4 Continuity

Review of Key Notes and Formulae

1. Continuity of a Function at a Point :

A function f(x) is said to be continuous at x = a, if

$$\lim_{x\to a} f(x) = \lim_{x\to a^+} f(x) = f(a)$$

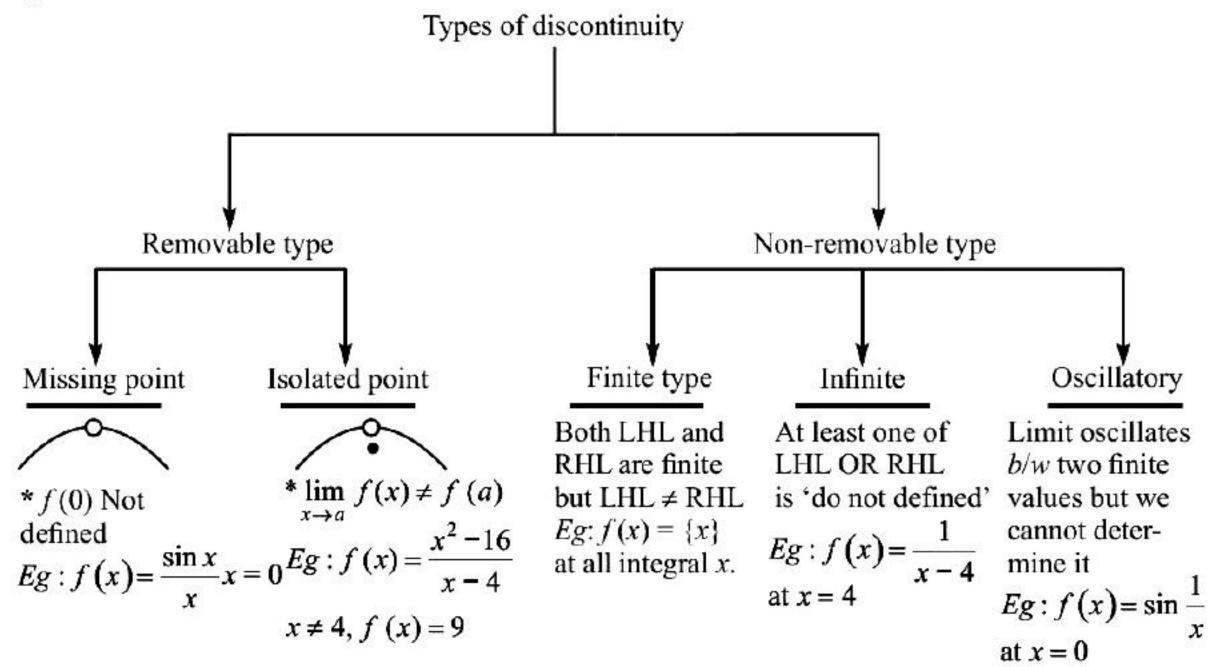
Otherwise, it is said to be discontinuous.

2. Continuity of a Function is an Interval:

- (i) A function f(x) is said to be continuous in an open interval (a, b), if f(x) is continuous at every point of the interval.
- (ii) A function f(x) is said to be continuous in a closed interval [a, b], if f(x) is continuous in (a, b). In addition, f(x) is continuous at x = a from right and f(x) is continuous at x = b from left.
 - ★ Note: To determine function's continuity in an interval, the best way is to draw graph.
 - ⇒ If graph of a function has no break or gap, then it is continuous, otherwise it will be discontinuous function.

3. Reason's of Discontinuity:

- (i) $\lim_{x \to a} f(x)$ does not exist.
- (ii) $\lim_{x \to a} f(x)$ exists $\neq f(a)$
- (iii) f(a) is not defined.



5. Jump of Discontinuity:

Jump = |LHL - RHL|, provided both LHL and RHL are finite.

6. Theorems Continuity: At x = a.

f(x)	g (x)	f(x) + g(x)	f(x).g(n)	$\frac{f(x)}{g(x)}; g(a) \neq 0$
С	C	C	C	C
С	D	D	C or D	C or D
D	C	D	C or D	C or D
D	D	C or D	C or D	C or D

Where $C \to Continuous$, $D \to Discontinuous$ function.

7. Continuity of Composite Function:

If f(x) is continuous at x = a and g(x) is continuous at x = f(a), then g(f(x)) is continuous at x = a.

TIPS!

TIPS AND TRICKS: (T-1)

If f(x) is continuous in $x \in [a, b]$ and f(a), f(b) are opposite in sign, then there exists at least one root of equation f(x) = 0 in $x \in (a, b)$

Illustration 1

Show that $x = a \sin x + b$, where 0 < a < 1, b > 0 has at least one positive root which doesn't exceed b + a.

Short-cut solution:

Using T-1 Let $f(x) = x - a \sin x - b$ is continuous function.

Now,
$$f(0) = -b < 0$$

$$f(a+b) = a - a \sin(a+b) = a(1 - \sin(a+b)) \ge 0$$

Hence, one positive root in [0, a+b]

Illustration 2

Show that $f(x) = x^3 + 2x - 1$ has root in the interval $x \in [0, 1]$

Short-cut solution:

Using T-1 f(x) is continous in $x \in [0, 1]$

Since, $\frac{f(0) = -1 < 0}{f(1) = 2 > 0}$ \Rightarrow There exists at least one c in (0, 1) such that f(c) = 0.

TIPS AND TRICKS: (T-2)

 $f: R \to R$, if f(x) is even degree polynomial whose leading coefficient and absolute constant term are of opposite in sign, then f(x) = 0 has at least 2 real roots.

