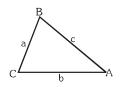
Triangles

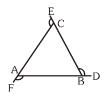
Types of triangles	Definition/Property	Diagram
Scalene triangle	(i) A triangle in which none of the two sides are equal is called a scalene triangle(ii) All the three angles are also different	B C b c A $a \neq b \neq c$
Isosceles triangle	 (i) A triangles in which at least two sides are equal is called an isosceles triangle. (ii) In this triangle, the angles opposite to the congruent sides are also equal (iii) 2 medians, 2 altitudes equal. (iv) Internal bisectors of 2 angles are equal. (v) Bisector of vertical angle bisects the base and perpendicular to the base. (vi) May be acute, obtuse or right angled triangle 	A B AB=AC $\angle B=\angle C$ C
Equilateral triangle	 (i) A triangle in which all the three sides are equal is called an equilateral triangle. (ii) In this triangle each angle is congruent and equal to 60° (iii) Always acute angled. (iv) Incentre, circumcentre, orthocentre and centroid coincide. (v) Point of intersection of altitude, medians and angular bisectors is same. 	A B AB=BC=AC $\angle A=\angle B=\angle C=60^{\circ}$
Isosceles right angled triangle AB = BC	 (i) 2 sides are equal (ii) Angle included by the equal sides is 90°. (iii) Side opposite to 90° is hypotenuse and is the greatest side. (iv) Median to the hypotenuse is half of the hypotenuse (v) Of the two acute angles, if one is 30°. The smallest side is half of the greatest side or the side opposite to 30° is half of hypotenuse. 	

Fundamental properties of triangles

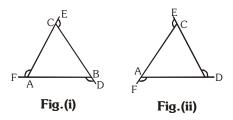
- Sum of any two sides is always greater than the third side.
- The difference of any two sides is always less than the third side.
- Greater angle has a greater side opposite to it and smaller angle has a smaller side opposite to it i.e., if two sides of triangle are not congruent then the angle opposite to the greater side is greater.
- Let a, b and c be the three sides of a $\triangle ABC$ and c is the largest side, then



- if $c^2 < a^2 + b^2$, the triangle is acute angle triangle
- if $c^2=a^2+b^2$, the triangle is right angled triangle
- if $c^2 > a^2 + b^2$, the triangle is obtuse angle triangle
- The sum of all the three interior angles is always 180° i.e $\angle CAB + \angle ABC + \angle BCA = 180^{\circ}$



• The sum of three (ordered) exterior angles of a angles is 360°



In fig (i) : \angle FAC+ \angle ECB+ \angle DBA = 360° In fig (ii) : \angle FAB+ \angle DBC+ \angle ECA = 360°

- A triangle must have at least two acute angles
- In a triangle, the measure of an exterior angle equals the sum of the measures of the interior opposite angles.
- The measure of an exterior angle of a triangle is greater than the measure of each of the opposite interior angles.

Congruence of triangles

Test	Property	Diagram
S – S – S	(Side–Side–Side) If the three sides of one triangle are equal to the corresponding three sides of the other triangle, then the two triangles are congruent $AB \cong PQ, AC \cong PR, BC \cong QR$ $\therefore \qquad \Delta ABC \cong \Delta PQR$	A
	(Side-Angle-Side) If two sides and the included angle between them be congruent to the corresponding sides and the angle included between them, of the other triangle then the two triangles are congruent. $AB \cong PQ, \ \angle ABC \cong \angle PQR, BC \cong QR$ $\therefore \qquad \Delta ABC \cong \triangle PQR$	
A – S – A	(Angle–Side–Angle) If two angles and the included side of a triangle are congruent to the corresponding angles and the included side of the other triangle, then the two triangles are congruent. $\angle ABC\cong \angle PQR, BC\cong QR, \angle ACB\cong \angle PRQ$ $\therefore \qquad \triangle ABC\cong \triangle PQR$	
A – A – S	$\begin{array}{ll} \mbox{(Angle-Angle-Side)} \\ \mbox{If two angles and a side other than the included side of a one triangle are congruent to the corresponding angles and a corresponding side other than the included side of the other triangle, then the two triangles are congruent. \\ \mbox{$\angle ABC\cong \angle PQR, \ \angle ACB\cong \angle PRQ$} \\ \mbox{and} \qquad AC\cong PR \qquad (or AB\cong PQ) \end{array}$	B C Q R
R – H – S	(Right angle-Hypotenuse-Side) If the hypotenuse and one side of the right angled triangle are congruent to the hypotenuse and a corresponding side of the other right angled triange, then the two given triangles are congruent. $AC \cong PR, \angle B = \angle Q$ and $BC \cong QR$ $\therefore \Delta ABC \cong \Delta PQR$	$A \qquad P \qquad A \qquad B \qquad C \qquad Q \qquad R$

