CHAPTER -02 P-BLOCK ELEMENTS

Back Bonding

Back bonding : Coordinate type bond.

If coordinate type π bond get form between central atom & bonded atom of a molecule it is known as back bonding.

Condition for formation of back bonding

- One species must have lone pair.
- another species must have vacant orbital
- size of atom should be small.

Example 1: Back bonding in Boron Trihalide

- X=F, Cl, Br, I X \rightarrow Contain lp -----donar B \rightarrow Contain vacant orbital acceptor

Few more examples of back bonding

1. Shape of trimethyl amine pyramidal while shape of trisillyl amine is triangular planar.

HYDROLYSIS Hydro - Water lysis - break down

Break down of a molecule through water and formation of new product is known as hydrolysis.

• It is nucleophilic substitution reaction.

extent of hydrolysis ∝ covalent character.			
$BeCl_2 + 2HOH \rightarrow Be(OH)_2 + 2HCl$	$BF_3 + 3HOH \rightarrow B(OH)_3 + 3HF$		
$BCl_3 + 3HOH \rightarrow B(OH)_3 + 3HCl$	$3BF_3 + 3HF \rightarrow 3H^+[BF_4]^-$		
$AlCl_3 + 3HOH \rightarrow Al(OH)_3 + 3HCl$	$4BF_3 + 3H_2O \rightarrow 3H[BF_4]$		
	(partially hydrolysis)		
$SiCl + 4HOH \rightarrow Si(OH)_4 + 4HCl \text{ or } SiO_2$	Similarly $SiF_4 + 4HOH \rightarrow Si(OH)_4 + 4HF$		
$SF_6 + H_2O \rightarrow No$ hydrolysis due to crowding	$2SiF_4 + 4HF \rightarrow H_2^+ [SiF_6]^{2-}$		
$CCl_4 + HOH \xrightarrow{\text{ordinary}} \text{No hydrolysis}$	hydrolysis followed by		

15th Group Halides

 $\begin{array}{l} NF_3 + HOH & \xrightarrow{\text{ordinary}} \text{No hydrolysis} \\ NCl_3 + HOH \rightarrow NH_3 + 3HOCl \\ PCl_3 + HOH \rightarrow H_3PO_3 + 3HCl \\ AsCl_3 + HOH \rightarrow As(OH)_3 + 3HCl \\ SbCl_3 + HOH \rightarrow SbOCl + 2HCl \\ (partial hydrolysis) \\ BiCl_3 + HOH \rightarrow BiOCl + 2HCl \\ (partial hydrolysis) \\ PCl_5 + HOH \rightarrow POCl_3 \rightarrow H_3PO_4 \\ partial \ completely \end{array}$

Hydrolysis of higher covalent character		
containing salt		
$Be_2C + 4HOH \rightarrow 2BE(OH)_2 + CH_4$		
$Mg_2C_3 + 4HOH \rightarrow 2Mg(OH)_2 + C_3H_4$		
$CaC_2 + 2HOH \rightarrow Ca(OH)_2 + C_2H_2$		
$Al_4C_3 + 12HOH \rightarrow 4Al(OH)_3 + 3CH_4$		
$Mg_3N_2+6HOH \rightarrow 3Mg(OH)_2+2NH_3$		
$AlN + 3HOH \rightarrow Al(OH)_3 + NH_3$		
$Ca_3P_2 + 6HOH \rightarrow 3Ca(OH)_2 + 2PH_3$		
$LiH + HOH \rightarrow LIOH + H_2$		
$CaH_2 + 2HOH \rightarrow Ca(OH)_2 + H_2$		

Hydrolysis of Interhalogen Compounds			
$AX + HOH \rightarrow HX + HOA$			
$AX_3 + HOH \rightarrow 3HX + HAO_2$	HX Hydrohalic acid		
$AX_5 + HOH \rightarrow 5HX + HAO_3$	HOA, HAO_2, HAO_3HAO_4 oxyacid of halogen		
$AX_7 + HOH \rightarrow 7HX + HAO_4$			

