

GENERAL INSTRUCTIONS

- This test contains 30 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.
- You have to evaluate your Response Grids yourself with the help of solutions provided at the end of this book.
- Each correct answer will get you 4 marks and 1 mark shall be deduced for each incorrect answer. No mark will be given/ deducted if no bubble is filled. Keep a timer in front of you and stop immediately at the end of 60 min.
- The sheet follows a particular syllabus. Do not attempt the sheet before you have completed your preparation for that syllabus.
- After completing the sheet check your answers with the solution booklet and complete the Result Grid. Finally spend time to analyse your performance and revise the areas which emerge out as weak in your evaluation.
- 1. In compound A, 1.00g of nitrogen unites with 0.57g of oxygen. In compound B, 2.00g of nitrogen combines with 2.24g of oxygen. In compound C, 3.00g of nitrogen combines with 5.11g of oxygen. These results obey the following law
 - (a) law of constant proportion
 - (b) law of multiple proportion
 - (c) law of reciprocal proportion
 - (d) Dalton's law of partial pressure
- 2. 10^{21} molecules are removed from 200 mg of CO₂. The moles of CO₂ left are :

- (a) 2.88×10^{-3} (b) 28.8×10^{-3}
- (c) 288×10^{-3} (d) 28.8×10^{3}
- **3.** What volume of hydrogen gas, at 273 K and 1 atm. pressure will be consumed in obtaining 21.6 g of elemental boron (atomic mass = 10.8) from the reduction of boron trichloride by hydrogen ?
 - (a) 67.2L (b) 44.8L
 - (c) 22.4L (d) 89.6L
- 4. Number of g of oxygen in $32.2 \text{ g Na}_2\text{SO}_4.10 \text{ H}_2\text{O}$ is
 - (a) 20.8 (b) 2.24 (c) 22.4 (d) 2.08

Response Grid 1. (a)(b)(c)(d) = 2. (a)(b)(c)(d) = 3. (a)(b)(c)(d) = 4. (a)(b)(c)(d) = 4.

5.	6.02×10^{20} molecules of ur	ea are present in 100 ml of its		(a)	1.45	(b)	1.64
	solution. The concentration	of urea solution is		(c)	1.88	(d)	1.22
	(a) 0.02 M	(b) 0.01 M	11.	Αg	as occupies a volume	of 300	0 cc at 27°C and 620 mm
	(c) 0.001 M	(d) 0.1 M		pres	ssure. The volume of ga	as at 4	7°C and 640 mm pressure
	(Avogadro constant, $N_A = 6$.	$.02 \times 10^{23} \text{ mol}^{-1})$		is:	C C		1
6.	If we consider that 1/6, in pla	ce of $1/12$, mass of carbon atom		(a)	260 cc	(b)	310 cc
	is taken to be the relative ato	mic mass unit, the mass of one		(c)	390 cc	(d)	450 cc
	mole of the substance will		12.	Нае	emoglobin contains (33%	of iron by weight The
	(a) be a function of the mo	blecular mass of the substance		mol	ecular weight of haem	oglobi	n is approximately 67200.
	(b) remain unchanged			The	number of iron atoms	(at. wt	frequencies of Fe = 56) present in one
	(c) increase two fold			mol	ecule of haemoglobin i	S	71
	(d) decrease twice			(a)	6	(b)	1
7.	The weight of NaCl decomp	osed by 4.9g of H_2SO_4 , if 6 g of		(c)	2	(b)	4
	sodium hydrogen sulphate	e and 1.825 g of HCl, were	12	(e) The	- volumo of 20 volumo I	(a) 10.*	inclusion of the set 5 litras of O
	produced in the reaction is:		15.	at S	TD is	¹ ₂ O ₂ 1	equired to get 5 fittes of O_2
	(a) 6.921 g	(b) 4.65 g			250 1		105 1
	(c) 2.925 g	(d) 1.4 g		(a)	250 ml	(b)	125 mi
8.	Which one of the following	is the lightest?		(c)	100 ml	(d)	50 ml.
	(a) 0.2 mole of hydrogen g	as	14.	In tl	ne reaction,		
	(b) 6.023×10^{22} molecules	of nitrogen		2A	$l(s) + 6HCl(aq) \rightarrow 2A$	1^{3+} (ad	$(a_1) + 6Cl^{-}(a_2) + 3H_2(g)$
	(c) 0.1 g of silver			(\mathbf{a})		nrodu	$(m_1) + or (m_1) + or (2(8))$
	(d) 0.1 mole of oxygen gas	(d) 0.1 mole of oxygen gas		(a)	consumed	produ	leed for every more men(aq)
9.	How many moles of magnesi	um phosphate, $Mg_3(PO_4)_2$ will		(b)	6 I HCl(aa) is consum	ned fo	r every 3 L H (g) produced
	contain 0.25 mole of oxygen	atoms?		(0)		1	$1 \text{ every 5 } \text{E11}_2(\text{g}) \text{ produced}$
	(a) 1.25×10^{-2}	(b) 2.5×10^{-2}		(c)	55.0 L H ₂ (g) is produc	ted reg	gardiess of temperature and
	(c) 0.02	(d) 3.125×10^{-2}			pressure for every mo	ne Al	inal reacts
				(d)	677U(a) of STD is	nradu	and for avery male Al that

