10 POLYNOMIALS

Important Point

- If a polynomial p(x) can be expressed as p(x) = q(x) r(x) then q(x) and r(x) are factors of p(x)
- The remainder got by dividing a polynomial p(x) by (x a) is p(a) and p(-a) is the remainder when it is divided by (x+a).
- If p(a) = 0, then (x a) is factors of p(x) and if p(-a) = 0, (x+a) is a factor of p(x).
- If $p(a) \neq 0$, then (x a) is not a factor of p(x) and if $p(-a) \neq 0$ then (x + a) is not a factor of p(x).
- p(x) = (x a) q(x) + r, then the quotient and remainder got by dividing p(x) by (x a) are q(x) and 'r' respectively.
- The remainder got by dividing the polynomial p(x) by (ax + b) is p(-b/a).
- If p and q are the solutions of the second degree equation $ax^2 + bx + c = 0$, then the polynomial $ax^2 + bx + c$ can be expressed as a(x-p) (x-q).
- In the polynomial p(x), p(1) will be the sum of coefficients of the variables and p(0) will be constant term.
- If p(x) is a polynomial and 'a' is any number, then x-a will always be a factor of p(x) p(a).

PART - A (Score : 1)

- 1. If $p(x) = 7x^3 3x^2 9x + 18$ then what is p(0)?
- 2. If $p(x) = 2x^4 + 5x^3 + 3x^2$ then what is p(1) ?
- 3. $p(x) = x^2 + 9x$ then what is p(1)?
- 4. In the polynomial $p(x) = 5x^3 3x^2 + 2x + k$. If p(0) = 10 find the value of k?
- 5. In the polynomial $p(x) = 2x^2 + 3x + k$. If p(1) = 12 find the value of k?

PART - B (Score : 2)

- 1. If $p(x) = x^3 5x^2 + 6x 2$, find p(-2)
- 2. What is the remainder got by dividing $x^3 2x^2 + 5x + 1$ by (x 2)
- 3. If (x 1) is a factor of the polynomial $x^2 + 6x + k$ find the value of k.
- 4. Check whether (x 3), a factor of the polynomial $x^2 + 2x 15$
- 5. Which number should be added to the polynomial $2x^2 5x + 1$ so that (x 1) is a factor of the new polynomial.

PART - C (Score : 3)

- (i) Express x² + 5x + 6 as the product of two first degree polynomials.
 (ii) Find the solutions of x² + 5x + 6 = 0
- 2. (i) If p(x) = x² 3x+2. Find p(2).
 (ii) Is (x 2) a factor of p(x) ? Why?
- 3. Show that $2x^2 + 3x + 5$ cannot be expressed as the product of two first degree polynomials.
- 4. (i) If p(x) = (x 2) (x 4). Find p(2)
 (ii) Which number should be added to p(x) to obtain a perfect square.
- 5. $p(x) = x^2 12x + 20$
 - (i) Express p(x) as the product of two first degree polynomials
 - (ii) Find solutions of the equation p(x) = 0
- 6. If 3, 5 are the solutions of the equation $x^2 + ax + b = 0$
 - (i) Express $x^2 + ax + b$ as the product of two first degree polynomials
 - (ii) Find the value of a, b

PART - D (Score : 4)

1. If $p(x) = x^2 - 5x + 10$ (i) Find p(2) (ii) Which number should be subtracted from p(x) so that (x - 2) is a factor of the resulting polynomial.

(iii) If $q(x) = x^2 - 5x + 6$, express it as the product of two first degree polynomials.

2. (i) If $p(x) = 2x^2 - 4x - 16$. Find p(3).

(ii) q(x) = p(x) - p(3). Express q(x) as the product of two first degree polynomials.

3. (i) Which number should be taken as 'k' so that the polynomial $kx^2 + 12x - 14$ has (x+7) as a factor of it.

(ii) Find the second factor of this polynomial.

- 4. (i) If p(0) = -5 in p(x) = ax² + bx + c then find the value of c.
 (ii) If (x 1) is a factor of p(x). Prove that a + b = 5
- 5. (i) If 3 is the remainder got by dividing the polynomial $p(x) = 2x^3 x^2 + kx + 24$ by (x-3) then find the value of k.

(ii) What is the remainder got by dividing p(x) by (x - 1)

PART - E (Score : 5)

- 1. Express the polynomial $p(x) = 4x^2 + 20x + 25$ as the product of two first degree polynomials.
- 2. If p(-5) = 0, p(6) = 0 in the polynomial p(x).
 - (i) Write the first degree polynomials, which are the factors of p(x).
 - (ii) Find the polynomial p(x)
- 3. (i) If (x 2) is a factor of the polynomial p(x) = x²-kx + 8. Find the value of k.
 (ii) Express the polynomial p(x) as the product of two first degree polynomials.

4. $p(x) = 2x^2 - 5x + 8$

(i) Which number should be subtracted from p(x) so that (x - 2) is a factor of the resulting polynomial.

(ii) Find the second factor of the resulting polynomial.

