PART # 02

TRIGONOMETRY

EXERCISE # 01

SECTION-1 : (ONE OPTION CORRECT TYPE)

401.	The difference between the greatest and least values of the function f (x) = $\cos x + \frac{1}{2} \cos 2x - \frac{1}{3} \cos 3x$ is				
	(A) $\frac{2}{3}$	(B) ⁸ / ₇	(C) $\frac{9}{4}$	(D) $\frac{3}{8}$	
402.	lf in a ∆ABC cosA + 2 (A) A.P.	CosB + cosC = 2, then (B) H.P.	a, b, c are in (C) G.P.	(D) A.G.P.	
403.	If $f(x) = \sin^{4n}x - \cos^{4n}x$	x and g(x) = sinx + cos	x, then general soluti	fon of f(x) = $\left[g\left(\frac{\pi}{10}\right)\right]$ is (where [.] is greater the second s	eatest
	integer less than equa	al to x)			
	(A) $2n\pi + \frac{\pi}{3}, n \in I$	(B) $n\pi + \frac{\pi}{2}, n \in I$	(C) $n\pi + \frac{\pi}{4}$, n	$\in I$ (D) none of these	
404.	The maximum value	of (sin α_1) (sin α_2) ((sin α_n) under the res	strictions 0 \leq α_1 , α_2 , $\alpha_n \leq \frac{\pi}{2}$ and (t	anα ₁)
	$(\tan \alpha_2) \dots (\tan \alpha_n) = 1$	is			
	(A) $\frac{1}{2^{n}}$	(B) <u>1</u> 2n	(C) $\frac{1}{2^{n/2}}$	(D) 1	
405.	In a ∆ABC, (a + b + c)(b + c − a) = kbc if			
	(A) k < 0	(B) k > 0	(C) 0 < k < 4	(D) k > 4	
406.	Least value of (sin ⁻¹ x)	$)^{3}$ + $(\cos^{-1}x)^{3}$ is			
	(A) $-\frac{\pi^3}{8}$	(B) $-\frac{\pi^3}{32}$	(C) $\frac{\pi^3}{32}$	(D) $\frac{\pi^3}{8}$	
407.	If r, r ₀ be the in-ra	dius and ex-radius of	equilateral triangles	s having sides 2 and 3 respectively,	then
	r : r ₀ is equal to				
	(A) 2:3	(B) 1:3	(C) 1:9	(D) 2:9	
408.				lue of sin A sin B sin C is	
	(A) $\frac{2}{\sqrt{5}}$	(B) $\frac{2\sqrt{5}}{7}$	(C) $\frac{2\sqrt{5}}{9}$	(D) $\frac{2}{3\sqrt{5}}$	
409.	The equation sin ⁻¹ x =	x – a will have atleast	t one solution if		
	$(A) a \in [-1,1]$		(B) $a \in \left[-\frac{\pi}{2}, \cdot\right]$	$\left[\frac{\pi}{2}\right]$	
	(C) $a \in \left[1-\frac{\pi}{2}, 1+\frac{\pi}{2}\right]$	$\left[\frac{\pi}{2}\right]$	(D)	None of these	

410.	The solution set of x for which min(sinx, cosx) > min(-sinx, - cosx) where $x \in (0, 2\pi)$			
	(A) $\left(0,\frac{3\pi}{4}\right)\cup\left(\frac{7\pi}{4},2\pi\right)$	(B)	(0, π)	
	(C) $\left(\frac{3\pi}{4}, 2\pi\right)$	(D)	None of these	
411.	The value of tan(sin ⁻¹ cos sin ⁻¹ x) tan(cos ⁻¹ sin	cos ⁻¹ x)	$\forall x \in \left(0, \frac{\pi}{2}\right)$ is	
	(A) 0 (C) –1	. ,	1 none of these	
412.	If sin A = sin B and cos A = cos B, then (A) A = $n\pi + (-1)^n B$ (C) A = $2n\pi + B$	(B) (D)	A = $2n\pi \pm B$ none of these	
413.	If in a triangle ABC, tan A + tan B + tan C = 6 a (A) equilateral (C) acute angled	nd tan / (B) (D)	A · tan B = 2, then the triangle is obtuse angled right angled isosceles	
414.	Inside a big circle exactly n small circles each touches the big circle and two small circles. If r		us r can be drawn in such a way that each small circle en the radius of the bigger circle is	
	(A) $r \operatorname{cosec}\left(\frac{\pi}{n}\right)$	(B)	$r\left\{1+\csc\left(\frac{\pi}{n}\right)\right\}$	
	(C) $r\left\{1 + \csc\left(\frac{2\pi}{n}\right)\right\}$ (D)	$r iggl\{ 1 +$	$\operatorname{cosec}\left(\frac{\pi}{2n}\right)$	
415.	In a right angled triangle ABC, if $\angle C = \frac{\pi}{2}$ and	∠A = 2∠	∠B, then $\frac{R}{r}$ is	
	(A) $\frac{\sqrt{3}+1}{2}$	(B)	$\frac{\sqrt{3}+1}{2\sqrt{2}}$	
	(C) $\frac{2}{\sqrt{3}-1}$	(D)	$\frac{2\sqrt{2}}{\sqrt{3}+1}$	
416.	If in a triangle sin ⁴ A + sin ⁴ B + sin ⁴ C = sin ² B sir to	² C + 2	$sin^2C sin^2A + 2 sin^2A sin^2B$, then angle A can be equal	
	(A) 120° (C) 30°	(B) (D)	50° 45°	
417.	to it, then the difference of two acute angles is		the length of perpendicular drawn from opposite vertex	
	(A) 75 (C) 30	(B) (D)	0 60	
418.	The area of the circle and area of a regular p ratio	entagor	n having perimeter equal to that of the circle are in the	

(A) $\tan\left(\frac{\pi}{5}\right):\frac{\pi}{5}$ (B) $\cot\left(\frac{\pi}{5}\right):\frac{\pi}{5}$ (C) $\sin\left(\frac{\pi}{5}\right):\frac{\pi}{5}$ (D) $\cos\left(\frac{\pi}{5}\right):\frac{\pi}{5}$

419. Let α , β , γ be the altitudes on the sides a, b, c respectively of a $\triangle ABC$. If α , β , γ are the roots of the equation $x^3 - 12x^2 + 44x - 48$, then the inradius of the $\triangle ABC$ is :