10. The density (in g mL⁻¹) of a 3.60 M sulphuric acid solution that is 29% H₂SO₄ (molar mass = 98 g mol⁻¹) by mass will be (d) 67.2 $H_2(g)$ at STP is produced for every mole Al that reacts.

Response	5. abcd	6. abcd	7. abcd	8. abcd	9. abcd
Grid	10.@b©d	11. abcd	12.@b©d	13.@b©d	14. abcd

15. The concentrated sulphuric acid that is peddled commercial is 95% H₂SO₄ by weight. If the density of this commercial acid is 1.834 g cm⁻³, the molarity of this solution is

(a)	17.8 M	(b)	12.0 M

- (c) 10.5 M (d) 15.7 M
- What is the mass of precipitate formed when 50 mL of 16.9% solution of AgNO₃ is mixed with 50 mL of 5.8% NaCl solution ? (Ag = 107.8, N = 14, O = 16, Na = 23, Cl = 35.5)
 - (a) 28 g (b) 3.5 g
 - (c) 7 g (d) 14 g
- 17. Number of valence electrons in 4.2 gram of N_3^{-1} ion is
 - (a) $4.2 N_A$ (b) $0.1 N_A$
 - (c) $1.6 N_A$ (d) $3.2 N_A$
- 18. A transition metal M forms a volatile chloride which has a vapour density of 94.8. If it contains 74.75% of chlorine the formula of the metal chloride will be
 - (a) MCl_3 (b) MCl_2
 - (c) MCl_4 (d) MCl_5
- **19.** A gaseous hydrocarbon gives upon combustion 0.72 g of water and 3.08 g. of CO_2 . The empirical formula of the hydrocarbon is :
 - (a) C_2H_4 (b) C_3H_4
 - (c) C_6H_5 (d) C_7H_8
- **20.** Following is the composition of a washing soda sample :

Substance	Molecular Wt.	Mass percent
Na ₂ CO ₃	106.0	84.8
NaHCO3	84.0	8.4
NaCl	58.5	6.8

On complete reaction with excess HCl, one kilogram of the washing soda will evolve:

- (a) $9 \mod \text{of CO}_2$ (b) $16 \mod \text{of CO}_2$
- (c) $17 \mod \text{of CO}_2$ (d) $18 \mod \text{of CO}_2$
- **21.** Arrange the numbers in increasing no. of significant figures. 0.002600, 2.6000, 2.6, 0.260
 - (a) 2.6<0.260<0.002600<2.6000
 - (b) 2.6000<2.6<0.002600<0.260
 - (c) 0.260 < 2.6 < 0.002600 < 2.6000
 - (d) 0.002600 < 0.260 < 2.6 < 2.6000
- **22.** Dissolving 120 g of a compound (mol. wt. 60) in 1000 g of water gave a solution of density 1.12 g/mL. The molarity of the solution is:
 - (a) 1.00 M (b) 2.00 M
 - (c) 2.50 M (d) 4.00 M
- **23.** A gaseous compound of nitrogen and hydrogen contains 12.5% (by mass) of hydrogen. The density of the compound relative to hydrogen is 16. The molecular formula of the compound is:
 - (a) NH_2 (b) N_3H
 - (c) NH_3 (d) N_2H_4
- 24. The amount of $BaSO_4$ formed upon mixing 100 mL of 20.8% BaCl₂ solution with 50 mL of 9.8% H₂SO₄ solution with 50 mL of 9.8% H₂SO₄ solution will be:

(Ba = 137, Cl = 35.5, S = 32, H = 1 and O = 16)

(a)	23.3 g	(b)	11.65 g
(c)	30.6 g	(d)	33.2 g

Response	15.@bcd	16.@b©d	17.@b©d	18. @bcd	19. abcd
Grid	20.abcd	21.@b©d	22. abcd	23. abcd	24. abcd

25.	2 g of a mixture of CO and C produced 2.54 g of I_2 . What the original mixture?	O_2 on reaction with excess I_2O_5 at will be the mass % of CO_2 in	29.	(a) (c) A ga	2.8 kg 9.6 kg s mixture of 3 litres of H on complete c	(b) (d) of prop	6.4 kg 96 kg pane (C_3H_8) and butane
	(a) 55			10 li	tre CO ₂ Find out t	he co	mosition of gas mixture
26.	(c) 30° 7.5 grams of a gas occupy 5 gas is (a) N ₂ O (c) CO	 (d) 60 5.6 litres of volume at STP. The (b) NO (d) CO₂ 	30.	(Prop (a) (c) An c hvdr	pane : Butane) 2 : 1 1.5 : 1.5 organic compound c ogen and its vapour d	(b) (d) ontair	1:2 0.5:2.5 is 49.3% carbon, 6.84% is 73. Molecular formula
27.	Number of moles of KMnO ₂ Fe(C_2O_4) in acidic medium i (a) 0.167 (c) 0.2	required to oxidize one mole of (b) 0.6 (d) 0.4		of the (a)	e compound is : $C_3H_5O_2$	(b)	$C_4H_{10}O_2$
28.	What is the weight of oxy combustion of 2.8 kg of eth	gen required for the complete ylene?		(0)	$C_6 H_{10} O_4$	(a)	$C_3 n_{10} O_2$

Response	25.@b©d	26. abcd	27.abcd	28. abcd	29. abcd
Grid	30. @b©d				

CHEMISTRY CHAPTERWISE SPEED TEST-30						
Total Questions30Total Marks120						
Attempted Correct						
Incorrect Net Score						
Cut-off Score 37 Qualifying Score 52						
Success Gap = Net Score – Qualifying Score						
Net Score = (Correct × 4) – (Incorrect × 1)						

HINTS & SOLUTIONS (CHEMISTRY – Chapter-wise Tests) Speed Test-30

11.

1. (b)

2. (a) No. of moles =
$$\frac{Wt. in g}{Mol. wt}$$

No. of moles in 200 mg = $\frac{200}{1000 \times 44}$
= 4.5 × 10⁻³ moles
No. of moles in 10²¹ molecules
= $\frac{10^{21}}{6.02 \times 10^{23}}$ = 1.67 × 10⁻³ moles
No. of moles left = (4.5 - 1.67) × 10⁻³ = 2.88 × 10⁻³
3. (a) 2BCl₃ + 3H₂ → 2B + 6HCl
or BCl₃ + $\frac{3}{2}$ H₂ → B + 3HCl
Now, since 10.8 gm boron requires hydrogen
= $\frac{3}{2} \times 22.4$ L at N.T.P
hence 21.6 gm boron requires hydrogen
 $\frac{3}{2} \times \frac{22.4}{10.8} \times 21.6 = 67.2$ L at N.T.P.
4. (c) M. Wt of Na₂SO₄.10 H₂O is 322 g which contains 224 g
oxygen. \therefore 32.2 g will contain 22.4 g oxygen.
5. (b) Moles of urea present in 100 ml of sol.= $\frac{6.02 \times 10^{20}}{6.02 \times 10^{23}}$
 \therefore M = $\frac{6.02 \times 10^{20} \times 1000}{6.02 \times 10^{23} \times 100} = 0.01$ M
[\therefore M = Moles of solute present in 1L of solution]
6. (d) Relative atomic mass =
Mass of one atom of the element
 $1/12^{\text{th}}$ part of the mass of one atom of Carbon -12
or $\frac{\text{Mass of one atom of the clement}}{\text{Mass of one atom of carbon} \times 12}$
Now if we use $\frac{1}{6}$ in place of $\frac{1}{12}$ the formula becomes
Relative atomic mass =
 $\frac{\text{Mass of one atom of carbon}{\text{Mass of one atom of carbon} \times 6}$
 \therefore Relative atomic mass decrease twice
7. (c) NaCl + H₂SO₄ → MaHSO₄ + HCl
 $xg = \frac{4.9g}{4.9g} \longrightarrow NaHSO4 + HCl
 $xg = \frac{4.9g}{4.9g} = \frac{6}{6g} = \frac{1.825}{1.825g}$
According to law of conservation of mass "mass is
neither created nor destroyed during a chemical
change"
 \therefore Mass of the reactants = Mass of products
 $x + 4.9 = 6 + 1.825$$