Theorems related to similar triangles

Test	Property	Diagram
A – A – A (similarity)		$A \qquad \qquad$
S – S – S (Similarity)		$A \qquad A \qquad$
S – A – S (Similarity)	If in two triangles, one pair of corresponding sides are proportional and the included angles are equal then the two triangles are similar $\frac{AB}{DE} = \frac{AC}{DF} & \angle BAC = \angle EDF$ $\triangle ABC \sim \triangle DEF$	B C E F

Important Definition

Nomenclature	Property/Definition	Diagram
Altitude (or height)	The perpendicular drawn from the opposite vertex of a side in a triangle called an altitude of the triangle.There are three altitudes in a triangle.	A A B B B B C D and BF are the altitudes
Median	 The line segment joining the mid-point of a side to the vertex opposite to the side is called a median. There are three medians in a triangle. A median bisects the area of the triangle i.e, Ar(ABE) = Ar(AEC) = ¹/₂ Ar(ΔABC) etc. Point of intersection is called Centroid. 	AE, CD and BF are the medians (BE=CE, AD=BD, AF=CF)
Angle bisector	 A line segment which originates from a vertex and bisects the same angle is called an angle bisector (∠BAE = ∠CAE = 1/2 ∠BAC) etc. > Point of intersection of angle bisectors is called Incentre. 	A B B AE, CD and BF are the angles bisectors.
Perpendicular bisector	 A line segment which bisects a side perpendicularly (i.e. at right angle) is called a perpendicular bisector of a side of triangle. All points on the perpendicular bisector of a line are equidistant from the ends of the line. Point of intersection of perpendicular bisectors is called Circumcentre. 	B E C C $DO, EO and FO are the perpendicular bisectors$
Orthocentre	The point of intersection of the three altitudes of the triangle is called as the orthocentre. $\angle BOC = 180^{\circ} - \angle A$ $\angle COA = 180^{\circ} - \angle B$ $\angle AOB = 180^{\circ} - \angle C$	B E C C O' is the orthocentre

Theorems related to triangles

Theorem	Statement,	Diagram
Basic proportionality theorem	In a triangle, a line drawn parallel to one side, will divide the other two sides in same ratio. If DE BC, then $\frac{AD}{DB} = \frac{AE}{EC}$	A B B C
Vertical angle bisector	The bisector of the vertical angle of a triangle divides the base in the ratio of other two sides. $\frac{BD}{DC} = \frac{AB}{AC}$	A B D C
Pythagoras theorem	In a right angled triangle, the square of the hypotenus is equal to the sum of squares of the other two sides. $AC^2 = AB^2 + BC^2$	B C
Theorem	Angles opposite to equal sides of a triangle are equal. If $AB = BC$ then $\angle B = \angle C$	B C C
Theorem	If two angles of a triangle are equal, then the sides opposite to them are also equal. If $\angle B = \angle C$ then $AB = BC$	B C C
Exterior angle	If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles. $\angle 4 = \angle 2 + \angle 3$	A A B C D
Theorem	The sum of three angles in a triangle is 180°. $\angle A + \angle B + \angle C = 180^{\circ}$	A B C
Mid-point theorem	If the mid-points of two adjacent sides of a triangle are joined by a line segment, then this segment is parallel to the third side. i.e., if AD=BD and AE=CE then DE BC	D B C
Apollonius theorem	In a triangle, the sum of the squares of any two sides of a triangle is equal to twice the sum of the square of the median to the third side and square of half the third side. i.e. $AB^2+AC^2=2(AD^2+BD^2)$	A BD=CD AD is the median