Some specific hydrolysis $XeF_2 \xrightarrow{HOH} Xe + 2HF + O_2$ $6XeF_4 \xrightarrow{HOH} 4Xe + 2XeO_3 + 24HF + 3O_2$ $XeF_6 \xrightarrow{HOH} 2HF + XeOF_4 \xrightarrow{HOH} 2HF + XeO_2F_2 \xrightarrow{HOH} 2HF + XeO_3$ partial

Oxy-Acids

- Mainly oxy-acids are hydroxide of Non-metal oxides.
- No. of H⁺ ion furnish by an oxyacid is known as their basicity. Oxyacid obtained by dissolving non-metal oxide in water. Eg. CO₂ + HOH → H₂CO₃ or OC(OH)₂ Here: CO₂ → Non metal oxide - Anhydride of carbonic acid OC(OH)₂ → Oxyacid
- $NO_2 \rightarrow Mixed$ anhydride
- it gives \rightarrow HNO₂ & HNO₃

	<u>Oxide</u>		<u>Acid</u>		
٠	$N_{2}O_{3}$	\longrightarrow	HNO_2	—	Nitrous acid
٠	$N_{2}O_{5}$	\longrightarrow	HNO_3	—	Nitric acid
٠	P_4O_{10}	\longrightarrow	H_3PO_4	—	Phosphoric acid
٠	SO_2	\longrightarrow	H_2SO_3	—	Sulphurous acid
•	SO_3	\longrightarrow	H_2SO_4	—	Sulphuric acid
•	Cl_2O_7	>	HClO₄	_	Perchloric acid

• Oxyacids of different elements

Order of acidic strength:

$$\begin{split} H_3PO_2 > H_3PO_3 > H_3PO_4\\ \text{Reducing nature}\\ H_3PO_2 > H_3PO_3 > H_3PO_4 \end{split}$$

	Element	Oxide	Oxyacid	Basicity	
1	Boron	$B_{2}O_{3}$	Ba(OH) ₃	Not protonic acid	
		_	boric acid	monobasic Lewis acid	
2	Carbon	<i>CO</i> ₂	H_2CO_3	Two	
			carbonic acid		
3	Nitrogen		$H_2N_2O_2$		
			Hyponitrous acid		
			HNO_2		
			Nitrous acid		
			HNO_3		
			Nitric acid		
			HNO_4		
			Pernitric acid		
4	Phosphorus		H_3PO_2		
			Hypophosphorus acid		
			H_3PO_3		
			Phosphorus acid		
			H_3PO_4		
			Ortho phosphoric		
			acid		
			HPO_3	HPO ₃	
			Meta phosphoric acid		
			$H_4P_2O_5$		
			Pyrophosphorus acid	us acid	
			$H_4 P_2 O_7$		
			Pyrophosphoric acid	phoric acid	
			$H_4P_2O_6$		
			Hypophosphoric acid		

OXYACIDS OF SULPHUR

- 1. Sulphurous acid H_2SO_3
- 2. Sulphuric acid H_2SO_4
- 3. Thiosulphuric acid $H_2S_2O_3$
- 4. Peroxymonosulphuric (Caro's acid) H_2SO_5 (Peroxide bond)

- 5. Peroxy
disulphuric acid (Marshal's acid) $H_2 S_2 \mathcal{O}_8$ (Peroxide bond)
- 6. Pyrosulphurous acid $H_2S_2O_5$ (S-S linkage)
- 7. Pyrosulphuric acid $H_2S_2O_7$ (S-O-S linkage)
- 8. Thionus acid $H_2S_2O_4$
- 9. Thionic acid $H_2S_2O_6$
- 10. Polythionus acid $H_2(S)_n O_4$ (S-S linkage)
- 11. Polythionic acid $H_2(S)_n O_6$ (S-S linkage)

OXYACIDS OF HALOGEN (C1)

