- **26.** A block rests on an inclined plane that makes an angle θ with the horizontal, if the coefficient of sliding friction is 0.50 and that of static friction is 0.75, the time required to slide the block 4 m along the inclined plane is -(A) 25 s (B) 10 s (C) 5 s (D) 2 s
- 27.* A force F accelerates a block of mass m on horizontal surface. The coefficient of friction between the contact surface is μ . The acceleration of m will be -

(A)
$$\frac{F - \mu mg}{M}$$
 (B) zero (C) may be (A) or (B)(D) none of these

- 28. A horizontal force F is exerted on a 20 kg block to push it up an inclined plane having an Inclination of 30°. The frictionalforce retarding the motion is 80 N. For the acceleration of the moving block to be zero, the force F must be(A) 206 N
 (B) 602 N
 (C) 620 N
 (D) 260 N
- **29.** A person wants to drive on the vertical surface of a large cylindrical wooden 'well' commonly known as 'death well' in a circus. The radius of the well is R and the coefficient of friction between the tyres of the motorcycle and the wall of the well is μ_s . The minimum speed the motor cyclist must have in order to prevent slipping should be -

(A)
$$\sqrt{\frac{gR}{\mu_s}}$$
 (B) $\sqrt{\frac{\mu_s}{gR}}$ (C) $\sqrt{\frac{\mu_s g}{R}}$ (D) $\sqrt{\frac{R}{\mu_s g}}$

30. A spherical ball of mass 1/2 kg is held at the top of an inclined rough plane making angle 30° with the horizontal the coefficient of limiting friction is 0.5. If the ball just slides down the plane without rolling its acceleration down the plane is -

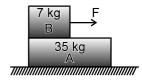
(A)
$$\left[\frac{2-\sqrt{3}}{4}\right]g$$
 (B) g (C) $\left[\frac{2\sqrt{3}-1}{4}\right]g$ (D) $\left[\frac{\sqrt{3}-1}{2}\right]g$

31. An object is placed on the surface of a smooth inclined plane of inclination θ . It takes time t to reach the bottom of the inclined plane. If the same object is allowed to slide down rough inclined plane of same inclination θ , it takes time nt to reach the bottom where n is a number greater than 1. The coefficient of friction μ is given by -


(A)
$$\mu = \tan \theta \left(1 - \frac{1}{n^2}\right)$$

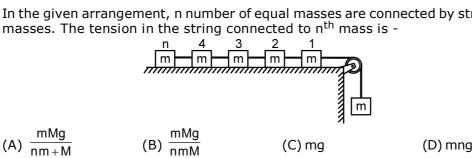
(B) $\mu = \cot \theta \left(1 - \frac{1}{n^2}\right)$
(C) $\mu = \tan \theta \left(1 - \frac{1}{n^2}\right)^{1/2}$
(D) $\mu = \cot \theta \left(1 - \frac{1}{n^2}\right)^{1/2}$

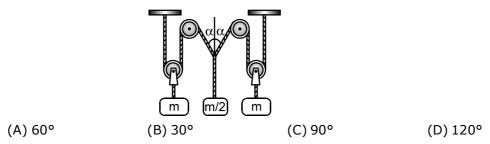
32. A given object takes n times as much time to slide down a 45° rough incline as it takes to slide down a perfectly smooth 45° incline. The coefficient of kinetic friction between the object and the incline is given by -


(A)
$$1 - \frac{1}{n^2}$$
 (B) $\frac{1}{1-n^2}$ (C) $\sqrt{1-\frac{1}{n^2}}$ (D) $\sqrt{\frac{1}{1-n^2}}$

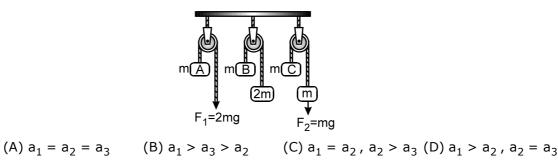
33. A 15 kg mass is accelerated from rest with a force of 100 N. As it moves faster, friction and air resistance create an oppositively directed retarding force given by $F_R = A + Bv$, where A = 25 N and B = 0.5 N/m/s. At what velocity does the acceleration equal to one half of the initial acceleration? (A) 25 ms⁻¹ (B) 50 m/s (C) 75 m/s (D) 100 m/s

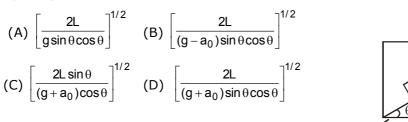
- **34.** Two blocks of masses M = 3 kg and m = 2 kg, are in contact on a horizontal table. A constant horizontal force F = 5 N is applied to block M as shown. There is a constant frictional force of 2 N between the table and the block m but no frictional force between the table and the first block M, then the acceleration of the two blocks is-(A) 0.4 ms^{-2} (B) 0.6 ms^{-2} (C) 0.8 ms^{-2} (D) 1 ms^{-2}
- **35.** Block A of mass M in the system shown in the figure slides down the incline at a constant speed. The coefficient of friction between block A and the surface is $\frac{1}{3\sqrt{3}}$. The mass of block B is-