Results on area of similar triangles

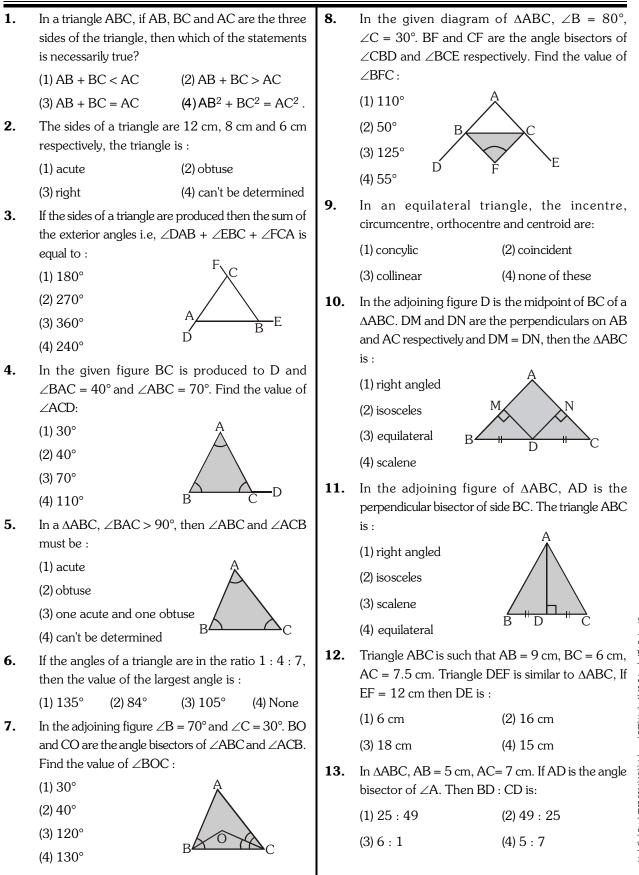
S.No.	Statement	Diagram
(1)	The areas of two similar triangles are proportional to the squares of their corresponding sides. If $\triangle ABC \sim \triangle DEF$ then $\frac{\text{Area of ABC}}{\text{Area of DEF}} = \frac{AB^2}{DE^2} = \frac{BC^2}{EF^2} = \frac{AC^2}{DF^2}$	A D B L X C E M Y F
(2)	The areas of two similar triangles are proportional to the squares of their corresponding altitude. If $\triangle ABC \sim \triangle DEF$, $AL \perp BC$ and $DM \perp EF$ then $\frac{Area of ABC}{Area of DEF} = \frac{AL^2}{DM^2}$	B L C E M F
(3)	The areas of two similar triangles are proportional to the squares of their corresponding medians. If ABC ~ DEF and AP, DQ are their medians then $\frac{\text{Area of ABC}}{\text{Area of DEF}} = \frac{\text{AP}^2}{\text{DQ}^2}$	$A \qquad D \\ A \qquad B \qquad P \qquad C \qquad E \qquad Q \qquad F$
(4)	The areas of two similar triangles are proportional to the squares of their corresponding angle bisector segments. If ABC ~ DEF and AX, DY are their bisectors of $\angle A$ and $\angle D$ respectively then $\frac{\text{Area of ABC}}{\text{Area of DEF}} = \frac{AX^2}{DY^2}$	A B X C E Y F
(5)	If D, E and F are respectively the mid-points of sides BC, CA and AB of an equilateral triangle ABC then ΔDEF is also an equilateral triangle.	B D C

■ Some useful results

S.No.	Statement	Diagram
(1)	In a $\triangle ABC$, if the bisectors of $\angle B$ and $\angle C$ meet at O then $\angle BOC=90^{\circ}+(\angle A)/2$	B
(2)	In a DABC, if sides AB and AC are produced to D and E respectively and the bisectors of \angle DBC and \angle ECB intersect at O, then \angle BOC=90°-(\angle A)/2	B D D D C C E
(3)	In a $\triangle ABC$, if AD is the angle bisector of $\angle BAC$ and AE \perp BC, $\angle DAE = \frac{1}{2} (\angle ABC - \angle ACB)$	
(4)	In a $\triangle ABC$, if side BC is produced to D and bisectors of $\angle ABC$ and $\angle ACD$ meet at E, then $\angle BEC = \frac{1}{2} \angle BAC$	A B C D
(5)	In an acute angle $\triangle ABC$, AD is a perpendicular dropped on the opposite side of $\angle A$ then $AC^2=AB^2+BC^2-2BD$. BC ($\angle B < 90^\circ$)	B D C
(6)	In a obtuse angle $\triangle ABC$, AD is perpendicular dropped on BC. BC is produce to D to meet AD, then $AC^2=AB^2+BC^2+2$ BD BC ($\angle B>90^\circ$)	A C
(7)	In a right angle $\triangle ABC$, $\angle B=90^{\circ}$ and AC is hypotenuse the perpendicular BD is dropped on hypotenuse AC from right angle vertex B, then (i) $BD = \frac{AB \times BC}{AC}$ (ii) $AD = \frac{AB^2}{AC}$ (iii) $CD = \frac{BC^2}{AC}$ (iv) $\frac{1}{BD^2} = \frac{1}{AB^2} + \frac{1}{BC^2}$	B
(8)	In a right angled triangle, the median to the hypotenuse = $\frac{1}{2}$ × hypotenuse i.e, BM = $\frac{AC}{2}$	