(A)	$\frac{11}{12}$	(B)	<u>12</u> 11
(C)	5	(D)	3

420. The maximum value of the function $f(x) = (\sin^{-1} (\sin x))^2 - \sin^{-1} (\sin x)$ is

(A)	$\frac{\pi}{4}[\pi + 2]$	(B)	$rac{\pi}{4}\left[\pi-2 ight]$
(C)	$\frac{\pi}{2}[\pi + 2]$	(D)	$\frac{\pi}{2}[\pi - 2]$

421. The value of $\tan^4 \frac{\pi}{16} + 4\tan^3 \frac{\pi}{16} - 6\tan^2 \frac{\pi}{16} - 4\tan \frac{\pi}{16}$ is equal to (A) 0 (B) 1 (C) -1 (D) 2

422. If $(\sin\theta, \cos\theta)$ and (3, 2) lie on the same side of the line x + y = 1, then θ lies between

(A)	$\left(0,\frac{\pi}{2}\right)$	(B)	(0, π)
(c)	$\left(\frac{\pi}{4},\frac{\pi}{2}\right)$	(D)	$\left(0,\frac{\pi}{4}\right)$

423. The number of possible real solutions of $\tan^{-1}(x^2 + x + 1) + \cos^{-1}(x^2 + 2x + 9) = \frac{3\pi}{2}$ is:

- (A) 0 (B) 1
- (C) 2 (D) 4

424. Sides of a \triangle ABC are in A.P. If a < min{b, c} and c > max{a, b}, then cosA is :

(A)	$\frac{3c-4b}{2b}$	(B)	$\frac{3c-4b}{2c}$
(C)	$\frac{4c-3b}{2a}$	(D)	$\frac{4c-3b}{2b}$

425. The number of ordered pairs (x, y) satisfying the system of equations given by sinx + siny = sin(x + y) and |x| + |y| = 1 is

(A)	2	(B)	4
(C)	6	(D)	none of these

Section-2 (MORE THAN ONE option correct type)

426. The equation
$$2\sin \frac{x}{2}\cos^2 x - 2\sin \frac{x}{2}\sin^2 x = \cos^2 x - \sin^2 x$$
 has a root for which
(A) $\sin 2x = 1$ (B) $\cos 2x = -\frac{1}{2}$ (C) $\sin 2x = -1$ (D) $\cos x = \frac{1}{2}$
427. The side of *AABC* satisfy the equation $2a^2 + 4b^2 + c^2 - 4ab + 2ac$. Then -
(A) the triangle is isosceles (B) the triangle is obtuse
(C) $B - \cos^{-1}\frac{\pi}{8}$ (D) $A - \cos^{-1}\frac{1}{4}$
428. If $\left(\cos^2 x + \frac{1}{\cos^2 x}\right)\left(1 + \tan^2 2y\right)(3 + \sin 3z) = 4$, then
(A) x may be a multiple of π (B) z can be a multiple of π
(C) y can be a multiple of $\frac{\pi}{2}$ (D) x cannot be an even multiple of π
(C) y can be a multiple of $\frac{\pi}{2}$ (D) x cannot be an even multiple of π
(C) y can be a multiple of $\frac{\pi}{2}$ (D) x cannot be an even multiple of π
(C) y can be a multiple of $\frac{\pi}{2}$ (D) x cannot be an even multiple of π
(C) $2 + \sqrt{3}$, when $x > 1$ (B) $2 - \sqrt{3}$, when $0 < x < 1$
(C) $2 + \sqrt{3}$, when $0 < x < 1$ (D) $-\frac{1}{\sqrt{3}}$, when $0 < x < 1$
(C) $2 + \sqrt{3}$, when $0 < x < 1$ (D) $-\frac{1}{\sqrt{3}}$, when $x > 2$
430. If inside a big circle exactly 24 small circles, each of radius 2, can be drawn in such a way that each small circles the big circle at also touch both its adjacent small circles, then radius of the big circle is
(A) $2\left(1 + \csc \frac{\pi}{24}\right)$ (B) $\left(\frac{1 + \tan \frac{\pi}{24}}{\cos \frac{\pi}{24}}\right)$ (C) $2\left(1 + \csc \frac{\pi}{12}\right)$ (D) $\frac{2\left(\sin \frac{\pi}{48} + \cos \frac{\pi}{48}\right)^2}{\sin \frac{\pi}{24}}$
431. If $\tan^{-1}(x^2 + 3|x| - 4) + \cot^{-1}(4\pi + \sin^{-1}\sin 14) - \frac{\pi}{2}$, then the value of sin^{-1} sin 2x is equal to
(A) $6 - 2\pi$ (B) $2\pi - 6$ (C) $\pi - 3$ (D) $3 - \pi$
432. Let $\{x\} = \sin x + b\sqrt{1 - a^2} \cos x + c$, where $|a| < 1, b > 0$ then
(A) maximum value of $\{x\}$ is $b \ f c = 0$
(B) difference of maximum and minimum value of $\{x\}$ is $2b$
(C) $f(x) = ci x = -\cos^{-1}a$
433. If in a triangle ABC, $A \le B \le C$ and $\sin A \le \sin B \le \sin C$, then the triangle may be
(A) equilateral (B) isosceles (C) obtuse angled (D) right angled
434. If $\cos \alpha = \frac{1}{2}\left(x + \frac{1}{x}\right)$ and $\cos \beta = \frac{1}{2}\left(y + \frac{1}{y}\right\right)$, $(xy > 0) x, y, \alpha, \beta \in \mathbb{R}$ then
(A) $\sin(\alpha + \beta + \gamma) =$

