DPP - Daily Practice Problems

Date :	Start Time :	End Time :	

CHEMISTRY (CC23)

SYLLABUS: Coordination Compounds

Max. Marks: 120 Marking Scheme: + 4 for correct & (-1) for incorrect Time: 60 min.

INSTRUCTIONS: This Daily Practice Problem Sheet contains 30 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.

- **1.** Which of the following is incorrect regarding spectrochemical series?
 - (a) $NH_3 > H_2O$
- (b) $F^- > C_2O_4^{2-}$
- (c) $NCS^- > SCN^-$
- (d) $en > edta^{4-}$
- 2. C₆₃H₈₈CoN₁₄O₁₄P is the formulae of the Cyanocobalamine, (vitamin B₁₂) it contain CN⁻ and CN⁻ is very poisonous, than why this compound does not prove to be fatal for us? (it inhibit the electron transport chain?
 - (a) CN⁻ forms covalent bond
 - (b) CN⁻ is coordinating to the cobalt as the ligand
 - (c) CN⁻ hydrolysis immediately
 - (d) All of these

- 3. An example of double salt is
 - (a) Bleaching powder
 - (b) $K_4[Fe(CN)_6]$
 - (c) Hypo
 - (d) Potash alum
- **4.** Nickel (Z = 28) combines with a uninegative monodentate ligand X^- to form a paramagnetic complex [NiX₄]²⁻. The number of unpaired electron(s) in the nickel and geometry of this complex ion are, respectively:
 - (a) one, square planar
 - (b) two, square planar
 - (c) one, tetrahedral
 - (d) two, tetrahedral

RESPONSE GRID

1. (a) (b) (c) (d)

2. (a) b) c) d)

3. abcd

4. (a) b) c) d)

The crystal field splitting energy for octahedral (Δ_0) and 5. tetrahedral (Δ_t) complexes is related as

(a)
$$\Delta_t = -\frac{1}{2}\Delta_0$$

(b)
$$\Delta_t = -\frac{4}{9}\Delta_0$$

(c)
$$\Delta_t = -\frac{3}{5}\Delta_0$$

(d)
$$\Delta_t = -\frac{2}{5}\Delta_0$$

A square planar complex is formed by hybridisation of which 6. atomic orbitals?

(a)
$$s, p_x, p_y, d_{yx}$$

(a)
$$s, p_x, p_y, d_{yz}$$
 (b) $s, p_x, p_y, d_{x^2-y^2}$

(c)
$$s, p_x, p_y, d_{z^2}$$
 (d) s, p_y, p_z, d_{xy}

(d)
$$s, p_v, p_z, d_{xy}$$

Consider the following complex [Co(NH₃)₅CO₃]ClO₄ The coordination number, oxidation number, number of delectrons and number of unpaired d-electrons on the metal are respectively

(c)
$$7, 1, 6, 4$$

- How many EDTA (ethylenediaminetetraacetic acid) molecules are required to make an octahedral complex with a Ca²⁺ ion?
 - (a) One
- (b) Two
- (c) Six
- (d) Three
- Which of the following are inner orbital complex (i.e., involving d²sp³ hybridisation) and is paramagnetic in nature?
 - (a) $[Mn(CN)_6]^{3-}$, $[Fe(CN)_6]^{3-}$, $[Co(C_2O_4)_3]^{3-}$
 - (b) $[MnCl_6]^{3-}$, $[FeF_6]^{3-}$, $[CoF_6]^{3-}$
 - (c) $[Mn(CN)_6]^{3-}$, $[Fe(CN)_6]^{3-}$
 - (d) $[MnCl_6]^{3-}$, $[Fe(CN)_6]^{3-}$, $[Co(C_2O_4)_3]^{3-}$

- 10. Which of the following is organo-metallic compound?
 - (a) $Ti(C_2H_4)_4$
- (b) $Ti(OC_2H_5)_A$
- (c) Ti(OCOCH₂)₄
- (d) $Ti(OC_6H_5)_4$
- 11. Which is not π bonded complex ?
 - (a) Zeise's salt
- (b) Ferrocene
- (c) Dibenzene chromiun
- (d) Tetraethyl lead
- A solution containing 2.675 g of CoCl₃. 6 NH₃ (molar mass **12.** $= 267.5 \text{ g mol}^{-1}$) is passed through a cation exchanger. The chloride ions obtained in solution were treated with excess of AgNO₃ to give 4.78 g of AgCl (molar mass = 143.5 g mol^{-1}). The formula of the complex is

(At. mass of
$$Ag = 108 u$$
)