TRIANGLE

EXERCISE



Vode5\e\Data\CBSE-2016\10th\Advance\CCP\Maths-1\10_Triangl

- **14.** In a $\triangle ABC$, D is the mid-point of BC and E is mid-point of AD, BF passes through E. What is the ratio of AF : FC?
 - (1) 1 : 1
 - (2) 1 : 2
 - (3) 1 : 3

 - (4) 2 : 3
- **15.** In a $\triangle ABC$, AB = AC and $AD \perp BC$, then :
 - (1) AB < AD (2) AB > AD

$$(3) AB = AD \qquad (4) AB \le AD$$

- The difference between altitude and base of a right **16**. angled triangle is 17 cm and its hypotenuse is 25 cm. What is the sum of the base and altitude of the triangle is ?
 - (1) 24 cm (2) 31 cm
 - (3) 34 cm (4) can't be determined
- **17.** If AB, BC and AC be the three sides of a triangle ABC, which one of the following is true?

(1) AB - BC = AC(2)(AB - BC) > AC(3)(AB - BA) < AC(4) $AB^2 - BC^2 = AC^2$

- **18.** In the triangle ABC, side BC is produced to D. $\angle ACD = 100^{\circ}$ if BC = AC, then $\angle ABC$ is :
 - (1) 40°
 - (2) 50°
 - (3) 80°

(4) can't be determined B^4

19. In the adjoining figure D, E and F are the mid-points of the sides BC, AC and AB respectively. ΔDEF is congruent to triangle :

(1) ABC

(2) AEF

- (3) CDE, BFD
- (4) AFE, BFD and CDE

In the given figure, if $\frac{DE}{BC} = \frac{1}{2}$ and if AE = 10 cm. 20.

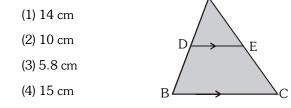
D

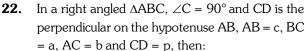
В

- Find AC.
- (1) 16 cm
- (2) 12 cm
- (3) 20 cm

(4) 18 cm

In the figure, $DE \mid BC$ and AD = 12 cm, AB = 2021. cm and AE = 10 cm. Find EC.

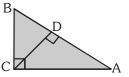




(1)
$$\frac{p}{a} = \frac{p}{b}$$

(2)
$$\frac{1}{p^2} + \frac{1}{b^2} = \frac{1}{a^2}$$

(3) $p^2 = b^2 + c^2$



(4) $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$

23.

-D

D

If the medians of a triangle are equal, then the triangle is:

(1) • 1 • 1 1	$\langle 0 \rangle$ · 1
(1) right angled	(2) isosceles

(3) equilateral (4) scalene

- 24. The incentre of a triangle is determined by the:
 - (1) medians
 - (2) angle bisectors
 - (3) perpendicular bisectors
 - (4) altitudes

25. The circumcentre of a triangle is determined by the:

- (1) altitudes
- (2) median

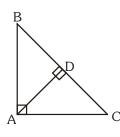
(3) perpendicular bisectors

(4) angle bisectors

- 26. The point of intersection of the angle bisectors of a triangle is :
 - (1) orthocentre (2) centroid
 - (3) incentre (4) circumcentre