(D) $\cot\theta_1 + \cot\theta_2 + \cot\theta_3 = 0$

436.	$\theta = \tan^{-1}(2\tan^2\theta) - \tan^{-1}\left(\frac{1}{3}\tan\theta\right)$, then $\tan\theta$ is	S	
	(A) – 2 (B) 1	(C) $\frac{2}{3}$ (D) 2	
437.	If $0 < \alpha$, $\beta < \pi$ and $\cos \alpha + \cos \beta - \cos(\alpha + \beta) = \frac{3}{2}$	$\frac{3}{2}$ then	
	(A) $\alpha = \frac{\pi}{3}$ (B) $\beta = \frac{\pi}{3}$	(C) $\alpha = \beta$ (D) $\alpha + \beta = \frac{\pi}{3}$	
438.		C. If 'r' is the radius of the circle inscribed in $\triangle ABC$ and ' ρ ' b ne angle A, then the product ' ρ r' can be equal to)e
	(A) $R^2 \sin^2 A$ (B) $R^2 \sin^2 2B$	(C) $\frac{1}{2}a^2$ (D) $\frac{a^2}{4}$	
439.	Which of the following functions have maximum	m value unity?	
	(A) $\sin^2 x - \cos^2 x$	(B) $\sqrt{\frac{6}{5}} \left(\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{3}} \cos x \right)$	
	(C) $\cos^6 x + \sin^6 x$	(D) $\cos^2 x + \sin^4 x$	
440.	Let $S_n = \tan^{-1}\frac{4}{7} + \tan^{-1}\frac{4}{19} + \dots + \tan^{-1}\frac{4}{4n^2 + 3}$, the	then	
	(A) $S_n = \tan^{-1}\left(\frac{2n+5}{4n}\right)$	(B) $S_n = \cot^{-1}\left(\frac{2n+5}{4n}\right)$	
	(C) $S_{\infty} = \tan^{-1}2$	(D) $S_{\infty} = \cot^{-1}2$	
441.	If $\cos \alpha = \frac{1}{2} \left(x + \frac{1}{x} \right)$ and $\cos \beta = \frac{1}{2} \left(y + \frac{1}{y} \right)$, (xy >	> 0) x, y, α , $\beta \in R$ then	
	(A) $\sin(\alpha + \beta + \gamma) = \sin \gamma \forall \gamma \in \mathbb{R}$	(B) $\cos\alpha\cos\beta = 1 \forall \alpha, \beta \in \mathbb{R}$	
	(C) $(\cos\alpha + \cos\beta)^2 = 4 \forall \alpha, \beta \in \mathbb{R}$	(D) $\sin(\alpha + \beta + \gamma) = \sin\alpha + \sin\beta + \sin\gamma \forall \alpha, \beta, \gamma \in \mathbb{R}$	
442.		or equal to x, then which of the following statement is true	
	 (A) sin[x] = cos[x] has no solution (C) sin[x] = cos[x] possess unique solution 	(B) $sin[x] = tan[x]$ has infinitely many solutions (D) $sin[x] = tan[x]$ for no value of x	
443.		ths a_1 , a_2 , a_3 and b_1 , b_2 , b_3 respectively satisfying the relation	on
		$\sqrt{a_3b_3}$, then which one of the following statements is/are true?	
		2 2 2	
	1 2 5	(B) $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} = 1$	
		(D) $\Delta A_1 A_2 A_3$ and $\Delta B_1 B_2 B_3$ are congruent	
444.	If $\theta_R \in [0, \pi]$ for $1 \le k \le 10$, then the maximum values	value of $\prod_{R=1}^{10} (1 + \sin^2 \theta_R)(1 + \cos^2 \theta_R)$ is -	
	(A) $\left(\frac{3}{2}\right)^{10}$ (B) $\left(\frac{9}{4}\right)^{10}$	(C) $\left(\frac{3}{2}\right)^{20}$ (D) $\left(\frac{9}{4}\right)^5$	
445.	If $0 \le \alpha$, $\beta \le \frac{\pi}{2}$ and $\cos \alpha + \cos \beta = 1$, then -		
	(A) $\alpha + \beta \ge \frac{\pi}{2}$ (B) $\cos(\alpha + \beta) \le 0$	(C) $\alpha + \beta \leq \frac{\pi}{2}$ (D) $\cos(\alpha + \beta) \geq 0$	

If $3 \sin \beta = \sin (2\alpha + \beta)$, then $\tan (\alpha + \beta) - 2 \tan \alpha$ is : 446. independent of α (A) (B) independent of β (C) dependent of both α and β (D) independent of α but dependent of β 447. If $x = \sec \phi - \tan \phi \& y = \csc \phi + \cot \phi$ then: (B) $y = \frac{1+x}{1-x}$ (A) $x = \frac{y+1}{y-1}$ (C) $x = \frac{y-1}{y+1}$ (D) xy + x - y + 1 = 0448. $(a + 2) \sin \alpha + (2a - 1) \cos \alpha = (2a + 1)$ if $\tan \alpha =$ (A) $\frac{3}{4}$ (B) $\frac{4}{3}$ (C) $\frac{2a}{a^2+1}$ (D) $\frac{2a}{a^2-1}$ 449. $sinx - cos^2x - 1$ assumes the least value for the set of values of x given by: x = n π + (-1)ⁿ⁺¹(π /6) , n \in I $x = n\pi + (-1)^n (\pi/6)$, $n \in I$ (A) (B) $x = n\pi + (-1)^n (\pi/3), n \in I$ (D) $x = n\pi - (-1)^n (\pi/6)$, $n \in I$ (C) If the numerical value of tan $(\cos^{-1}(4/5) + \tan^{-1}(2/3))$ is a/b then 450. (A) a + b = 23(B) a - b = 11(C) 3b = a + 1(D) 2a = 3bIt is known that $\sin \beta = \frac{4}{5} \& 0 < \beta < \pi$ then the value of $\frac{\sqrt{3}\sin(\alpha + \beta) - \frac{2}{\cos\frac{\pi}{6}}\cos(\alpha + \beta)}{\sin\alpha}$ is: 451. independent of α for all β in (0, π) (B) $\frac{5}{\sqrt{3}}$ for tan $\beta > 0$ (A) $\frac{\sqrt{3}(7+24\cot\alpha)}{15}$ for tan $\beta < 0$ (C) (D) None 452. If the sides of a right angled triangle are $\{\cos 2\alpha + \cos 2\beta + 2\cos(\alpha + \beta)\}$ and $\{\sin 2\alpha + \sin 2\beta + 2\sin(\alpha + \beta)\}$, then the length of the hypotenuse is: 2[1+cos($\alpha - \beta$)] (B) 2[1-cos($\alpha + \beta$)](C) 4 cos² $\frac{\alpha - \beta}{2}$ (D) 4sin² $\frac{\alpha + \beta}{2}$ (A) If tan x = $\frac{2b}{a-c}$, (a \neq c) 453. $y = a \cos^2 x + 2b \sin x \cos x + c \sin^2 x$ $z = a \sin^2 x - 2b \sin x \cos x + c \cos^2 x$, then (B) y + z = a + c (C) y - z = a - c (D) $y - z = (a - c)^2 + 4b^2$ (A) y = z $\left(\frac{\cos A + \cos B}{\sin A - \sin B}\right)^n + \left(\frac{\sin A + \sin B}{\cos A - \cos B}\right)^n$ 454. (A) $2 \tan^n \frac{A-B}{2}$ (B) $2 \cot^n \frac{A-B}{2}$: n is even (C) 0 : n is odd (D) none The equation $\sin^6 x + \cos^6 x = a^2$ has real solution if 455. $a \in (-1, 1)$ (B) $a \in \left(-1, -\frac{1}{2}\right)$ (C) $a \in \left(-\frac{1}{2}, \frac{1}{2}\right)$ (D) $a \in \left(\frac{1}{2}, 1\right)$ (A)