- 1. Hypochlorous acid- HClO
- 2. Chlorous acid HClO₂
- 3. Chloric acid $HClO_3$
- 4. Perchloric acid HClO₄

Order of acidic strength

 $HClO < HClO_2 < HClO_3 < HClO_4$

Oxidising nature

 $HClO > HClO_2 > HClO_4 > HClO_4$

ALLOTROPY

- Those substance which are made up of same elements but having different bonding arrangement are known as allotropes & this phenomenon known as allotropy.
- Those elements which exhibit higher tendency of catenation exhibit higher tendency of allotropy.
- Therefore carbon, phosphorus & sulphur exhibit maximum allotropy.

ALLOTROPES OF CARBON

Τ

T

Diamond	Graphite	Fullerene Latest discovered allotrope of carbon it is found in chimney sooty particle. It contain CarCase C : sp ²	
<i>C-sp</i> ³ , tetrahedral structure C-C bond length 1.54 Å	Hexagonal layer structure		
Compact 3 dimensional structure Hardest substance Very high mp (~ 3400°C) Very high density Exhibit total internal reflection Shines brighty in light	All sp^2 hybrid carbon Unhybrid orbital electron form π -bond. This π - bond exhibit resonance and due to resonance there is mobility of electrons and it becomes conductor of electricity.	It contain C_{60} - C_{320} ; C : sp^2 hybrid Contain pentagon & hexagonal structure C_{60} : Buckminster fullerene soccer ball (football) or bucky ball. C_{60} : 20 hexagon rings 12 pentagon rings Purest form of carbon No dangling bond	

ALLOTROPES OF **PHOSPHOROUS**

Γ

(a) white phosphorous (c) Black phosphorous

(b) Red phosphorous

White phosphorous	Red Phosphorous
Waxy solid	Brittle powder
Poisonous	Non poisonous
Soluble in CS_2 , Insoluble in water	Insoluble in water & CS_2
Monomer of P_4	Polymer of P_4
Highly reactive due to bond	More stable than white
angle strain	phosphorous
It glows in dark due to slow	It does not glow in dark
oxidation (phosphorescence)	
It gives phosphine (PH_3) on	It gives hypo phosphoric acid on
reaction with NaOH	reaction with NaOH

Order of stability or MP or density \rightarrow white < red < black

ALLOTROPES OF SULPHUR

- (a) density of $\alpha S > S$
- (b) Both are puckered crown shape having S_8 units
- (c) S_2 is paramagnetic sulphur which exist in vapour form at high temperature.
- (d) S_6 is chair form of S

COMPOUNDS OF P-BLOCK

13th GROUP : BORON FAMILY

DIBORANE (B_2H_6)

dimer due to formation of 3 centre-2e-bond

(i) $3Mg + 2B \rightarrow Mg_3B_2 \xrightarrow{H_3PO_4} B_2H_6$ (ii) $B_2O_3 + 3H_2 + 2Al \xrightarrow{150^\circ C (MOP)} B_2H_6 + Al_2O_3$ (iii) $2BF_3 + 6NaH \xrightarrow{180^\circ C} B_2H_6 + 6NaF$ (iv) $NaBH_4 + I_2 \xrightarrow{\text{ether}} B_2H_6 + 2NaI + H_2$

Triethyl borate green edged flame

CARBON MONOXIDE [CO]

Colorless odourless, tasteless, neutral, poisionous gas

CARBON DI-OXIDE [0 = C = 0]

sp hybridised, acidic, green house gas partially soluble in water

CARBIDES

Binary compounds of carbon with other elements (except hydrogen) are known as carbides

COMPOUNDS OF NITROGEN FAMILY AMMONIA (NH_3)

NITRIC ACID (HNO₃)

 HNO_3 , nitric acid was earlier called as aqua fortis (meaning strong water). It usually acquires yellow colour. due to its decomposition by sunlight into NO_2 .