- (a) [Co(NH₃)₆]Cl₃
- (b) $[CoCl_2(NH_3)_4]Cl$
- (c) $[CoCl_3(NH_3)_3]$
- (d) $[CoCl(NH_3)_5]Cl_2$
- The type of isomerism present in Pentaminenitrochromium **13.** (III) chloride is
 - (a) optical
- (b) linkage
- (c) ionisation
- (d) polymerisation.
- 14. Red precipitate is obtained when ethanol solution of dimethylglyoxime is added to ammoniacal Ni(II). Which of the following statements is not true?
 - (a) Red complex has a square planar geometry.
 - (b) Complex has symmetrical H-bonding
 - (c) Red complex has a tetrahedral geometry.
 - (d) Dimethylglyoxime functions as bidentate ligand.

dimethylglyoxime =
$$H_3C-C=N$$

$$H_3C-C=N$$
OH
OH

RESPONSE GRID

- 5. abcd **10.**(a)(b)(c)(d)
- 6. abcd 11. (a) (b) (c) (d)
- 7. (a) b) c) d) 12. (a) b) © (d)
- 8. abcd 13. a b c d
- (a) (b) (c) (d) 14. (a) (b) (c) (d)

- 15. An excess of AgNO₃ is added to 100 mL of a 0.01 M solution of dichlorotetraaquachromium (iii) chloride. The number of moles of AgCl precipitated would be:
 - (a) 0.002
- (b) 0.003
- (c) 0.01
- (d) 0.001
- 16. Magnetic moment of Gd^{3+} ion (Z = 64) is
 - (a) 3.62 BM
- (b) 9.72 BM
- (c) 7.9 BM
- (d) 10.60 BM
- 17. Which of the following species represent the example of dsp^2 - hybridisation ?
 - (a) $[Fe(CN)_6]^{3-}$
- (b) $[Ni(CN)_4]^{2-}$
- (c) $[Ag(CN)_2]^-$
- (d) $[Co(CN)_6]^{3-}$
- 18. Which one of the following has largest number of isomers?
 - (a) $[Ir(PR_3)_2H(CO)]^{2+}$ (b) $[Co(NH_3)_5Cl]^{2+}$
 - (c) $[Ru(NH_3)_4Cl_2]^+$
- (d) $[Co(en)_2Cl_2]^+$
- 19. In $Fe(CO)_5$, the Fe C bond possesses
 - (a) ionic character
- (b) σ-character only
- (c) π -character
- (d) both σ and π characters
- 20. The correct structure of ethylenediaminetetraacetic acid (EDTA) is

(a)
$$HOOC - H_2C$$
 $N - CH = CH - N$ $CH_2 - COOH$ $CH_2 - COOH$

(b)
$$\frac{\text{HOOC}}{\text{HOOC}}$$
N - CH₂ - CH₂ - N $\frac{\text{COOH}}{\text{COOH}}$

(c)
$$HOOC-H_2C$$

 $N-CH_2-CH_2-N$
 CH_2-COOH

- The structure of which of the following chloro species can be explained on the basis of dsp² hybridization?
 - (a) $PdCl_4^{2-}$
- (b) $\operatorname{FeCl}_{4}^{2-}$
- (c) $CoCl_4^{2-}$
- (d) $NiCl_4^{2-}$
- The octahedral complex of a metal ion M^{3+} with four 22. monodentate ligands L_1 , L_2 , L_3 and L_4 absorb wavelengths in the region of red, green, yellow and blue, respectively. The increasing order of ligand strength of the four ligands is:

 - (a) $L_4 < L_3 < L_2 < L_1$ (b) $L_1 < L_3 < L_2 < L_4$
 - (c) $L_3 < L_2 < L_4 < L_1$ (d) $L_1 < L_2 < L_4 < L_3$
- Which one of the following coordination compounds is 23. used to inhibit the growth of tumours?
 - (a) Trans-platin
- (b) EDTA complex of calcium
- (c) $[(Ph_3P)_3RhCl]$
- (d) Cis-platin
- **24.** [NiCl₂ { $P(C_2H_5)_2(C_6H_5)$ }₂] exhibits temperature dependent magnetic behaviour (paramagnetic/diamagnetic). The coordination geometries of Ni²⁺ in the paramagnetic and diamagnetic states are respectively
 - (a) tetrahedral and tetrahedral
 - (b) square planar and square planar
 - (c) tetrahedral and square planar
 - (d) square planar and tetrahedral

25. Which will give a white precipitate with $AgNO_3$ in aqueous solution

(a) $[Co(NH_3)_5Cl](NO_2)_2$ (b) $[Pt(NH_3)_6]Cl_4$

(c) $[Pt(en)Cl_2]$

(d) $[Cu(NH_3)_4]SO_4$

26. Which of the following name formula combinations is not correct?

	Formula	
(a)	K2[Pt(CN)4]	Potassium tetracyanoplatinate (II)
(b)	[Mn(CN)5]2-	Pentacyanomagnate (II) ion
(c)	K[Cr(NH3)2Cl4]	Potassium diammine tetrachlorochromate (III)
(d)	[Co(NH3)4(H2O)I]SO4	Magnetron value.