8. (c) (a) Weight of
$$H_2 = 0.2 \times 2 =$$

(b) $6.023 \times 10^{23} = 1$ mole Thus $6.023 \times 10^{22} = 0.1$ mole Weight of N₂ = 0.1 × 28 = 2.8 g

- (c) Weight of silver = 0.1 g
- (d) Weight of oxygen = $32 \times 0.1 = 3.2$ g
- 9. (d) 1 Mole of $Mg_3(PO_4)_2$ contains 8 mole of oxygen atoms \therefore 8 mole of oxygen atoms = 1 mole of $Mg_3(PO_4)_2$ mole of $Mg_3(PO_4)_2$

0.25 mole of oxygen atom = $\frac{1}{8} \times 0.25$ mole of Mg₃(PO₄)₂ = 3.125×10^{-2} mole of Mg₃(PO₄)₂

10. (d) Since molarity of solution is 3.60 M. It means 3.6 moles of H_2SO_4 is present in its 1 litre solution. Mass of 3.6 moles of H_2SO_4 = Moles × Molecular mass = 3.6 × 98 g = 352.8 g \therefore 1000 ml solution has 352.8 g of H_2SO_4 Given that 29 g of H_2SO_4 is present in = 100 g of solution \therefore 352.8 g of H_2SO_4 is present in = $\frac{100}{29} \times 352.8$ g of solution = 1216 g of solution Density = $\frac{Mass}{2} = \frac{1216}{2} = 1.216$ g/ml = 1.22 g/ml

Density =
$$\frac{Mass}{Volume} = \frac{1216}{1000} = 1.216 \text{ g/ml} = 1.22 \text{ g/ml}$$

(b) From
$$\frac{T_1 r_1}{T_1} = \frac{T_2 r_2}{T_2}$$

 $\frac{V_1 \times 640}{(273 + 47)} = \frac{620 \times 300}{(273 + 27)}$
 $V_1 = \frac{620 \times 300 \times 320}{640 \times 300} = 310 \text{ cc}$

12. (d) Weight of Iron in
$$67200 = \frac{0.33}{100} \times 67200 = 221.76$$

Number of atoms of Iron =
$$\frac{221.76}{56}$$
 = 3.96 = 4
20 yolume H O, means that 1mL of this H O, solu

(a) 20 volume H₂O₂ means that 1mL of this H₂O₂ solutions produces 20 mL of O₂ at N.T.P. on decomposition by heat.
 For 20 mL of O₂ the volume of 20 volume H.O.

:. For 20 mL of O_2 , the volume of 20 volume H_2O_2 required = 1mL For 1 mL of O_2 the volume of 20 volume

Hol Thill
$$Olo_2$$
, the volume of 20 volume
 H_2O_2 required = $\frac{1}{20}$ mL
For 5000 mL or 5L of O_2 , the volume of 20
volume H_2O_2 required = $\frac{1}{20} \times 5000$ mL = 250 mL
14. (a) $2Al(s) + 6HCl(aq) \rightarrow 2Al^{3+}(aq) + 6Cl^{-}(aq) + 3H_2(g)$
L of H_2 at S.T.P²