Method of preparation Ostwald process : $4NH_{3(g)} + 5O_{2(g)} \frac{Pt/Rh}{500L,9bar} 4HO + 6H_2O$ $2NO + O_2 \rightleftharpoons 2NO_2$ $3NO_2 + H_2O \rightarrow 2HNO_3 + NO_{(g)}$ (aq.) recycled

Concentration of nitric acid	Metal	Main products
	Mg,Mn	H_2 + metal nitrate
Very Dilute HNO ₃	Fe, Zn, Sn	NH_4NO_3 + metal nitrate
	Cu, Ag, Hg	No reaction
Dilute UNO	Fe, Zn $N_2O +$	
Difute HNO_3	Zn, Fe, Pb, Cu, Ag	NO +
Como UNO	Sm	$NO_2 + H_2SNO_3$
Conc. HNO_3	Sn	(Metastannic acid)
Conc. HNO ₃	Fe,Co,Ni,Cr,Al	rendered passive

PHOSPHINE (*PH*₃)

Preparation :

(i) $Ca_3P_2 + 6H_2O \longrightarrow 3Ca(OH)_2 + 2PH_3$ (ii) $PH_4I + NaOH \longrightarrow NaI + H_2O + PH_3$ Laboratory preparation : $P_4 + 3NaOH + 3H_2O \longrightarrow 3NaH_2PO_2 + PH_3$

Physical properties :

Colourless gas having smell of garlic or rotten fish, slightly soluble in water and slightly heavier than air.

Chemical properties :

(i)
$$2PH_3 + 4O_2 \longrightarrow P_2O_3 + 3H_2O$$

(ii) $4PH_3 \xrightarrow{713K} P_4 + 6H_2$
(iii) $PH_4 \longrightarrow PCL + 2HCL$

(iii) $PH_3 + 4Cl_2 \longrightarrow PCl_5 + 3HCl$

PHOSPHORUS HALIDES

Phosphorus form two types of halides, phosphorus trihalides, PX and phosphorus pentahalides, $PX_5(X = F, Cl, Br)$.

Preparation:

 $P_4 + 6Cl_2 \longrightarrow 4PCl_3$

Properties :

 $PCl_3 + 3H_2O \longrightarrow H_3PO_3 + 3HCl$ $2PCl_3 + O_2 \longrightarrow 2POCl_3$ $PCl_3 + Cl_2 \longrightarrow PCl_5$

Preparation:

 $P_4 + 10Cl_{2(g)} \longrightarrow 4PCl_{5(s)}$ $PCl_3 + Cl_{2(q)} \longrightarrow 4PCl_{5(s)}$ $P_4 + 10SO_2Cl_2 \longrightarrow 4PCl_3 + 10SO_2$

Properties :

Pale yellow crystalline solid. In solid state it exists as $[PCl_4]^+[PCl_6]^-$. It sublimes on heating. $PCl_5 \stackrel{\text{heat}}{\rightleftharpoons} PCl_3 + Cl_2$

partial hydrolysis $\stackrel{\text{yurolysis}}{\Rightarrow} POCl_3 + 2HCl \xrightarrow{H_2O} H_3PO_4 + 5HCl$ $PCl_5 + H_6O$

PCl₅

STRUCTURE OF OXIDES OF NITROGEN AND PHOSPHORUS

NITROGEN

Oxide of Nitrogen	Oxid.	Physical	Structure
	state	appearance	
N_20 nitrous oxide	+1	Colourless gas	$N \equiv N \rightarrow O$
NO Nitric oxide	+2	Colourless gas	N = 0
N_2O_3 Dinitrogen trioxide	+3	Blue colour solid	°N − NKO
N_2O_4 Dinitrogen tetraoxide	+4	Colourless solid	ON - NO
<i>NO</i> ₂ Nitrogen dioxide	+4	Brown gas	O NO
N_2O_5 Dinitrogen pentaoxide	+5	Colourless solid	

Structure of phosphorus trioxide (P_4O_6)

Structure of phosphorus pentaoxide (P_4O_{10})