27.	-	by joining the mid-points BC. 'O' is the circumcentre R, the point 'O' is :	34.	isosceles triangle is 6 perpendicular on the hyp	hypotenuse of right angle cm. The length of the otenuse from the opposite
	(1) incentre	(2) circumcentre		vertex is :	
	(3) orthocentre	(4) centroid		(1) 6 cm	(2) $6\sqrt{2}$ cm
28 .	If in a $\Delta ABC,$ 'S' is the cir	rcumcentre then:		(3) 4 cm	(4) 3 √2 cm
	(1) S is equidistant from a	ll the vertices of a triangle			
	(2) S is equidistant from a	all the sides of a triangle	35.	Any two of the four trian midpoints of the sides of	gles formed by joining the f a given triangle are:
	(3) AS, BS and CS are th	ne angular bisectors		(1) congruent	
	(4) AS, BS and CS prod	uced are the altitudes on		(2) equal in area but not congruent	
	the opposite sides.			(3) unequal in area and r	not congruent
29.		ltitudes of $\triangle ABC$ whose		(4) none of these	
	orthocentre is H, then C (1) ∆ABH	is the orthocentre of : (2) ΔBDH	36.	The internal bisectors of $a \ge 0^\circ$ then $a \ge 0^\circ$ then $a \ge 0^\circ$	∠B and ∠C of ∆ABC meet ∠BOC is :
	(3) ∆ABD	(4) ∆BEA		(1) 50°	(2) 160°
30.		$\angle C = 90^{\circ}$ and CD is the		(3) 100°	(4) 130°
perpendicular on hypotenuse AB. If $BC = 15$ cm and $AC = 20$ cm then CD is equal to :		37.		a triangle which is at equal	
	(1) 18 cm			is :	om the sides of the triangle
	(2) 12 cm	Ă		(1) centroid	
	(3) 17.5 cm			(2) incentre	
	(4) can't be determined	A D B		(3) circumcentre	
31.		if a, b and c denote the		(4) orthocentre	
	respectively on the oppos	lars from A, B and C site sides, then:	38.	Incentre of a triangle lies	s in the interior of :
	(1) a > b > c	(2) a > b < c		(1) an isosceles triangle c	only
	(3) $a = b = c$	(4) $a = c \neq b$		(2) a right angled triangle	e only
32.	What is the ratio of side an triangle?	nd height of an equilateral		(3) any equilateral triang	le only
	(1) 2 : 1	(2) 1 : 1		(4) any triangle	
	(3) $2:\sqrt{3}$	(4) $\sqrt{3}:2$	39.	In a triangle PQR, PQ = 2 side QR is :	$20 \mathrm{cm}$ and $\mathrm{PR} = 6 \mathrm{cm}$, the
33.	The triangle is formed by joining the mid-points of the sides AB and CA of ABC and the sums of			(1) equal to 14 cm	
	the sides AB, BC and CA of \triangle ABC and the area of \triangle PQR is 6 cm ² , then the area of \triangle ABC is :			(2) less than 14 cm	
	(1) 36 cm ²	(2) 12 cm ²		(3) greater than 14 cm	
	(3) 18 cm ²	(4) 24 cm ²		(4) none of these	

- **40.** The four triangles formed by joining the pairs of midpoints of the sides of a given triangle are congruent if the given triangle is :
 - (1) an isosceles triangle
 - (2) an equilateral triangle
 - (3) a right angled triangle
 - (4) of any shape
- **41.** O is orthocentre of a triangle PQR, which is formed by joining the mid-points of the sides of a $\triangle ABC$, O is :
 - (1) orthocentre
 - (2) incentre
 - (3) circumcentre
 - (4) centroid
- 42. In a ∆ABC, a line PQ parallel to BC cuts AB at P and AC at Q. If BQ bisects ∠PQC, then which one of the following relations is always true:
 - $(1) BC = CQ \qquad (2) BC = BQ$
 - $(3) BC \neq CQ \qquad (4) BC \neq BQ$
- **43.** Which of the following is true, in the given figure, where AD is the altitude to the hypotenuse of a right angled $\triangle ABC$?



- (i) $\triangle CAD$ and $\triangle ABD$ are similar
- (ii) ΔCDA and ΔADB are congruent
- (iii) $\triangle ADB$ and $\triangle CAB$ are similar

Select the correct answer using the codes given below:

(1) (i) and (ii)	(2) (ii) and (iii)
------------------	--------------------

(3) (i) and (iii) (4) (i), (ii) and (iii)

44. If D is such a point on the side, BC of $\triangle ABC$ that

$$\frac{AB}{AC} = \frac{BD}{CD}$$
, then AD must be a/an

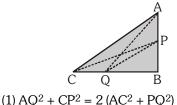
(1) altitude of $\triangle ABC$

(2) median of $\triangle ABC$

(3) angle bisector of $\triangle ABC$

(4) perpendicular bisector of $\triangle ABC$

45. In right angled $\triangle ABC$, $\angle ABC = 90^\circ$, if P and Q are points on the sides AB and BC respectively, then:



(2)
$$\Delta O^2 + CP^2 - \Delta C^2 + PO^2$$

(3)
$$(AQ^2 + CP^2) = \frac{1}{2} (AC^2 + PQ^2)$$

(4)
$$(AQ + CP) = \frac{1}{2} (AC + PQ)$$

46. If ABC is a right angled triangle at B and M, N are the mid-points of AB and BC, then 4 ($AN^2 + CM^2$) is equal to –

(1) $4AC^2$ (2) $6AC^2$ (3) $5AC^2$ (4) $\frac{5}{4}AC^2$ **47.** If $\triangle ABC$ and $\triangle DEF$ are so related that $\frac{AB}{FD} = \frac{BC}{DE} = \frac{CA}{EF}$, then which of the following is true? (1) $\angle A = \angle F$ and $\angle B = \angle D$ (2) $\angle C = \angle F$ and $\angle A = \angle D$ (3) $\angle B = \angle F$ and $\angle C = \angle D$ (4) $\angle A = \angle E$ and $\angle B = \angle D$