∴ 1 mole of HCl produces =
$$\frac{3 \times 22.4}{6}$$
 L
of H₂ at S.T.P
= 11.2 L of H₂ at STP
15. (a) 95% H₂SO₄ by weight means 100g H₂SO₄ solution
contains 95g H₂SO₄ by mass.
Molar mass of H₂SO₄ = 98g mol⁻¹
Moles in 95g = $\frac{95}{98}$ = 0.969 mole
Volume of 100g H₂SO₄
= $\frac{mass}{4}$ = $\frac{100g}{1.834g \text{ cm}^{-3}}$
= 54.52 cm³ = 54.52 × 10⁻³ L
Molarity = $\frac{\text{Moles of solute}}{\text{Volme of solute in L}}$
= $\frac{0.969}{54.52 \times 10^{-3}}$ = 17.8 M
16. (c) 50 ml of 16.9% solution of AgNO₃
 $\left(\frac{16.9}{100} \times 50\right)$ = 8.45 g of Ag NO₃
 $n_{\text{mole}} = \frac{8.45g}{(107.8 + 14 + 16 \times 3) \text{ g/mol}} = \left(\frac{8.45 \text{ g}}{169.8 \text{ g/mol}}\right)$
= 0.0497 moles
50 ml of 5.8% solution of NaCl contain
NaCl = $\left(\frac{5.8}{100} \times 50\right)$ = 2.9 g
 $n_{\text{NaCl}} = \frac{2.9g}{(23 + 35.5) \text{ g/mol}}$ = 0.0495 moles
AgNO₃ + NaCl → AgCl↓ + Na⁻⁺ + Cl \circ
1 mole 1 mole 1 mole
∴ 0.049 mole 0.049 mole 0.049 mole of AgCl
 $n = \frac{W}{M} \rightarrow W = (n_{AgCl}) \times \text{Molecular Mass}$
= $(0.049) \times (107.8 + 35.5)$
= 7.02 g
17. (b) Number of valence electrons in a N₃⁻⁻ i on = 1
Now, 1 mol or 42 g of N₃⁻⁻ has = 6.023 × 10²³ ions
So, 42 g of N₃⁻⁻ has $\frac{6.023 \times 1 \times 10^{23}}{42}$ valence e⁻⁻
1 g of N₃⁻⁻ has $\frac{6.023 \times 1 \times 10^{23}}{42}$ valence e⁻⁻
4.2 g of N₃⁻⁻ has $\frac{4.2 \times 6.023 \times 1 \times 10^{23}}{42}$ valence e⁻⁻ i.e.,
0.1 N_A valence e⁻⁻
18. (c) 74.75% of chlorine means 74.75g chlorine is present
in 100g of metal = 100g - 74.75g
= 25.25g

Equivalent weight $=\frac{\text{weight of metal}}{\text{weight of chlorine}} \times 35.5$ $=\frac{25.25}{74.75} \times 35.5 = 12$ Valency of metal = $\frac{2 \times \text{V.D.}}{\text{Equivalent wt. of metal} + 35.5}$ $=\frac{2 \times 94.8}{12 + 35.5} = 4$ \therefore Formula of compound = MCl₄ **19.** (d) \therefore 18 gm, H₂O contains = 2 gm H $\therefore 0.72 \text{ gm} \,\overline{\text{H}}_2\text{O} \,\text{contains}$ $=\frac{2}{18}$ × 0.72 gm = 0.08 gm H \therefore 44 gm CO₂ contains = 12 gm C \therefore 3.08 gm CO₂ contains $=\frac{12}{44} \times 3.08 = 0.84 \text{ gm C}$ $\therefore \mathbf{C}:\mathbf{H} = \frac{0.84}{12}:\frac{0.08}{1}$ = 0.07 : 0.08 = 7 : 8 \therefore Empirical formula = C₇H₈ **20.** (a) $\operatorname{Na_2CO_3+2HCl} \longrightarrow 2\operatorname{NaCl} + \operatorname{H_2O} + \operatorname{CO_2}_{1\operatorname{mol}}$ $NaHCO_3 + HCl \longrightarrow NaCl + H_2O + CO_2$ 1 mol 1 mol $Na_2CO_3 + NaHCO_3 + NaCl + HCl \longrightarrow$ 848g 84g 68g (excess) 8 mol 1mol 1 kg washing soda $\longrightarrow \frac{8\text{CO}_2}{\text{fromNa}_2\text{CO}_3} + \frac{\text{CO}_2}{\text{fromNa}\text{HCO}_3}$ Thus, on complete reaction with HCl, 1kg of washing soda will evolve 9 mol of CO2. 21. (a) 2.6 has two significant figures. 0.260 has three significant figures. 0.002600 has four significant figures. 2.6000 has five significant figures. 22. (b) Given mass of solute (w) = 120 gmass of solvent (w) = 1000 gMol. mass of solute = 60 gdensity of solution = 1.12 g/mlFrom the given data, Mass of solution = 1000 + 120 = 1120 g \therefore $d = \frac{\text{Mol. mass}}{V}$ or $V = \frac{\text{Mol. mass}}{d}$ Volume of solution $V = \frac{1120}{1.12} = 1000 \text{ ml or} = 1 \text{ litre}$ Now molarity (M) = $\frac{W}{Mol. mass \times V(lit)} = \frac{120}{60 \times 1} = 2M$ 23. (d) In an unknown compounds containing N and H