GROUP 16 ELEMENTS HYDRIDES

All these elements form stable hydrides of the type H_2M

$$\begin{array}{ccc} 2H_2 + O_2 \rightleftharpoons 2H_2O \\ FeS + H_2SO_4 & \longrightarrow H_2S + FeSO_4 \\ Na_2Se + H_2SO_4 & \longrightarrow H_2Se + Na_2SO_4 \end{array}$$

- H_20 is a liquid due to hydrogen bonding. Others are colourless gases with unpleasant smell.
- Compound: $H_2O > H_2S > H_2Se > H_2Te$ Bond angle: 104.5° 92.5° 91° 90° (all sp^3 hybridised)
- The weakening of M–H bond with the increase in the size of M (not the electronegativity) explains the increasing acidic character of hydrides down the group.
- **Halides:** All these elements form a number of halides. The halides of oxygen are not very stable. Selenium does not form dihalides

e.g. OF_2 , Cl_2O_6 , I_2O_5 , etc.

• **Oxides :** Oxides of other elements are as follows :

Element	ment Monoxide Dioxide		Trioxide
S	SO	SO ₂	SO ₃
Se	—	SeO ₂	SeO ₃
Те	TeO	TeO_2	TeO ₃

- SO_2 is a gas having sp^2 hybridisation and V-shape $\begin{bmatrix} 1p\pi - p\pi \\ 1p\pi - d\pi \end{bmatrix}$
- SO_3 is a gas, sp^2 hybridised and planar in nature.

In solid state it exists as a cyclic trimer (SO₃)₃, α-form or as linear cross-linked sheets, β-form.

α-form

OXYGEN $(\boldsymbol{0}_2)$

- **Preparation :** By action of heat on oxygen rich compounds :
 - From oxides :

 $2Hg \ 0 \xrightarrow{\Delta} 2Hg + O_2$

• From peroxides : $2Na_2O_2 + 2H_2O \longrightarrow O_2 + 4NaOH$ $2BaO_2 \xrightarrow{\Delta} 2BaO + O_2$ • From decomposition of certain compounds

```
2KClO_3 \xrightarrow{\Delta} 2KCl + 3O_22KNO_3 \longrightarrow 2KNO_2 + 3O_2
```

• **Chemical properties :** On heating it combines directly with metals and non-metals, causing oxidation.

 $C + O_2 \longrightarrow CO_2$ $S + O_2 \longrightarrow SO_2$ $Pb + O_2 \longrightarrow PbO_2$ $2CH_3OH + O_2 \longrightarrow 2HCHO + 2H_2O$

Uses:

- When mixed with He or CO_2 , it is used for artificial respiration.
- In welding and cutting.
- As a fuel in rockets.

OZONE $(\boldsymbol{0}_3)$

- Preparation :
 - Lab method :

 $3O_2 \rightleftharpoons 2O_3(\Delta H = +ve)$

- Properties : Pale blue gas with characteristic strong smell, slightly soluble in water but more soluble in turpentine oil or glacial acetic acid.
 - Decomposition: $2O_3 \xrightarrow{573K} 3O_2 + 68kcal$
 - Oxidising action: $0_3 \longrightarrow 0_2 + 0$ $PbS + 40 \longrightarrow PbSO_4$
 - Reducing action: $H_2O_2 + O_3 \longrightarrow H_2O + 2O_2$

 $BaO_2 + O_3 \longrightarrow BaO + 2O_2$

Ozone reaction:

- (i) Tailing of Mercury : $2Hg + O_2 \longrightarrow Hg_2O + O_2$
- (ii) Estimation of Ozone : $2KI + H_2O + O_3 \longrightarrow O_2 + I_2 + KOH$ $I_2 \xrightarrow{(Na_2S_2O_3.5H_2O)} 2NaI + Na_2S_4O_6$

Uses :

- Bleaching ivory, flower, delicate fabrics, etc.
- As germicide and disinfectant, for sterilising water.
- Manufacture of *KMnO*₄ and artificial silk.