27. Nickel (Z = 28) combines with a uninegative monodentate ligand to form a diamagnetic complex $[\mathrm{NiL_4}]^{2-}$. The hybridisation involved and the number of unpaired electrons present in the complex are respectively:

(a) sp^3 , two

(b) dsp^2 , zero

(c) dsp^2 , one

(d) sp^3 , zero

Which of the following species is not expected to be a 28. ligand?

(a) NO

(b) NH₄⁺

(c) NH₂CH₂CH₂NH₂

(d) Both (a) and (b)

29. Which of the following organometallic compound is σ and π -bonded?

(a) $[Fe(\eta^5 - C_5H_5)_2]$

(b) $[PtCl_3(\eta^2 - C_2H_4)]$

(c) $[Co(CO)_5 NH_3]^{2+}$

(d) $Al(CH_3)_3$

30. The most stable complex among the following is

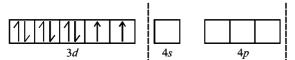
(a) $K_3[Al(C_2O_4)_3]$

(b) $[Pt(en)_2]Cl$

(c) $[Ag(NH_3)_2]Cl$

(d) $K_2[Ni(EDTA)]$

RESPONSE	25.abcd	26. a b c d	27. a b c d	28. a b c d	29. ⓐ ⓑ ⓒ ⓓ
GRID	30. ⓐ ⓑ ⓒ ⓓ				


DAILY PRACTICE PROBLEM DPP CHAPTERWISE 23 - CHEMISTRY					
Total Questions	30	Total Marks	120		
Attempted Correct					
Incorrect		Net Score			
Cut-off Score	36	Qualifying Score	54		
Success Gap = Net Score - Qualifying Score					
Net Score = (Correct × 4) – (Incorrect × 1)					

DAILY PRACTICE PROBLEMS

CHEMISTRY SOLUTIONS

DPP/CC23

- 1. **(b)** According to spectrochemical series $C_2O_4^{2-} > F^-$.
- **2. (b)** CN⁻ is coordinated to cobalt as the ligand and coordinated compounds have different properties than the individual species.
- 3. (d)
- **4.** (d) $[\text{Ni } X_4]^{2-}$, the electronic configuration of Ni^{2+} is

It contains two unpaired electrons and the hybridisation is sp^3 (tetrahedral).

- 5. **(b)** The crystal field splitting in tetrahedral complexes is lower than that in octahedral complexes, and $\Delta_t = -\frac{4}{o} \Delta_0.$
- 6. (b
- 7. (a) $[Co(NH_3)_5CO_3]CIO_4$. Six monodentate ligands are attached to Co hence C. N. of Co = 6;

O. N. = $x + 5 \times (0) + 1 \times (-2) + 1 \times (-1) = 0$ $\therefore x = +3$; electronic configuration of $Co^{3+}[Ar] 3d^64s^0$ hence number of d electrons is 6. All d electrons are paired due to strong ligand hence unpaired electron is zero.

- 8. (a) EDTA has hexadentate four donor O atoms and 2 donor N atoms and for the formation of octahedral complex one molecule is required
- 9. (c) $[Mn(CN)_6]^{3-}$ and $[Fe(CN)_6]^{3-}$ are inner orbital complexes and paramagnetic while $[Co(C_2O_4)_3]^{3-}$ is diamagnetic in nature.
- **10.** (a) $Ti(C_2H_4)_4$ is an organometallic compound due to Ti directly attached to C- atom
- 11. (d) Tetraethyl lead $Pb(C_2H_5)_4$ is not π bonded complex. It is σ bonded organometallic compound
- 12. (a) $CoCl_3.6NH_3 \longrightarrow xCl^{-1}$ 2.675g

$$xCl^- + AgNO_3 \longrightarrow x AgCl \downarrow$$
 $4.78g$

Number of moles of the complex

$$= \frac{2.675}{267.5} = 0.01 \text{ moles}$$

Number of moles of AgCl obtained

$$=\frac{4.78}{143.5}$$
 = 0.03 moles

 \therefore No. of moles of AgCl obtained = $3 \times \text{No.}$ of moles of complex

$$\therefore n = \frac{0.03}{0.01} = 3$$

13. (b) The chemical formula of Pentaminenitrochromium (III) chloride is

$$\left[\operatorname{Cr}(\operatorname{NH}_3)_5\operatorname{NO}_2\right]\operatorname{Cl}_2$$

It can exist in following two structures

$$\left[\text{Cr} \left(\text{NH}_3 \right)_5 \text{NO}_2 \right] \text{Cl}_2 \text{ and}$$

$$\left[\text{Cr}(\text{NH}_3)_5 \text{ONO} \right] \text{Cl}_2$$

Therefore the type of isomerism found in this compound is linkage isomerism as nitro group is linked through N as -NO₂ or through O as -ONO.