Element	Percentage	Atomic ratio	Simple ratio
Н	12.5%	$\frac{12.5}{1} = 12.5$	$\frac{12.5}{6.25} = 2$
N	87.5	$\frac{87.5}{14} = 6.25$	$\frac{6.25}{6.25} = 1$

 $2 \times$ vapour density = Mol. wt = mol wt. = $16 \times 2 = 32$. Molecular formula = $n \times$ empirical formula mass

$$n = \frac{32}{16} = 2$$

<i>.</i>	. Molecular formula of the compound	will be = $(NH_2)_2$
	=	N ₂ H ₄

24. (a)
$$\operatorname{BaCl}_2$$
 + $\operatorname{H}_2\operatorname{SO}_4$ \longrightarrow BaSO_4 + 2HCl
208 g 98 g 233 g 73 g
20.8 g 9.8 g 23.3 g 7.3 g

25. (c) $5CO + I_2O_5 \rightarrow 5CO_2 + I_2$ Moles of $I_2O_5 = \frac{25.4}{254}$ = 0.01 = 0.05 moles of CO Weight of CO = $0.05 \times 28 = 1.4$ g; Weight of CO₂ = 2 - 1.4 = 0.6 g

Hence % of
$$CO_2 = \frac{0.6}{2} \times 100 = 30\%$$

26. (b)
$$PV = nRT$$
 : $5.6 \times 1 = \frac{7.5}{M.Wt.} \times 0.0821 \times 273$
M. Wt = 30.12 Hence gas is NO.

27. (b) The required equation is

$$2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$$
nascent oxygen

$$2\operatorname{Fe}(\operatorname{C}_{2}\operatorname{O}_{4}) + 3\operatorname{H}_{2}\operatorname{SO}_{4} + 3[\operatorname{O}] \longrightarrow$$

$$\operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3} + 2\operatorname{CO}_{2} + 3\operatorname{H}_{2}\operatorname{O}$$

[O] required for 1 mol. of $Fe(C_2O_4)$ is 1.5, 5 [O] are obtained from 2 moles of $KMnO_4$ \therefore 1.5 [O] will be obtained from

 $= \frac{2}{5} \times 1.5 = 0.6 \text{ moles of KMnO}_4.$

28. (c) $C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$ 28 g 96 g $\therefore 28 \text{ g of } C_2H_4 \text{ undergo complete combustion by}$ $= 96 \text{ g of } O_2$ $\therefore 2.8 \text{ kg of } C_2H_4 \text{ undergo complete combustion by}$ $= 9.6 \text{ kg of } O_2.$

29. (a)
$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O_3$$

C₄H₁₀ +
$$\frac{13}{2}$$
O₂ → 4CO₂ + 5H₂O
(3 - a) 4 (3 - a)
But, 3a + 4 (3 - a) = 10
 \therefore a = 2 (Propane) and 3 - 2 = 1 (Butane)

30. (c)Element%Relative no.
of atomsSimplest ratio of
atomsC49.3
$$49.3/12 = 4.1$$

 $1.5 \times 2 = 3$ $4.1/2.74 = 1.5$ H 6.84 $6.84/1 = 6.84$
 $= 2.5 \times 2$
 $= 5$ $6.84/2.74 = 2.5$ O 43.86 $43.86/16 = 2.74$
 $1 \times 2 = 2$ $2.74/2.74 = 1$

$$\therefore \quad \text{Empirical formula} = C_3 H_5 O_2$$

Empirical formula mass
$$= (3 \times 12) + (5 \times 1) + (2 \times 16) = 36 + 5 + 32 = 73$$

Molecular mass =
$$2 \times$$
 Vapour density
= $2 \times 73 = 146$
molecular mass

$$n = \frac{\text{morecular mass}}{\text{empirical formula mass}} = 146/73 = 2$$

Molecular formula = Empirical formula × 2
= (C₃H₅O₂) × 2 = C₆H₁₀O₄