SULPHUR DIOXIDE (SO₂)

Preparation :

- By heating sulphur in air. $S + O_2 \xrightarrow{\Delta} SO_2$
- Lab method: By heating Cu with conc. H_2SO_4 . $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 + 2H_2O_4$

Properties:

- As reducing agent: $SO_2 + Cl_2 + 2H_2O \longrightarrow H_2SO_4 + 2HCl$ $2KMnO_4 + 5SO_2 + 2H_2O \longrightarrow K_2SO_4 + 2MnSO_4 + 2H_2SO_4$
- As oxidising agent : $2H_2S + SO_2 \longrightarrow 2H_2O + 3S \downarrow$
- Bleaching action : Its bleaching action is due to reduction. SO₂ + 2H₂O → H₂SO₄ + 2H Coloured matter + H → Colourless matter. 2(Nascent hydrogen)

Uses:

• In the manufacture of sulphuric acid, sulphites and hydrogen sulphide.

- As a disinfectant and fumigate.
- For bleaching delicate articles.

SULPHURIC ACID (H_2SO_4)

It is also known as oil of vitriol and king of chemicals.

Manufacture of sulphuric acid :

- Lead chamber process : The various steps involved are :
- **Contact process :** Step involved
 - (a) Production of SO_2 $S + O_2 \longrightarrow SO_2$ M.Sulphide $+O_2 \longrightarrow SO_2$
 - (b) Conversion of SO2 to SO3 $SO_2O_2 \stackrel{V_2O_5}{\rightleftharpoons} SO_3$
 - (c) $SO_3 + H_2SO_4 \longrightarrow H_2S_2O_7$ oleum $H_2S_2O_7 + H_2O \longrightarrow 2H_2SO_4$
- **Properties :** Its specific gravity is 1.8 and it is 98% by weight.
 - It is strong dibasic acid. $H_2SO_4 \rightleftharpoons 2H^+ + SO_4^{2-}$
 - It acts as an oxidising agent. $H_2SO_4 \longrightarrow H_2O + SO_2 + O$
 - Non metals are oxidised to their oxides and metals to the corresponding sulphates.
 C + 20 → CO₂
 - Dehydrating agent : It is strongly dehydrating in nature. $C_{12}H_{22}O_{11} \xrightarrow{H_2SO_4} 12C + 11H_2O$ (Charring of sugar)

Uses:

- In lead storage batteries.
- In manufacture of paints and pigments.
- In metallurgy for electrolytic refining of metals.

GROUP 17 ELEMENTS

- **Reactivity** : All halogens are chemically very reactive elements. This is due to their low dissociation energy and high EN. Fluorine is the most reactive and iodine is the least reactive halogen.
- **Oxidising power :** F is the most oxidising element due to high hydration enthalpy.

 $F_2 > Cl_2 > Br_2 > I_2$

HYDROGEN HALIDES

Bond strength, bond length and thermal stability :

Since size of halogen atom increases from *F* to *I* down the group, bond length of *H* − *X* bond increases down the group.
 ∴ reactivity and acidic character ↑.

HF < HCl < HBr < HI

- Bond strength order HF > HCl > HBr > HI.
- Bond energy order HF > HCl > HBr > HI.

REDUCING CHARACTER :

The reducing character of hydrogen halides increases down the group as

HF < HCl < HBr < HI $2HX \longrightarrow H_2 + X_2$

A less thermally stable compound has more tendency to release hydrogen easily and show greater reducing property.