- **456.** $\cos 4x \cos 8x \cos 5x \cos 9x = 0$ if
 - (A) $\cos 12x = \cos 14 x$ (B) $\sin 13 x = 0$ (C) $\sin x = 0$ (D) $\cos x = 0$
- **457.** In a \triangle ABC, following relations hold good. In which case(s) the triangle is a right angled triangle? (A) $r_2 + r_3 = r_1 - r$ (B) $a^2 + b^2 + c^2 = 8 R^2$ (C) $r_1 = s$ (D) $2 R = r_1 - r$
- **458.** In a triangle ABC, with usual notations the length of the bisector of angle A is :

(A)
$$\frac{2bc\cos\frac{A}{2}}{b+c}$$
 (B) $\frac{2bc\sin\frac{A}{2}}{b+c}$ (C) $\frac{abc\csc\frac{A}{2}}{2R(b+c)}$ (D) $\frac{2\Delta}{b+c}\cdot\csc\frac{A}{2}$

459. AD, BE and CF are the perpendiculars from the angular points of a \triangle ABC upon the opposite sides, then :

(A)
$$\frac{\text{Perimeter of } \Delta \text{DEF}}{\text{Perimeter of } \Delta \text{ABC}} = \frac{\text{r}}{\text{R}}$$
 (B) Area of $\Delta \text{DEF} = 2 \Delta \cos A \cos B \cos C$

(C) Area of
$$\triangle AEF = \triangle \cos^2 A$$
 (D) Circum radius of $\triangle DEF = \frac{R}{2}$

460. In a triangle ABC, points D and E are taken on side BC such that BD = DE = EC. If angle ADE = angle AED = θ , then:

(A)
$$\tan \theta = 3 \tan B$$
 (B) $3 \tan \theta = \tan C$

(C)
$$\frac{6 \tan \theta}{\tan^2 \theta - 9} = \tan A$$
 (D) angle B = angle C

461. With usual notation, in a \triangle ABC the value of Π (r₁ – r) can be simplified as:

(A)
$$abc \prod tan \frac{A}{2}$$
 (B) $4 r R^2$ (C) $\frac{(a b c)^2}{R(a+b+c)^2}$ (D) $4 R r^2$

462. α , β and γ are three angles given by

$$\alpha = 2\tan^{-1}(\sqrt{2} - 1), \ \beta = 3\sin^{-1}\frac{1}{\sqrt{2}} + \sin^{-1}\left(-\frac{1}{2}\right) \ \text{and} \ \gamma = \cos^{-1}\frac{1}{3}. \ \text{Then}$$
(A) $\alpha > \beta$ (B) $\beta > \gamma$ (C) $\alpha < \gamma$ (D) $\alpha > \gamma$
463. $\cos^{-1}x = \tan^{-1}x \ \text{then}$

(A)
$$x^{2} = \left(\frac{\sqrt{5}-1}{2}\right)$$
 (B) $x^{2} = \left(\frac{\sqrt{5}+1}{2}\right)$
(C) $\sin(\cos^{-1}x) = \left(\frac{\sqrt{5}-1}{2}\right)$ (D) $\tan(\cos^{-1}x) = \left(\frac{\sqrt{5}-1}{2}\right)$

464. For the equation $2x = \tan (2 \tan^{-1} a) + 2 \tan (\tan^{-1} a + \tan^{-1} a^3)$, which of the following is invalid? (A) $a^2x + 2a = x$ (B) $a^2 + 2ax + 1 = 0$ (C) $a \neq 0$ (D) $a \neq -1, 1$

465. The sum
$$\sum_{n=1}^{\infty} \tan^{-1} \frac{4n}{n^4 - 2n^2 + 2}$$
 is equal to:
(A) $\tan^{-1} 2 + \tan^{-1} 3$ (B) $4 \tan^{-1} 1$ (C) $\pi/2$ (D) $\sec^{-1} \left(-\sqrt{2}\right)$

SECTION - 3: (COMPREHENSION TYPE)

COMPREHENSION-1

Paragraph for Questions Nos. 466 to 468

The functions $\sin^{-1}x$, $\cos^{-1}x$, $\tan^{-1}x$, $\cot^{-1}x$, $\csc^{-1}x$ and $\sec^{-1}x$ are called inverse circular or inverse trigonometric functions which are defined as follows

	sin ⁻¹ x	$-1 \le x \le 1$	$\frac{\pi}{2} \le \sin^{-1} x \le \frac{3\pi}{2}$	
	cos ⁻¹ x	$-1 \le x \le 1$	$-\pi \leq cos^{-1} x \leq 0$	
	tan ⁻¹ x	$x \in R$	$-\frac{\pi}{2} < \tan^{-1} x < \frac{\pi}{2}$	
	cosec ⁻¹ x	$ \mathbf{x} \ge 1$	$\frac{\pi}{2} \le \cos e c^{-1} x \le \frac{3\pi}{2}$	$\neq \pi$
	sec ⁻¹ x	$ \mathbf{x} \ge 1$	$-\pi \leq sec^{-1} \ x \leq 0$	$\neq -\frac{\pi}{2}$
	cot ⁻¹ x	$x \in R$	$0 < \cot^{-1} x < \pi$	-
466.	For $x \in [0, 1]$, $\sin^{-1} x$ is	s equal to		
	(A) $\cos^{-1}\sqrt{1-x^2} + x^2$	π (B) $\cos^{-1}\sqrt{1-x^2} + \frac{\pi}{2}$	(C) $-\cos^{-1}\sqrt{1-x^2}$	(D) None of these
467.	Number of solutions of	f tan ⁻¹ x - cos ⁻¹ x = 0 is/	are	
	(1) 0			

(A)	2	(B)	1
(C)	0	(D)	None of these

468. $\lim_{x \to 0} \tan\left(\frac{\sin^{-1} x^4 + \sin^{-1} x^9}{4}\right)$

(A) Does not exist as L.H.L. and R.H.L. both are finite and unequal

(B) Exist as L.H.L. = R.H.L.