48. ABC is a right angle triangle at A and AD is perpendicular to the hypotenuse. Then $\frac{BD}{CD}$ is equal to :

(1)
$$\left(\frac{AB}{AC}\right)^2$$
 (2) $\left(\frac{AB}{AD}\right)^2$
(3) $\frac{AB}{AC}$ (4) $\frac{AB}{AD}$

49. Let ABC be an equilateral triangle. Let $BE \perp CA$ meeting CA at E, then $(AB^2 + BC^2 + CA^2)$ is equal to :

(1) 2BE ²	(2) 3BE ²
(3) 4BE ²	(4) 6BE ²

50. If D, E and F are respectively the mid-points of sides of BC, CA and AB of a \triangle ABC. If EF = 3 cm, FD = 4 cm, and AB = 10 cm, then DE, BC and CA respectively will be equal to :

(1) 6, 8 and 20 cm (2) 4, 6 and 8 cm

- (3) 5, 6 and 8 cm (4) $\frac{10}{3}$, 9 and 12 cm
- **51.** In the right angle triangle $\angle C = 90^{\circ}$. AE and BD are two medians of a triangle ABC meeting at F. The ratio of the area of $\triangle ABF$ and the quadrilateral FDCE is :

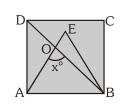
(1) 1 : 1	(2) 1 : 2
(3) 2 : 1	(4) 2 : 3

52. ABC is a triangle and DE is drawn parallel to BC cutting the other sides at D and E. If AB = 3.6 cm, AC = 2.4 cm and AD = 2.1 cm, then AE is equal to :

- (3) 1.2 cm (4) 1.05 m
- **53.** Consider the following statements:
 - (1) If three sides of a triangle are equal to three sides of another triangle, then the triangles are congruent.
 - (2) If three angles of a triangle are equal to three angles of another triangle respectively, then the two triangles are congruent. Of these statements:
 - (1) 1 is correct and 2 is false
 - (2) both 1 and 2 are false
 - (3) both 1 and 2 are correct
 - (4) 1 is false and 2 is correct

- In the figure $\triangle ABE$ is an equilateral triangle in a square ABCD. Find the value of angle x in degrees
 - (1) 60°
- (2) 45°
- (3) 75°

(4) 90°



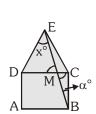
- **55.** In the given diagram MN || PR and m \angle LBN = 70°, AB = BC. Find m \angle ABC :
 - (1) 40°

(2) 30°

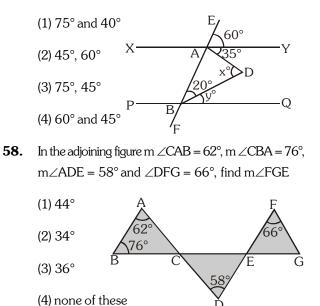
(3) 35°

- $M \xrightarrow{B \land 70^{\circ}} N$
- (4) 55°
- **56.** In the given diagram, equilateral triangle EDC surmounts square ABCD. Find the m \angle BED represented by x, where m \angle EBC = α°
 - (1) 45°
 - (2) 60°
 - (3) 30°

(4) None of these



57. In the given diagram XY||PQ. Find $m \angle x^{\circ}$ and $m \angle y^{\circ}$



59. In the given figure $CE \perp AB$, m $\angle ACE = 20^{\circ}$ and m $\angle ABD = 50^{\circ}$. Find m $\angle BDA$:

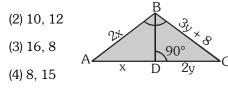
> (1) 50° $(2) 60^{\circ}$

(3) 70° (4) 80°

60. In the $\triangle ABC$, BD bisects $\angle B$, and is perpendicular to AC. If lengths of the sides of the triangle are expressed in terms of x and y as shown, find the value of x and y:

D

(1) 6, 12



61. In the following figure ADBC, BD = CD = AC, m $\angle ABC = 27^{\circ}$, m $\angle ACD = y$. Find the value of y.

 $(1) 27^{\circ}$

 $(2) 54^{\circ}$ $(3)72^{\circ}$

(4) 58°

ABC is an isosceles triangle with AB = AC. Side BA **62**. is produced to D such that AB = AD. Find m $\angle BCD$.

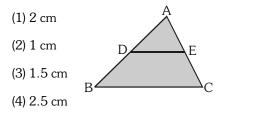
 $(1) 60^{\circ}$

(2) 90°

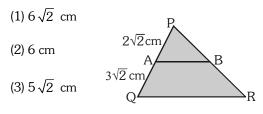
(3) 120°

(4) can't be determined

In $\triangle ABC$, AC = 5 cm. Calculate the length of AE **63**. where $DE \parallel BC$, given that AD = 3 cm and BD = 7cm.