14. (c) Nickel ions are frequently detected by the formation of red precipitate of the complex of nickel dimethylglyoxime, when heated with dimethylglyoxime.

$$CH_3 - C = NOH$$

 $CH_3 - C = NOH$
 $CH_3 - C = NOH$

Dimethylglyoxime

$$CH_{3}-C=N \qquad Ni \qquad N=C-CH_{3}$$

$$CH_{3}-C=N \qquad Ni \qquad N=C-CH_{3}$$

$$CH_{3}-C=N \qquad Ni \qquad N=C-CH_{3}$$

$$\downarrow \qquad O \qquad OH$$

Nickel dimethylglyoxime

15. (d)
$$[Cr(H_2O)_4Cl_2]Cl + AgNO_3 \longrightarrow AgCl +$$

 $[Cr(H_2O)_4Cl_3]NO_5Cl_3]NO_4Cl_3]NO_5Cl_3]$

$$\begin{aligned} \text{Molarity} &= \frac{\text{wt}}{\text{mol. mass}} \times \frac{1000}{\text{vol.}} \\ &\frac{\text{wt}}{\text{mol. mass}} = \text{molarity} \times \frac{\text{vol.}}{1000} = \frac{0.01 \times 100}{1000} \end{aligned}$$

16. (c) Gd (64) = [Xe]
$$4f^7 5d^1 6s^2$$

Gd³⁺ = [Xe] $4f^7 5d^0 6s^0$
i.e. no. of unpaired electrons = 7

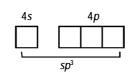
$$\mu = \sqrt{n(n+2)} = \sqrt{7(7+2)}$$

$$=\sqrt{63} = 7.93 \text{ BM}$$

- 17. (b)
- **18. (d)** isomers

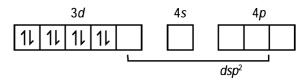
$$[Ru(NH_3)_4Cl_2]^+$$
, $[Co(NH_3)_5Cl]^{2+}$, cis and trans none

- 19. (d) Due to some backbonding by sidewise overlapping between d-orbitals of metal and p-orbital of carbon, the F-C bond has σ and π character.
- 20. (c) The correct structure of EDTA is $\frac{\text{HOOC-H}_2\text{C}}{\text{HOOC-H}_2\text{C}}\text{N} \text{CH}_2 \text{CH}_2 \text{N} \underbrace{\text{CH}_2\text{-COOH}}_{\text{CH}_2\text{-COOH}}$
- **21.** (a) $[PdCl_{\Delta}]^{2-}$ is dsp^2 hybridized and square planar in shape.
- 22. (b)



For a given metal ion, weak field ligands create a complex with smaller Δ , which will absorbs light of longer λ and thus lower frequency. Conservely, stronger field ligands create a larger Δ , absorb light of shorter λ and thus higher ν i.e. higher energy.

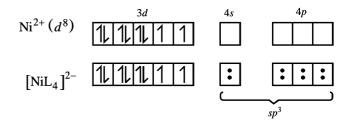
So order of ligand strength is


$$L_1 < L_3 < L_2 < L_4$$

- 23. (d)
- **24.** (c) In both states (paramagnetic and diamagnetic) of the given complex, Ni exists as Ni^{2+} whose electronic configuration is [Ar] $3d^84s^0$.

In the above paramagnetic state the geometry of the complex is sp^3 giving tetrahedral geometry.

The diamagnetic state is achieved by pairing of electrons in 3d orbital.



Thus the geometry of the complex will be dsp^2 giving square planar geometry.

25. (b)
$$\left[\text{Pt}(\text{NH}_3)_6 \right] \text{Cl}_4 \rightleftharpoons \left[\text{Pt}(\text{NH}_3)_6 \right]^{4+} + 4 \text{Cl}^-;$$

$$Ag^+ + C\bar{l} \rightarrow AgCl (ppt)$$

- **26. (b)** The correct IUPAC Name of $[Mn(CN)_5]^{2-}$. Pentacyanomangnate (III).
- **27.** (a) $[NiL_4]^{2-}$

i.e, no. of unpaired electron = 2 hybridization – sp^3 .

- 28. (b)
- 29. (c) In $[Co(CO)_5NH_3]^{2+}$ CO is bonded to cobalt through σ and π bonding.
- **30. (d)** $K_2[Ni(EDTA)]$. Since EDTA is hexadentate and chelating and coordinates from six sides forming more stable complex.