(C) R.H.L. and L.H.L. are unequal (D) None of these

COMPREHENSION-2

Paragraph for Questions Nos. 469 to 471

ABCD be a cyclic quadrilateral and AB = a, BC = b, CD = c and DA = d; AC = x and BD = y,

469. If a = 2, b = 6, c = 4, d = 3 and y = 5, then the value of x will be

(A) 26 (B)
$$\frac{18}{5}$$
 (C) $\frac{8}{5}$ (D) $\frac{26}{5}$

470. If a, b, c and d have above values, then the value of $\angle B$ will be

(A)
$$\cos^{-1}\left(-\frac{15}{48}\right)$$
 (B) $\cos^{-1}\left(\frac{1}{2}\right)$ (C) $\cos^{-1}\left(-\frac{1}{2}\right)$ (D) $\cos^{-1}\left(\frac{15}{48}\right)$

471. The minimum value of $\frac{(a^2 + b^2 + c^2)}{d^2}$ in any quadrilateral, where a, b, c and d are sides of quadrilateral, will be

(A) 1 (B)
$$\frac{1}{2}$$
 (C) $\frac{1}{3}$ (D) $\frac{1}{4}$

COMPREHENSION-3

Paragraph for Questions Nos. 472 to 474

Consider the equation $\frac{4}{\sin x} + \frac{1}{1 - \sin x} = k$, where x and k are real.

472. The values of x for which the equation is defined

(A)
$$x \neq n\pi$$
, $x \neq (2n-1)\frac{\pi}{2}$, $n \in I$ (B) $x \neq n\pi$, $x \neq (2n+1)\frac{\pi}{2}$, $n \in I$

(C) $\mathbf{x} \neq \mathbf{n}\pi, \ \mathbf{x} \neq (4n+1)\frac{\pi}{2}, n \in I$ (D) none of these

473. The least value of 'k' for which the given equation has a solution in $\left(0, \frac{\pi}{2}\right)$ must be

474. If K = 10, then the number of solution in $\left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right)$ must be (A) 0 (B) 1 (C) 2 (D) none of these

COMPREHENSION-4

Paragraph for Questions Nos. 475 to 477

△ABC is inscribed in a circle and AL, BM and CN are diameters (2R) of circumcircle of △ABC, then

475.	The	area of \triangle BLC is		
	(A)	R ² sin A sin B sin C	(B)	2R ² sin A cos B cos C
	(C)	$2R^2 \sin A \sin B \sin C$	(D)	$R^2 sin A sin B cos C$
476.	Area	of ∆ANB is		
	(A)	2R ² sin A sin B sin C		2R ² sin A sin B cos C
	(C)	2R ² sin A cos B cos C	(D)	$2R^2 \sin C \cos A \cos B$
477.	Area	of ${\Delta}\text{BLC}$ + area of ${\Delta}\text{CMA}$ + area of ${\Delta}\text{ANB}$	is equ	al to
	(Δ)	abc	(B)	abc

(A)	$\frac{abc}{R}$	(B)	$\frac{abc}{2R}$
(C)	abc	(D)	None of these

3R

COMPREHENSION-5

Paragraph for Questions Nos. 478 to 480

Let \triangle ABC be an equilateral triangle of sides of length a. On side AB produced, a point P is chosen such that PA = AB.

478. Inradius of △APC is

(A)
$$\frac{a\sqrt{3}}{2}$$
 (B) $\frac{a}{2}$
(C) $\frac{a\sqrt{3}}{2(2+\sqrt{3})}$ (D) None of these

479. Circumradius of $\triangle PBC$ is

(A) 2a (B) a
(C)
$$\frac{a}{2}$$
 (D) $\frac{a\sqrt{3}}{2}$

480. Let the excircle of $\triangle PBC$ w.r.t. side BC touch PC produced at E, then CE is equal to

(A)
$$\frac{3a+a\sqrt{3}}{2}$$

(B) $\frac{3a-a\sqrt{3}}{2}$
(C) $a\sqrt{3}$
(D) None of these

COMPREHENSION-6

Paragraph for Questions Nos. 481 to 483

In a triangle ABC, the equation of the side BC is 2x - y = 3 and its circumcentre and orthocentre are at (2, 4) and(1, 2) respectively.

481. Circumradius of triangle ABC is

(A)
$$\sqrt{\frac{61}{5}}$$
 (B) $\sqrt{\frac{51}{5}}$
(C) $\sqrt{\frac{41}{5}}$ (D) $\sqrt{\frac{43}{5}}$

482. The value of sin B sin C is equal to

(A)
$$\frac{9}{2\sqrt{61}}$$
 (B) $\frac{9}{4\sqrt{61}}$

(C)
$$\frac{9}{\sqrt{61}}$$
 (D) $\frac{9}{3\sqrt{61}}$

483. The distance of orthocentre to vertex A is equal to

(A)
$$\frac{1}{\sqrt{5}}$$
 (B) $\frac{6}{\sqrt{5}}$

(C)
$$\frac{3}{\sqrt{5}}$$
 (D) $\frac{2}{\sqrt{5}}$

COMPREHENSION-7

Paragraph for Questions Nos. 484 to 486

Let S_1 be the set of all those solutions of the equation $(1 + a) \cos\theta \cos(2\theta - b) = (1 + a \cos 2\theta)\cos(\theta - b)$ which are independent of a and b and S_2 be the set of all such solutions which are dependent on a and b. Then

484. The set S_1 and S_2 are

(A)
$$\{n\pi, n \in Z\}$$
 and $\frac{1}{2}\{n\pi + (-1)^n \sin^{-1}(a \sinh) + b; n \in Z\}$

- $(B) \quad \{n\frac{\pi}{2}\,,\,n\,\in\,Z\} \text{ and } \{n\pi + (-1)^n \sin^{-1} (a \text{ sinb});\,n\,\in\,Z\}$
- $(C) \quad \{n\frac{\pi}{2}\,,\,n\,\in\,Z\} \text{ and } \{n\pi\,+\,(-1)^n\,sin^{-1}\,(\frac{a}{2}\,sinb);\,n\,\in\,Z\}$
- (D) None of these

(A)
$$\left|\frac{a}{2}sinb\right| < 1$$
 (B) $\left|\frac{a}{2}sinb\right| \le 1$ (C) $|a sinb| \le 1$ (D) None of these

486. All the permissible values of b if a = 0 and S_2 is a subset of $(0, \pi)$:

(A)	$b \in (-n\pi, 2n\pi), n \in Z$	(B)	$b \in (-n\pi, 2\pi - n\pi), n \in Z$
(C)	$b \in (-n\pi, n\pi), n \in Z$	(D)	None of these

COMPREHENSION-8

Paragraph for Questions Nos. 487 to 489

A quadrilateral ABCD is such that a circle can be inscribed in it and a circle can be circumscribed about it.