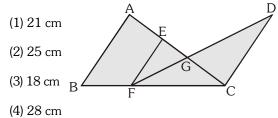


In $\triangle PQR$, $AP = 2\sqrt{2}$ cm, $AQ = 3\sqrt{2}$ cm and **64**. PR = 10 cm, AB ||QR. Find the length of BR.

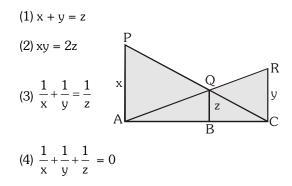


(4) none of these

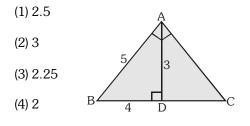
65. In the adjoining figure (not drawn to scale) AB, EF and CD are parallel lines. Given that EG = 5 cm, GC = 10 cm and DC = 18 cm. Calculate AC, if AB = 15 cm.



In the adjoining figure PA, QB and RC are each **66**. perpendicular to AC. Which one of the following is true?



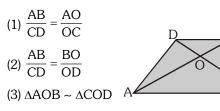
67. In the adjoining figure the $\angle BAC$ and $\angle ADB$ are right angles. BA = 5 cm, AD = 3 cm and BD = 4 cm, what is the length of DC?



68. The areas of the similar triangles are in the ratio of 25 : 36. What is the ratio of their respective heights?

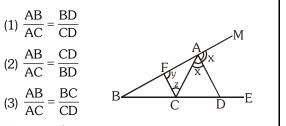
$$(1) 5:6 \qquad (2) 6:5 \qquad (3) 1:11 \qquad (4) 2:3$$

69. In the given diagram AB||CD, then which one of the following is true?



(4) all of these

70. The bisector of the exterior $\angle A$ of $\triangle ABC$ intersects the side BC produced to D. Here CF is parallel to AD.



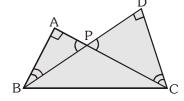
(4) None of these

71. The diagonal BD of a quadrilateral ABCD bisects $\angle B$ and $\angle D$, then:

(1) $\frac{AB}{CD} = \frac{AD}{BC}$ (2) $\frac{AB}{BC} = \frac{AD}{CD}$ (3) $AB = AD \times BC$

(4) None of these

72. Two right triangles ABC and DBC are drawn on the same hypotenuse BC on the same side of BC. If AC and DB intersects at P, then

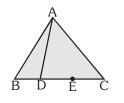


(1) $\frac{AP}{PC} = \frac{BP}{DP}$

(2) $AP \times DP = PC \times BP$ (3) $AP \times PC = BP \times DP$ (4) $AP \times BP = PC \times PD$ **73.** A man goes 150 m due east and then 200 m due north. How far is he from the starting point?

) 350 m
2

- (3) 250 m (4) 175 m
- 74. In an equilateral triangle ABC, the side BC is trisected at D. Find the value of AD²



(1)
$$\frac{9}{7}$$
 AB² (2) $\frac{7}{9}$ AB²

(3)
$$\frac{3}{4}$$
AB² (4) $\frac{4}{5}$ AB²

75. ABC is a triangle in which $\angle A = 90^{\circ}$. AN \perp BC, AC = 12 cm and AB = 5 cm. Find the ratio of the areas of \triangle ANC and \triangle ANB :

(1) 125 : 44	(2) 25 : 144
(3) 144 : 25	(4) 12 : 5

76. A vertical stick 15 cm long casts it shadow 10 cm long on the ground. At the same time a flag pole casts a shadow 60 cm long. Find the height of the flag pole.

(1) 40 cm	(2) 45 cm
(3) 90 cm	(4) None

77. Vertical angles of two isoceles triangles are equal. Then corresponding altitudes are in the ratio 4 : 9. Find the ratio of their areas :

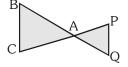
(1) 16 : 49 (2) 16 : 81

(3) 16 : 65	(4) None

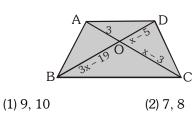
- **78.** In the figure $\triangle ACB \sim \triangle APQ$. If BC = 8 cm, PQ = 4 cm, AP = 2.8 cm, find CA :
 - (1) 8 cm