- **36.** Two blocks connected by a massless string slide down an inclined plane having angle of inclination 37° . The masses of the two blocks are $M_1 = 4$ kg and $M_2 = 2$ kg respectively and the coefficients of friction 0.75 and 0.25 respectively-
 - (A) The common acceleration of the two masses is 1.3 ms^{-2} (b) The tension in the string is 14.7 N (c) The common acceleration of the two masses is 2.94 ms^{-2} (d) The tension in the string is 5.29 N(A) a, d (B) c, d (C) b, d (D) b, c
- **37.** A block of mass m is placed on a rough inclined plane of inclination θ kept on the floor of the lift. The coefficient of friction between the block and the inclined plane is μ . With what acceleration will the block slide down the inclined plane when the lift falls freely ?
 - (A) Zero
 - (B) g sin θ μ g cos θ (C) g sin θ + μ g cos θ
 - (D) None of these
- **38** Block A of mass 35 kg is resting on a frictionless floor. Another block B of mass 7 kg is resting on it as shown in the figure. The coefficient of friction between the blocks is 0.5 while kinetic friction is 0.4. If a force of 100 N is applied to block B, the acceleration of the block A will be $(g = 10 \text{ m s}^{-2})$: (A) 0.8 m s⁻² (B) 2.4 m s⁻² (C) 0.4 m s⁻² (I


- s⁻² (D) 4.4 m s⁻²
- **39.** A wooden block of mass M resting on a rough horizontal surface is pulled with a force F at an angle ϕ with the horizontal. If μ is the coefficient of kinetic friction between the block and the surface, then acceleration of the block is -

(A)	⊢ M	$(\cos \phi + \mu \sin \phi) - \mu g$	(B) F sin ϕ/M
(C)	μF	COSφ	(D) μ F sin ϕ

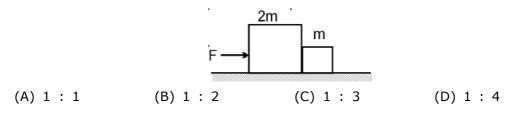

In the given arrangement, n number of equal masses are connected by strings of negligible 40. masses. The tension in the string connected to nth mass is -

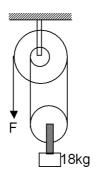

41. In the given figure, pulleys and strings are massless. For equilibrium of the system, the value of α is -

42. In the figure, the blocks A, B and C each of mass m have accelerations a_1 , a_2 and a_3 respectively. F_1 and F_2 are external forces of magnitude 2 mg and mg respectively. Then -

A particle slides down a smooth inclined plane of elevation θ , fixed in an elevator going up 43. with an acceleration a_0 (figure). The base of the incline has a length L. Find the time taken by the particle to reach to the bottom a_0

- 44. A chain has five rings. The mass of each ring is 0.1 kg. This chain is pulled upwards by a froce F producing an acceleration of 2.50 m/sec² in the chain. Then the force of action (reaction) on the joint of second and third ring from the top is -(A) 0.25 N (B) 1.23 N (C) 3.69 N (D) 6.15 N
- 45. If the masses are released from the position shown in figure then the speed of mass m_1 just before it strikes the floor is -


(A) $[2m_1gd/(m_1+m_2)]^{1/2}$ (B) $[2(m_1 - m_2)gd/(m_1+m_2)]^{1/2}$ (C) $[2(m_1 - m_2)gd/m_1]^{1/2}$ (D) None of the above


- **46.** The linear momentum P of a body varies with time and is given by the equation $P=x+yt^2$, where x and y are constants. The net force acting on the body for a one dimensional motion is proportional to-(A) t^2 (B) a constant (C) 1/t (D) t
- **47.** A rope of legth L is pulled by a constant force F. What is the tension in the rope at a distance x from the end where the force is applied ?

(A)
$$\frac{Fx}{L-x}$$
 (B) $F\frac{L}{L-x}$ (C) FL/x (D) $F(L - x)/L$

- **48.** The acceleration with which an object of mass 100 kg be lowered from a roof using a cord with a breaking strength of 60 kg weight without breaking the rope is-(assume g = 10 m/sec²) (A) 2 m/sec² (B) 4 m/sec² (C) 6 m/sec² (D) 10 m/sec²
- **49.** Two blocks are in contact on a frictionless table one has a mass m and the other 2m. A force F is applied on 2m as shown is Figure. Now the same force F is applied on m. In the two cases respectively the ratio of force of contact between the two blocks will be-

50. In the figure at the free end a force F is applied to keep the suspended mass of 18 kg at rest. The value of F is-