- 1. $p(x) = 7x^3 + 3x^2 9x + 18$ $\therefore p(0) = 18$
- 2. $p(x) = 2x^4 + 5x^3 + 3x^2$ p(1) = 2 + 5 + 3= 10
- 3. $p(x) = x^2 + 9x$ p(1) = 1 + 9= 10
- 4. $p(x) = 5x^3 3x^2 + 2x + k$ $\therefore p(0) = k = 10$
- 5. $p(x) = 2x^2 + 3x + k$ p(1) = 2 + 3 + k = 12k = 12 - 5 = 7

Answer: PART - B

- 1. $p(x) = x^3 5x^2 + 6x 2$ $p(-2) = (-2)^3 - 5(-2)^2 + 6(-2) - 2$ $= 8 - 5 \times 4 - 12 - 2$ = -8 - 20 - 12 - 2= -42
- 2. $p(x) = x^3 2x^2 + 5x + 1$ remainder = p(2)= $2^3 - 2 \times 2^2 + 5 \times 2 + 1$ = 8 - 8 + 10 + 1 = 11
- 3. $p(x) = x^2 + 6x + k$ Since (x-1) is a factor of p(x), p(1) = 0ie, $p(1) = 0 \Rightarrow 1^2 + 6x + 1 + k = 0$ 1 + 6 + k = 0 7 + k = 0k = -7
- 4. $p(x) = x^2 + 2x 15$ for (x - 3) to be a factor of p(x) then p(3) must be zero $p(3) = 3^2 + 2 \times 3 - 15$ = 9 + 6 - 15 = 0 $\therefore (x - 3)$ is a factor of p(x)

5. $p(x) = 2x^2 - 5x + 1$ $p(1) = 2 \times 1^2 - 5 \times 1 + 1$ = 2 - 5 + 1= -2

: The number should be added to p(x) is + 2

Answer : PART - C

1. $p(x) = x^2 + 5x + 6$

- 2. (i) $p(x) = x^2 3x + 2$ $p(2) = 2^2 - 3x + 2 + 2$ = 4 - 6 + 2 = 0(ii) Q: $p(x) = 2^2 - 3x + 2 + 2$
 - (ii) Since p(2) = 0, (x 2) is a factor of p(x)
- 3. $p(x) = 2x^2 + 3x + 5$

consider the equation $2x^2 + 3x + 5 = 0$,

$$a = 2, b = -5, c = 8$$

 $\therefore \sqrt{b^2 - 4ac} = \sqrt{(-5)^2 - 4 \times 2 \times 8}$
 $= \sqrt{25 - 64}$
 $= \sqrt{-39}$

Negative numbers has no square root.

: The polynomial $2x^2 + 3x + 5$ cannot be written as the product of two first degree polynomials.

4.
$$p(x) = (x - 2) (x - 4)$$

(i)
$$p(2) = (2 - 2) (2 - 4) = 0 x - 2 = 0$$

(ii)
$$p(x) = x^2 - 4x - 2x + 8$$

1 should be added for this polynomial to be a perfect square

:
$$p(x) = x^2 - 6x + 8 + 1$$

= $x^2 - 6x + 9$
= $(x - 3)^2$

5. $p(x) = x^2 - 12x + 20$ (i) $x^2 - 12x + 20 = (x - a)(x - b)$ $x^{2} - 12x + 20 = x^{2} - (a + b)x + ab$ ∴ *a* + b = 12 *a*b = 20 $\therefore a = 10, b = 2$ $\therefore x^2 - 12x + 20 = (x - 10) (x - 2)$ (ii) The solutions of the equation $x^2 - 12x + 20 = 0$ are 10 and 2 6. Since - 3, 5 are the solutions of the equation $x^2 + ax + b = 0$ (i) $x^2 + ax + b = (x + 3) (x - 5)$ $x^2 + ax + b = x^2 - 5x + 3x - 15$ $x^2 + ax + b = x^2 - 2x - 15$ (ii) $\therefore a = -2, b = -15$ Answer: PART - D 1. $p(x) = x^2 - 5x + 10$ (i) $p(2) = 2^2 - 5 \times 2 + 10$ = 4 - 10 + 10**=** 4 (ii) When p(2) subtracted from p(x), we get a polynomial with (x - 2) as a factor. $p(x) - p(2) = x^2 - 5x + 10 - 4$ $= x^2 - 5x + 6$ (iii) $x^2 - 5x + 6$ has a factor as (x-2) If the second factor is (x - b), then $x^2 - 5x + 6 = (x-2)(x - b)$ 6 = -2 x - b2b = 6b = 3 \therefore second factor = x - 3 $\therefore x^2 - 5x + 6 = (x - 2)(x - 3)$ 2. (i) $p(x) = 2x^2 - 4x - 16$ $p(3) = 2 \times 3^2 - 4 \times 3 - 16$ $= 2 \times 9 - 12 - 16$ = 18 - 12 - 16 = 6 - 16 = -10(ii) q(x) = p(x) - p(3) $= 2x^2 - 4x - 16 - (-10)$

```
= 2x^2 - 4x - 16 + 10
              = 2x^2 - 4x - 6
              = 2(x^2 - 2x - 3)
        (x-3) is a factor of q(x)
        If (x-b) is the second factor, then
                 x^2 - 2x - 3 = (x - 3) (x - b)
                 \therefore -3 = (-3) x (-b)
                 -3 = 3b
                 b = -1
         : q(x) = 2(x-3)(x-b)
                 = 2 (x-3) (x--1)
                 = 2 (x-3) (x+1)
                 = (x-3)(2x+2)
3. (i) p(x) = kx^2 + 12x - 14
        since (x+7) is a factor of p(x), p(-7) = 0
        ie, p(-7) = 0 \implies k \ge (-7)^2 + 12 \ge -7 - 14 = 0
                 k \times 49 - 84 - 14 = 0
                 49 \text{ k} - 98 = 0
                 k = 98/49 = 2
     (ii) p(x) = 2x^2 + 12x - 14
              = 2(x^2 + 6x - 7)
        (x+7) is a factor of p(x)
        If (x + b) is the second factor
                 x^{2} + 6x - 7 = (x + 7) (x + b)
                 -7 = 7 \text{ x b}
                 7b = -7
                 b = -7/7 = -1
         \therefore second factor = x - 1
4. (i) p(x) = ax^2 + bx + c
        p(0) = -5
         a x o^{2} + b x o + c = -5
                 c = -5
     (ii) p(x) = ax^2 + bx - 5
        since (x - 1) is a factor of p(x), p(1)
         a \ge a^2 + b \ge 1 - 5 = 0
                 a + b = 5
```