487.	$lf\frac{a}{b} =$	$\frac{c}{d}$, then					-		
	(A)	∠A = 90°	(B)	∠A = 90°	(C)	∠B = 90°		(D)	∠C = 90°
488.	tan ²	$\left(\frac{A}{2}\right)$ is							
	(A)	ab cd			(B)	$\frac{bc}{ad}$			
	(C)	ac bd			(D)	$\frac{bd}{ac}$			

489. Let P₁ and P₂ be the points of contact of AB and AD respectively with the incircle of quadrilateral ABCD. Then cosA + cos∠P₁OP₂ (where O is incentre of quadrilateral ABCD)

- (A) 2cosB (B) 0
- (C) 1 (D) can't be determined

COMPREHENSION-9

Paragraph for Questions Nos. 490 to 492

If θ = (2n + 1) $\frac{\pi}{7}$ and n = 0, 1, 2, 3, 4, 5, 6, then								
490.	The	value of $\sec \frac{\pi}{7} + \sec \frac{\pi}{7}$	$ec\frac{3\pi}{7}+$	sec $\frac{5\pi}{7}$ is				
	(A)	4	(B)	- 3	(C)	3	(D)	None of these
491.	The	value of $\sec^2 \frac{\pi}{7} \sec^2 \pi$	$c^2 \frac{3\pi}{7}$	$+\sec^2\frac{3\pi}{7}\sec^2\frac{5\pi}{7}$	⊦ sec²	$\frac{5\pi}{7}$ sec ² $\frac{\pi}{7}$ is		
	(A)	- 80	(B)	80	(C)	24	(D)	- 24
492.	The	value of $\tan^2 \frac{\pi}{7}$ tan	$2\frac{3\pi}{7}$ ta	$an^2 \frac{5\pi}{7}$ is				
	(A)	6	(B)	7	(C)	8	(D)	None of these
				Compre	HEN	SION-10		
			Par	agraph for Qu	estio	ns Nos. 493 to	495	
$Consider (1+\sin\theta + \sin^2\theta)^n = \sum_{r=0}^{2n} a_r (\sin\theta)^r \text{ ; } \theta \in R.$								
493.	a n + 1	+ a _{n + 2} + + a _{2n -}	1 equ	als				
	(A)	$\frac{3^n}{2}$			(B)	$\frac{3^n-a_n}{2}$		
	(C)	$2(3^{n}-a_{n})$			(D)	$3^n - a_n$		
494.	a ₀ ² –	$a_1^2 + a_2^2 - \dots a_{2n}^2$ is equivalent to a set of the set of	qual to)				
	(A)	a _n			(B)	a ² _n		
	(C)	$2 a_n^2$			(D)	$\frac{a_n}{2}$		
495.	The (A)	value of $a_0 + 2a_1 + n 3^{n-1}$	3a ₂ +	+ (2n + 1)a _{2n} is	(B)	n 3 ⁿ		

(C) (n + 1)3ⁿ (D) N

(B) n 3ⁿ(D) None of these

SECTION - 4 (MATRIX MATCH Type)

496. Match the following:

List – I	List – II
(A) sinx $\cos^3 x > \cos x \sin^3 x$, $0 \le x \le 2\pi$ is	(i) $\left[-\pi, -\frac{3\pi}{4}\right] \cup \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \cup \left[\frac{3\pi}{4}, \pi\right]$
(B) $4 \sin^2 x - 8 \sin x + 3 \le 0, \ 0 \le x \le 2\pi$, is	(ii) $\left[\frac{3\pi}{2}, 2\pi\right] \cup \{0\}$
(C) $ tanx \le 1$ and $x \in [-\pi, \pi]$ is	(iii) $\left(0, \frac{\pi}{4}\right)$
(D) cosx – sinx \geq 1 and 0 \leq x \leq 2 π	(iv) $\left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$

497. Match the following :

List – I	List – II
(A) The number of pairs (x, y) satisfying the equation sinx + siny =	(i) 3
sin(x + y) x + y = 1 is	
(B) The number of values of x for which f (x) is valid $f(x) =$	(ii) 8
$\sqrt{\sec^{-1}\left(\frac{1- x }{2}\right)}$	
(C) If x, y \in [0, 2 π], then total number of ordered pairs (x, y)	(iii) ∞
satisfying	
sinx cosy = 1	
(D) $f(x) = sinx - cosx - kx + b$ decreases for all values of real values	(iv) 6
of x when $4\sqrt{2}k$ is always greater than	

498. Match the following

List – I	List – II
(A) If $y = \cos^{-1}(\cos x)$ then for $-\pi \le x \le 0$, value of y is	(i) x – π
(B) For $x \in (-\infty, -1] \cup (1, \infty)$ if $y = \sec(\sec^{-1} x)$, then value of	(ii) x + π
y is equal t	
(C) For $\frac{\pi}{2} < x < \frac{3\pi}{2}$	(iii) x
$y = tan^{-1}$ (tan x), then value of y is equal to	
(D) For $-\frac{3\pi}{2} < x < -\frac{\pi}{2}$ if y = tan ⁻¹ (tan x), then value of y is	(iv) –x
equal to	

List – I	List – II
(A) $f(x) = \int_{0}^{\sin x} t^2 dt$, then period of f'(x) is	(i) $\frac{\pi}{14}$
(B) If area of ellipse $b^2x^2 + a^2y^2 = a^2b^2$ (a > b), enclosed by x-axis and the ordinates x = 0 and x = b be $\frac{1}{8}$ th the area of entire	(ii) $\frac{\pi}{2}$
ellipse, then $e\sqrt{1-e^2} + \sin^{-1}\sqrt{1-e^2}$ =	
(C) Let $f(x) = \frac{\csc e^{-1}x + \cos^{-1}\left(\frac{1}{x}\right)}{\csc ex}$, then greatest value is	(iii) $\frac{\pi}{4}$
(D) $\cos^{-1}\left(\sin\left(\frac{46\pi}{7}\right)\right)$ is	(iv) 2π

500. Match the following :

List – I	List – II
(A) Period of $\tan \frac{\pi}{2}$ [x] (where [.] denotes the greatest	(i) 2π
integer function)	
(B) Period of $\sin\left(2\pi x + \frac{\pi}{3}\right) + 2\sin\left(3\pi x + \frac{\pi}{4}\right) + 3\sin 5\pi x$	(ii) $\frac{\pi}{2}$
(C) Period of $\sin^4 x + \cos^4 x$	(iii) 2
(D) Period of 1 + sin ¹⁰ x	(iv) π