(2) 6.5 cm

(3) 5.6 cm



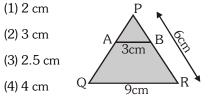
(4) None of these



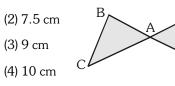
- (3) 10, 12 (4) 8, 9
- **80.** In an equilateral triangle of side 2a, calculate the length of its altitude :
 - (1) $2a\sqrt{3}$ (2) $a\sqrt{3}$ (3) $a\frac{\sqrt{3}}{2}$ (4) None
- **81.** In fig. AD is the bisector of $\angle BAC$. If BD = 2 cm, CD = 3 cm and AB = 5 cm. Find AC :

(1) 6 cm

- (2) 7.5 cm (3) 10 cm (4) 15 cm B D
- **82.** In the fig. AB ||QR. Find the length of PB :



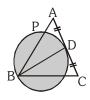
- **83.** In the fig. QA and PB are perpendicular to AB. If AO = 10 cm, BO = 6 cm and PB = 9 cm. Find AQ
 - (1) 8 cm (2) 9 cm
 - (3) 15 cm
 - (4) 12 cm
- **84.** In the given figure AB = 12 cm, AC = 15 cm and AD = 6 cm. BC||DE, find the length of AE:
 - (1) 6 cm



85. In the figure, ABC is a triangle in which AB = AC. A circle through B touches AC at D and intersects AB at P. If D is the mid-point of AC, Find the value of AB.

> (1) 2AP (2) 3AP

(3) 4AP



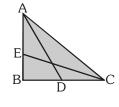
- (4) none of the above
- **86.** In figure, ABC is a right triangle, right angled at B. AD and CE are the two medians drawn from A and

C respectively. If AC = 5 cm and AD = $\frac{3\sqrt{5}}{2}$ cm,

find the length of CE:

- (1) $2\sqrt{5}$ cm
- (2) 2.5 cm
- (3) 5 cm

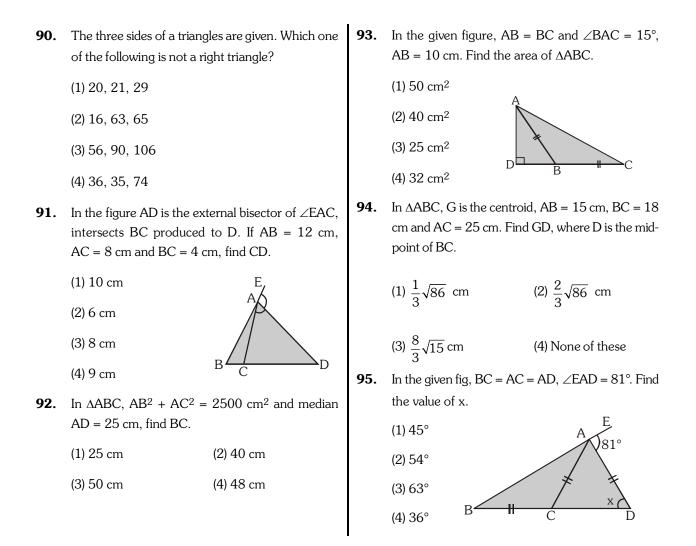
(4) $4\sqrt{2}$ cm



87. In a $\triangle ABC$, AB = 10 cm, BC = 12 cm and AC = 14 cm. Find the length of median AD. If G is the centroid, find length of GA :

(1)
$$\frac{5}{3}\sqrt{7}, \frac{5}{9}\sqrt{7}$$
 (2) $5\sqrt{7}, 4\sqrt{7}$
(3) $\frac{10}{\sqrt{3}}, \frac{8}{3}\sqrt{7}$ (4) $4\sqrt{7}, \frac{8}{3}\sqrt{7}$

- **88.** $\triangle ABC$ is a right angled triangle at A and AD is the altitude to BC. If AB = 7 cm and AC = 24 cm. Find the ratio of AD is to AM if M is the mid-point of BC.
 - (1) 25 : 41 (2) 32 : 41
 - (3) $\frac{336}{625}$ (4) $\frac{625}{336}$
- **89.** Area of $\triangle ABC = 30 \text{ cm}^2$. D and E are the mid-points of BC and AB respectively. Find ar ($\triangle BDE$).
 - (1) 10 cm (2) 7.5 cm
 - (3) 15 cm (4) None



ANSWER	KEY
--------	-----

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	2	3	4	1	3	4	4	2	2	2	3	4	2	
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	3	2	4	3	1	4	3	2	3	3	3	1	1	
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	3	3	4	4	1	4	2	4	3	4	3	1	3	3	
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	1	1	3	3	1	1	1	3	1	1	1	2	2	
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	3	2	3	2	2	3	3	1	4	1	2	3	3	2	
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	3	2	3	4	2	2	1	3	2	3	1	4	3	2	
Que.	91	92	93	94	95		-				-				
Ans.	3	3	3	2	2										