇒ x = 9
  ∴ 22 – 4x = –y ⇒ 22 – 36 = –y
    ⇒ –y = –14 ⇒	 y = 14.
 2. We know that if AB = B and BA = A, then A and B are 

idempotent matrices, i.e, A2 = A and B2 = B.
    A2 + B2 = A + B

  Alternatively,
    A2 + B2 = A . A + B . B = A . (BA) + B . (AB)
    = (AB) A + (BA) B
      (Matrix multiplication is associative)
    = BA + AB (	AB = B, BA = A)
    = A + B ( BA = A, AB = B)

 3. 
2 3 2 2

3 2

4 3
1 5 34 30

1 0
3 4 1 42

7 6

a
b × ×

×

 
− −     =    − −    − 

  LHS = 
4 1 35 3 0 30
4 3 28 3 0 24

a a
b b

− + + − 
 + − + + 

 = 
4 34 3 30
4 25 3 24
a a
b b

+ − 
 − + 

  RHS = 
34 30

1 42
− 

 − 
.

  Equating corresponding elements we have

 
4 34 34 0 4 – 25 –1 4 24 6

and
3 – 30 – 30 0 3 24 42 3 18 6

a a b b b
a a b b b

+ = ⇒ = = ⇒ = ⇒ =
= ⇒ = + = ⇒ = ⇒ =

  ∴ a = 0, b = 6.
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 4. A + AT = 
0 3 –4 3 0 3 4 3
3 0 –1 4 3 0 1 4

4 3 1 4 0 –4 3 –1 4 0

−   
   + −   
      

    = 
0 0 0
0 0 0
0 0 0

 
 
 
  

  ∴ det (A + AT) = 0.

 5. Let ∆ = 
1 2 3

1 2 3

1 2 3

a a a
b b b
c c c

  Since each element of ∆ is multiplied by 5, the new 
determinant

    ∆′ = 
1 2 3

1 2 3

1 2 3

5 5 5
5 5 5
5 5 5

a a a
b b b
c c c

    = 
1 2 3

1 2 3

1 2 3

(5 5 5)
a a a
b b b
c c c

× ×

      (Taking out 5, common from each
      of R1, R2, R3 or C1, C2, C3)
    = 125 ∆.

 6. M = ′⇒ =
a l p a b c
b m q M l m n
c n r p q r

      (Interchanging R1 and R3) 

   = – =
p q r p q r
l m n a b c
a b c l m n

(Interchanging R2 and R3)

   = N.

 7. Let ∆ = 

2

2

2

a ab ac a b c
ab b bc abc a b c

a b cac bc c

− −
− = −

−−

(Taking out a, b, c common from R1, R2, R3 respectively)

    = 2 2 2
1 1 1
1 1 1
1 1 1

a b c
−

−
−

(Taking out a, b, c common from C1, C2, C3 respectively)

    = 2 2 2
0 1 1
0 1 1
2 1 1

a b c −
−

 (Operating C1 → C1 + C2)

    = 2 2 2 1 1
2

1 1
a b c ×

−
 = a2 b2 c2 × 2 (1 + 1)

    = 4a2 b2 c2  (Expanding along C1)
  ∴ k = 4

 8. Let A = 
1 4

3 0 1
1 1 2

λ − 
 − 
 − 

, then det. A = |A| = 
1 4

3 0 1
1 1 2

λ −
−
−

 

  The matrix A is invertible if | A | ≠ 0

  | A | = l
0 1 3 1 3 0

( 1) 4
1 2 1 2 1 1

− −
− − +

− −

   = l (0 – 1) + 1 (–6 + 1) + 4 (–3 – 0)
   = – l – 5 – 12 = – l – 17
  ∴ |A| ≠ 0 ⇒ – l – 17 ≠ 0 ⇒ l ≠ –17.

 9. Let A = 
1 2 3
0 1 2
0 0 1

− 
 
 
  

, then | A | = 
1 2 3
0 1 2
0 0 1

−

      = 
1 2

1 1 0
0 1

= ≠  ⇒ A–1 exists.

  Now we find the cofactor matrix of A. So,

 A11 = 12 13
1 2 0 2 0 1

1, 0, 0
0 1 0 1 0 0

A A= = − = = =

A21 = – 22 23
2 3 1 3 1 2

2, 1, 0
0 1 0 1 0 0

A A
− −

= − = = = − =

A31 = 32 33
2 3 1 3 1 2

7, 2, 1
1 2 0 2 0 1

A A
− −

= = − = − = =

  ∴ adj A = 
11 12 13

21 22 23

31 32 33

TA A A
A A A
A A A

 
 
 
  

    = 
11 21 31

12 22 32

13 23 33

A A A
A A A
A A A

 
 
 
  

 = 
1 2 7
0 1 2
0 0 1

− 
 − 
  

  ∴ A–1 = 
1 2 7

1 0 1 2
| |

0 0 1
adj A

A

− 
 = − 
  

  ∴ The element in the first row and third column of A–1 is 7.
 10. The given system of equations can be written in the matrix 

form as:

   
2 2 5
5 9

x
k y

X BA

     
=     

     
=

  Now there will be a unique solution for AX = B if | A | ≠ 0
  i.e, 2k – 10 ≠ 0
  ⇒ k ≠ 5
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 11. The given system of equations can be written in the matrix 
form as:

   3 4 2
6 8 4

x
y

A X B

     =          
=  A X = B

  Now, | A | = 24 – 24 = 0
  Hence the given system of equations either have infinite 

solutions or no solution.
  Now we find (adj A) B.
  Cofactors of A are:
    A11 = 8, A12 = –6, A21 = –4, A22 = 3

  ∴ adj A = 11 21

12 22

8 4
6 3

A A
A A

−   
=   −  

  (adj A) B = 
8 4 2 16 16 0

0
6 3 4 12 12 0

− −       
= = =       − − +       

  Hence (adj A) B = 0 ⇒ Infinitely many solutions.

 12. 
3 5 1 3 5

2 6 8 2 6 8
x y x
x y y

X BA

+ =       
→ =      + =       

=

 (in matrix form)

    | A | = 6 – 6 = 0
  ⇒ Either the system of equations has no solution or infinite 

solutions.

    adj A = 11 21

12 22

6 3
2 1

A A
A A

−   
=   −  

  ∴	  (adj A) B = 
6 3 5 30 24 6

0
2 1 8 10 8 2

− −       
= = ≠       − − + −       

  Hence, the given system of equations is inconsistent with 
no solution.