501. Match the following :

List – I	List – II
(A) The number of roots of equation $2 \cos x - 2x + 1 = 0$ in the	(i) 2
interval $\left[\frac{\pi}{2}, \pi\right]$ is	
(B) The number of solutions of $10[\ln x] + 10[2^x] = 31 + 10[\sin x]$	(ii) 3
(where [.] denotes the greatest integer function) is	
(C) The number of solutions of $e^{-x^2} = \cos x$ in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is	(iii) 0
(D) If tangents to the parabola $y^2 = 4x$ are normal to $x^2 = 4by$,	(iv) 8
$ b < \frac{1}{\sqrt{k}}$, then the numerical quantity k should be	

502. Match the following:

List – I	List – II
(A) Fundamental period of $f(x) = \sec^2 x - \tan^2 x$ is	(i) no fundamental period
(B) Fundamental period of $f(x) = sin^2 x + cos^2 x$ is	(ii) π
(C) Fundamental period of f(x) = tanx.cotx is	(iii) π/2
(D) Fundamental period of $f(x) = \csc^2 x - \cot^2 x + \{x\}$	(iv) non-periodic

503. Match the following:

List – I	List – II
(A) The value of 'a' for which the equation 4 $cosec^2 \pi (a + x) + a^2 -$	(i) 1
4a = 0 has real solution is	
(B) The number of solutions of equation $tan^2x - sec^{10}x + 1 = 0$ in	(ii) 2
(0, 10) is	
(C) $\sum_{n=1}^{\infty} \sin^{-1} \frac{\sqrt{n} - \sqrt{n-1}}{\sqrt{n(n+1)}} = \frac{\pi}{a}$	(iii) 3

504. Match the list:

List – I	List – II
(A) In a $\triangle ABC$ if area $\triangle = a^2 - (b - c)^2$, then 15tanA is	(i) $\frac{1}{3}$
(B) In a $\triangle ABC$ a = 6, b = 3 and $\cos(A - B) = \frac{4}{5}$, then area of	(ii) 2
∆ABC is	
(C) If a, b, c, d are the sides of quadrilateral, then the minimum	(iii) 3
value of $\frac{a^2 + b^2 + c^2}{d^2}$ is	
(D) $\triangle PRQ$ is right angled triangle where P(3, 1), Q(6, 5) and	(iv) 8
R(x, y) and area of \triangle PRQ = 7, then number of such point R	
is	
	(v) 9

505. Match the following:

List – I	List – II
(A) $\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{3}\right) + \dots + \infty$	(i) $\frac{\pi}{2}$
(B) $\sin^{-1}\left(\frac{12}{13}\right) + \cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{63}{16}\right)$	(ii) $\frac{\pi}{4}$
(C) $\sin^{-1}\left(\frac{4}{5}\right) + 2\tan^{-1}\left(\frac{1}{3}\right)$	(iii) π
(D) $\cot^{-1}9 + \cos ec^{-1}\left(\frac{\sqrt{41}}{4}\right)$	(iv) $\frac{\pi}{3}$

506.	Match the following with their minimum value (A) sinx + cosx	s, (x ∈ R) (i) −1		
	(B) sinx + cosx	(ii) −√2		
	(C) sinx + cosx	(iii) 1		
	(D) sinx + cosx	(iv) none		
507.	Match the following:			
	List I			List – II
	(A) $\sin^{-1}x - \cos^{-1}x = 0$, then $\cos(5\cos^{-1}x + \sin^{-1}x)$	in ⁻¹ x)is equal	(i)	3
	to			
	(B) $\tan\left(\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right) = \frac{p}{q}$, (where	p and q are	(ii)	2
	(C) $\sin^{-1}x + 4\cos^{-1}x = 2\pi$, then x is equal to		(iii)	1
	(D) In $\triangle ABC$, 2cosA sinC = sinB, then $\frac{2a}{c}$ is	equal to	(iv)	0

508. Match the following:

List –I	List-II
(A) Number of solutions of the equation $\sin^{-1} x + \cos^{-1} x^2 = \frac{\pi}{2}$	(i) 1
(B) The number of ordered pairs (x, y) satisfying	(ii) 2
$\frac{\sin^{-1}x}{x} + \frac{\sin^{-1}y}{y} = 2$ is	
(C) Number of solutions of the equation $\cos(\cos x) = \sin(\sin x)$	(iii) 0
is	
(D) Number of solutions of the equation $tan\left(x + \frac{\pi}{6}\right) = 2 tanx$ is	(iv) 3

509. Match the following

- (A) Number of solutions of the equation $\sin^{-1} x + \cos^{-1} x^2 = \frac{\pi}{2}$ (1) 1
- (B) The number of ordered pairs (x, y) satisfying (2) 2 $\frac{\sin^{-1}x}{x} + \frac{\sin^{-1}y}{y} = 2$ is
- (C) Number of solutions of the equation $\cos(\cos x) = \sin(\sin x)$ is (3) 0
- (D) Number of solutions of the equation $tan\left(x + \frac{\pi}{6}\right) = 2 tanx$ is (4) 3

510. Match the following pair of curves with their angle of intersections :

(A)
$$x^{2} + y^{2} = 2\pi^{2}$$
 and (P) $\frac{\pi}{4}$
 $y = \sin^{-1} \left[x^{2} + \frac{1}{2} \right] + \cos^{-1} \left[x^{2} - \frac{1}{2} \right]$ (P) $\frac{\pi}{4}$
(where $[x] = \text{greatest integer}$
function)
(B) $y^{2} = 2x$ and $y = \left[|\sin x| + |\cos x| \right]$ (Q) $\cot^{-1} (1/3)$
where $[x] = \text{greatest integer function}$
(C) $x^{2} = 4ay, y = \frac{8a^{3}}{x^{2} + 4a^{2}}$ (R) $\frac{3\pi}{4}$
(D) $y^{2} = \frac{2x}{\pi}, y = \sin x$ (S) $\cot^{-1} (\pi)$

Section-5 : (INTEGER type)

511. The total number of positive integral solution of $\sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right) + \cos^{-1}\left(\frac{y}{\sqrt{1+y^2}}\right) = \sin^{-1}\left(\frac{3}{\sqrt{10}}\right)$ is