OXIDES :

 $F \longrightarrow O_2 F_2, OF_2$ $Cl \longrightarrow Cl_2 O, Cl_2 O_3, Cl_2 O_5, Cl_2 O_7, Cl_2 O_2, ClO_3$ $Br \longrightarrow Br_2 O, Br_2 O_7, Br_2 O_5$ $I \longrightarrow I_2 O, I_2 O_7, I_2 O_5, I_4 O_9 \text{ (Ionic)}$

Stability : *I* > *Cl* > *Br* (Middle row anormaly)

CHLORINE (Cl_2)

- **Preparation :** By oxidation of conc. *HCl*. $PbO_2 + 4HCl \longrightarrow PbCl_2 + 2H_2O + Cl_2$ $2KMnO_4 + 16HCl \longrightarrow 2KCl + 2MnCl_2 + 8H_2O + 5Cl_2$
- Manufacture : Weldon's process : By heating pyrolusite with conc. HCl. MnO₂ + 4HCl → MnCl₂ + 2H₂O + Cl₂
- Properties : It is a yellowish green gas, poisonous in nature, soluble in water. Its aqueous solution is known as chlorine water which on careful cooling gives chlorine hydrate Cl₂.8H₂O.

Bleaching action and oxidising property

- (i) Cl₂ + H₂O → HOCl + HCl HOCl → HCl + [O] Coloured matter + nascent [O] → Colourless matter The bleaching action of chlorine is permanent and is due to its oxidising nature.
- (ii) $SO_2 + Cl_2 + 2H_2O \longrightarrow H_2SO_4 + 2HCl$

Oxidising behaviour of Cl_2

• Addition reactions : $SO_2 + Cl_2 \longrightarrow SO_2Cl_2$ $CO + Cl_2 \longrightarrow COCl_2$

Uses:

- It is used as a
 - (i) bleaching agent
 - (ii) disinfectant
 - (iii) in the manufacture of $CHCl_3, CCl_4, DDT$, bleaching powder, poisonous gas phosgene ($COCl_2$), tear gas (CCl_3NO_2) and mustard gas ($ClC_2H_4SC_2H_4Cl$).

HYDROCHLORIC ACID, (HCl)

- **Preparation :** By dissolving hydrogen chloride gas in water. Hydrogen chloride gas required in turn can be prepared by the following methods:
 - By the direct combination of hydrogen and chlorine. $H_{2(g)} + Cl_{2(g)} \xrightarrow{\text{Sunlight}} 2HCl_{(g)}$
 - Hydrogen chloride gas can also be obtained by burning hydrogen in chlorine.
 - By heating halid with conc. H_2SO_4

 $NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl$ $NaHSO_4 + NaCl \longrightarrow Na_2SO_4 + HCl$

Imp. Points :

- *HCl* cannot be dried by P_2O_5 or quick lime. $CaO + 2HCl \longrightarrow CaCl_2 + H_2$ $P_4O_{10} + 3HCl \longrightarrow POCl_3 + 3HPO_3$
- Reducing property : HCl is a strong reducing agent. $MnO_2 + 4HCl \longrightarrow MnCl_2 + 2H_2O + Cl_2$

Uses:

- In the production of dyes, paints, photographic chemicals, etc.
- Used in the preparation of chlorides, chlorine, aquaregia, etc.
- Used as a laboratory reagent.

INTERHALOGEN COMPOUNDS

- These compounds are regarded as halides of more electropositive (i.e. less electronegative) halogens.
- Types of interhalogen compound : *AB* type : *ClF*, *BrF*, *BrCl*, *ICl*, *IBr AB*₃ type : *ClF*₃, *BrF*₃, *ICl*₃ *AB*₅ type : *BrF*₅, *IF*₅ *AB*₇ type : *IF*₇

USES OF INERT GASES :

- (1) He is non-inflammable and light gas, so it is used in filling balloons for meteorological observations.
- (2) He is used in gas cooled nuclear reactors.
- (3) Liquid He is used as cryogenic agent.
- (4) He is used to produce powerful superconducting magnets.
- (5) Ne is used in discharge tubes.
- (6) Ar is used as inert atmosphere in metallurgical process.
- (7) Xenon and Krypton are used in light bulbs designed for special purposes.
- (8) He is used as a diluent for oxygen in modern diving apparatus due to its very low solubility in blood.