5. $p(x) = 2x^3 - x^2 + kx + 24$

(i) The remainder got by dividing p(x) by (x - 3) = p(3)

$$\therefore p(3) \Rightarrow 2 \times 3^{3} - 3^{2} + k \times 3 + 24 = 3$$

$$2 \times 27 - 9 + 3k + 24 = 3$$

$$54 - 9 + 3k + 24 = 3$$

$$69 + 3k = 3$$

$$3k = 3 - 69$$

$$k = -66 / 3 = -22$$

$$\therefore p(x) = 2x^{3} - x^{2} - 22x + 24$$

(ii) p(1) is the remainder got by dividing p(x) by (x - 1)
p(1) = 2 \times 1^{3} - 1^{2} - 22 \times 1 + 24

$$= 2 - 1 - 22 + 24$$

$$= 26 - 23 = 3$$

Answer : PART - E

1.
$$4x^2 + 20x + 25 = 0$$

then,
$$a = 4$$
, $b = 20$, $c = 25$
 $\therefore x = -\frac{b \pm \sqrt{b^2 - 4ac}}{2a}$
 $x = -\frac{20 \pm \sqrt{20^2 - 4 \times 4 \times 25}}{2 \times 4}$
 $x = -20 \pm \sqrt{400 - 400}$
 $x = -\frac{20 \pm 0}{8}$
 $x = -\frac{20}{8} \Rightarrow 2x + 5 = 0$
 $\therefore 4x^2 + 20x + 25 = (2x + 5)(2x + 5)$

2. (i) Since p(-5) = 0, p(6) = 0 in the polynomial p(x), (x + 5) and (x - 6) are factors of p(x)
(ii) p(x) = (x + 5) (x - 6)
= x² - 6x + 5x - 30

$$= x^2 - x - 30$$

3. (i) $p(x) = x^2 - kx + 8$.

Since (x - 2) is a factor of p(x), p(2) must be zero. $\therefore (2)^2 - k \ge 2 + 8 = 0$

4 - 2k + 8 = 012 - 2k = 02k = 12k = 12/2 = 6(ii) $p(x) = x^2 - 6x + 8$ one factor of p(x) is (x - 2), Let the other factor be (x - b): $x^2 - 6x + 8 = (x - 2) (x - b)$ $\therefore -2 x - b = 8$ 2b = 8: b = 8/2 = 4 $\therefore x^2 - 6x + 8 = (x - 2) (x - 4)$ 4. (i) $p(x) = 2x^2 - 5x + 8$ p(2) should be subtracted from p(x) $p(2) = 2 \ge 2^2 - 5 \ge 2 + 8$ = 8 - 10 + 8 = 16 - 10= 6 (ii) $p(x) - p(2) = 2x^2 - 5x + 8 - 6$ $= 2x^2 - 5x + 2$ $= 2 (x^2 - 5x + 1)$ p(x) - p(2) has a factor as (x - 2)If second factor is (x - b), then $x^2 - 5 x + 1 = (x - 2) (x - b)$ 2 ∴ 1 = -2 x -b 2b = 1 $b = \frac{1}{2}$: Second factor = $(x - \frac{1}{2})$: $2x^2 - 5x + 2 = 2(x - 2)(x - b)$ $= 2 (x - 2) (x - \frac{1}{2})$ $= \mathfrak{A}(x-2) \underbrace{(2x-1)}{\mathfrak{A}}$ = (x - 2) (2x - 1)