Column – II

- **512.** If circum radius of $\triangle ABC$ is 3 cm and its area is 6 cm^2 and *DEF* is triangle formed by foot of perpendicular drawn from *A*, *B*, *C* on sides *BC*, *CA*, *AB* respectively then perimeter of $\triangle DEF$ in cm is _____.
- **513.** The greatest and least values of $(\sin^{-1}x)^3 + (\cos^{-1}x)^3$ are I_{max} and I_{min} then $\frac{I_{max}}{I_{max}}$ is ______
- **514.** In a $\triangle ABC$, b cotB + c cotC = 2(r + R). If the base AC = 3 units and $\angle A = 60^{\circ}$, BC is _____

515. If in a $\triangle ABC$, a = 2, b = 3, c = 4, then the value of $a^3 \cos (B - C) + b^3 (C - A) + c^3 \cos (A - B)$ is

516. In a right angled triangle \triangle ABC with C as a right angle, a perpendicular CD is drawn to AB. The radii of the circles inscribed into the triangles ACD and BCD are equal to 3 and 4 respectively. Then the radius of the circle inscribed into the \triangle ABC is _____

517. In $\triangle ABC$, $\frac{\sum a \sin \frac{A}{2} \cos \left(\frac{B-C}{2}\right)}{\sum \sin A} = nR$ where R is the radius of circumcircle, then n is equal to

- **518.** In the quadrilateral, the length AC and BD are x and y respectively, AB = 5, BC = 7, CD = 6, AD = 8 and if angle between OD and OC is ω , where O is the point of intersection of two diagonals then, the value of 2xy cos ω is _____
- 519. In an acute angled triangle the minimum value of secA secB secC(1 + secA)(1 + secB)(1 + secC) is _____.

- **520.** P is any point and O being the origin. On the circle with OP as diameter two point Q and R are on same side of OP such that $\angle POQ = \angle QOR = \theta$. Let P, Q, R be z_1 , z_2 , z_3 such that $2\sqrt{3}z_2^2 = (2+\sqrt{3})z_1z_3$. Then the degree measure of θ is ______.
- **521.** In a triangle ABC, side AB = 20, AC = 11, BC = 13, then the diameter of the semicircle inscribed in triangle ABC, whose diameter lies on AB and is touching AC and BC is _____

522. If
$$x^2 + y^2 \le 1$$
, then $\min\left\{\frac{kx^2}{y^2} + \frac{1}{k}\left(\frac{y + kx^2}{x^2}\right)\right\}$ (where k is positive) is ______

523. The number of solutions that the equation $\sin(\cos(\sin x)) = \cos(\sin(\cos x))$ has in $\left[0, \frac{\pi}{2}\right]$ is ______

524. If
$$\sin^{-1}x \in \left(0, \frac{\pi}{2}\right)$$
, then the value of $\tan\left[\frac{\cos^{-1}\left(\sin(\cos^{-1}x)\right) + \sin^{-1}\left(\cos(\sin^{-1}x)\right)}{2}\right]$ is _____

- **525.** If $\sqrt{4\sin^4\theta + \sin^2 2\theta} + 4\cos^2\left(\frac{\pi}{4} \frac{\theta}{2}\right) = k$, when θ lies in third quadrant, then k is equal to
- **526.** The smallest positive integral value of p for which the equation $\tan (p \sin x) = \cot (p \cos x) \ln x$ has a solution in $[0, 2\pi]$ is :

527. Let $A_{1,} A_{2,} \dots, A_{n}$ be the vertices of an n-sided regular polygon such that; $\frac{1}{A_{1} A_{2}} = \frac{1}{A_{1} A_{3}} + \frac{1}{A_{1} A_{4}}$. Find the value of n.

- **528.** Find the value of $\csc \frac{4\pi}{15} + \csc \frac{8\pi}{15} + \csc \frac{16\pi}{15} + \csc \frac{32\pi}{15}$
- **529.** In any $\triangle ABC$, then minimum value of $\frac{r_1 r_2 r_3}{r^3}$ is equal to :
- **530.** The radii r_1 , r_2 , r_3 of escribed circles of a triangle ABC are in harmonic progression. If its area is 24 sq. cm and its perimeter is 24 cm, find the sum of squares of lengths of its sides.

Answer Key

Qs.	Ans.	Qs.	Ans.	Qs.	Ans.	
401	С	451	BC	501	A-(iii), B-(iii), C-(ii), D-(iv)	
402		452	AC	502	A-(ii), B-(i), C-(iii), D-(iv)	
403	В	453	ВС	503	A-(ii), B-(iii), C-(ii)	
404	С	454	ВС	504	A-(iv), B-(v), C-(i), D-(ii)	
405	С	455	BD	505	A-(ii), B-(iii), C-(i), D-(ii)	
406	С	456	ABC	506	A-(ii), B-(i), C-(i), D-(iii)	
407	D	457	ABCD	507	A-(iv), B-(iii), C-(iv), D-(ii)	
408	В	458	ACD	508	A-(ii), B-(iii), C-(iii), D-(iii)	
409	С	459	ABCD	509	A-(2), B-(3), C-(3), D-(3)	
410	А	460	ACD	510	A-(PR), B-(PR), C-(Q), D-(S)	
411	В	461	ACD	511	2	
412	С	462	ВС	512	4	
413	С	463	AC	513	28	
414	В	464	BC	514	6	
415	С	465	AD	515	76	
416	-	466	A	516	5	
417	В	467	В	517	1	
418	A	468	C	518	52	
419	В	469	D	519	216	
420	A	470	D	520	₅₇₁ 15	
421	A	471	C	521	11	
422	D	472	C	522	3	
423	A	473	C	523	1	
424	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	474	D	524	1	
425		475	B	525	2	
426	ABCD	476	D	526	2	
427	ACD	477	D	527	7	
428	AC	478	C	528	0	
429	ABC	479	В	529	27	
430	AD	480	B	530	200	
431	AB	481	A	550	200	
432	ABC	482	A	1		
433	ABCD	483	B	1		
434	ABC	484	A	1		
435	AB	485	C	1		
435	AB	485	В	1		
430	ABC	480	A	1		
437	ABC	487	A	1		
438	ABD	489	B	1		
459	BC	489	A	1		
440	ABCD	490	B	1		
441	ABCD	491	B	1		
442	AC	492	B	1		
445	BC	495	A	1		
444		494	A	1		
	AB			4		
446	AB	496	A-(iii), B-(iv), C-(i), D-(ii)	1		
447	BCD	497	A-(iv), B-(iii), C-(i), D-(ii)	1		
448	BD	498	A-(iv), B-(iii), C-(i), D-(ii)	{		
449	AD	499	A-(iv), B-(iii), C-(ii), D-(i)	4		
450	ABC	500	A-(iii), B-(iii), C-(ii), D-(iv)]		