Illustration 3

If $f: R \to R$, $f(x) = 2x^6 - 3x^5 + 4x^3 - x - 7$. Then prove that f(x) = 0 must have at least two real roots.

Short-cut solution:

Using T-2 : Leading coefficient >0 (2)

Absolute term < 0 (-7)

Hence, f(x) = 0 must have at least 2 real roots.

TIPS AND TRICKS: (T-3)

If y = (x) is continuous function and takes rational values for all x then f(x) will be a constant function.

Illustration 4

Let f(x) be a continuous functions for $x \in [1, 3]$. If f(x) takes rational values for all x and f(2) = 10, then value of f(1.5) is

(a) 7.5

(b) 10

(c) 8

(d) 9

Short-cut solution:

Using T-3 : f(x) is continuous and takes rational values.

$$\Rightarrow f(x)=10 \Rightarrow f(1.5)=10$$

Ans. (b)

TIPS AND TRICKS: (T-4)

If y = f(x) is monotonically increasing and continuous on an interval $x \in (a, b)$ then $f^{-1}(y)$ exists and continuous and monotonically increasing

Illustration 5

Check whether inverse of $f(x) = \sin x + 1 \ \forall x \in (-\pi^2, \pi^2)$ is continuous or not.

Short-cut solution:

Using T-4 : f(x) is continuous in $x \in (\pi^2, \pi^2)$

 $\Rightarrow f^{-1}(x)$ is also continuous

TECHNIQUE CO-

Intermediate value theorem (IVT)

Let f(x) be continuous in closed interval [a, b] then f(x) will attain the least value (say m) and the greatest value (say M) for $x \in [a, b]$ then there exists at

least one
$$c \in [a, b]$$
 such that $f(c) = \frac{\lambda_1 m + \lambda_2 M}{\lambda_1 + \lambda_2}; \lambda_1 \ge 0, \lambda_2 \ge 0, \lambda_1 + \lambda_2 \ne 0$

Illustration 6

Does function $f(x) = \frac{x^3}{4} - \sin(\pi x) + 3$, take on value $2\frac{1}{3}$ within the interval [-2, 2]

Short-cut solution:

Using Tech. Since, f(x) is continuous in [-2, 2] and f(-2) = 1, f(2) = 5Hence, by IVT, it takes the value $2\frac{1}{3}$

Concept Booster Exercise

- The equation $2x^3 6x + 1 = 0$ on $x \in (1, 2)$ has
 - (a) no solution

- (b) at least one real solution
- (c) infinite solution
- (d) None of these
- The equation $2 \cos x + 6x 3$ has
 - (a) no solution
 - (b) at least one real solution in $x \in [0, \pi^3]$
 - (c) infinite solution
 - (d) None of these
- The equation $\frac{a_1}{x-\lambda_1} + \frac{a_2}{x-\lambda_2} + \frac{a_3}{x-\lambda_3} = 0$ where $a_1, a_2, a_3 > 0$ and $\lambda_1 < \lambda_2 < \lambda_1$ has
 - (a) no solution

(b) one real solution

(c) two real roots

- (d) infinite roots
- 4. If $f(x) = \begin{cases} x; x \in Q \\ -x; x \notin O \end{cases}$, then f(x) is continous at -

[AIEEE 2002]

(a) Only at zero

- (b) Only at 0, 1
- (c) All real numbers
- (d) All rational numbers
- 5. If $f(x) = \frac{x}{2} 1$, then on the interval $[0, \pi]$, then
 - (a) $f^{-1}(x)$ is continuous (b) $f^{-1}(0) = 0$
 - (c) $f^{-1}(x)$ is discontinuous (d) None of these

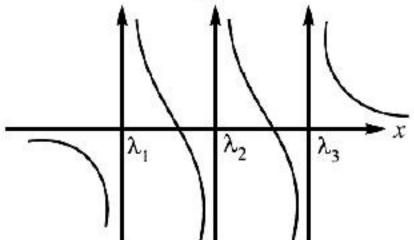
NUMERICAL VALUE PROBLEMS

- 6. If $f(x) = \begin{cases} x^2 + cx + 1; & x \in Q \\ ax^2 + 2x + b; & x \notin Q \end{cases}$ is continuous at x = 1, 2, 3, then find a + b + c
 - [AIEEE 2010]
- 7. Let $f: R \to R$ be a continuous function defined by

$$f(x) = \frac{1}{e^x + 2e^{-x}}$$
, there $0 < f(x) < \frac{1}{C\sqrt{C}}$, $\forall x \in R$

Therefore 'C' is equal to —

- Using T-1 Let $f(x) = 2x^3 6x + 1$: f(x) is continuous 1. (b) Hence, f(1) = -3 < 0 and f(2) = 5 > 0
 - $\Rightarrow \exists$ at least one root in $x \in (0, 2)$
- 2. (b) Using T-1 Let $f(x) = 2 \cos x + 6x 3$: f(x) is continuous function And, f(0) = -1 < 0 and $f\left(\frac{\pi}{3}\right) = 2(\pi - 1) > 0$ $\Rightarrow \exists$ at least one root in $x \in \left[0, \frac{\pi}{3}\right]$
- 3. (c) Let $f(x) = \frac{a_1}{x \lambda_1} + \frac{a_2}{x \lambda_2} + \frac{a_3}{x \lambda_2}$ Now, $f'(x) = -\frac{a_1}{(x-\lambda_1)^2} - \frac{a_2}{(x-\lambda_2)^2} - \frac{a_3}{(x-\lambda_2)^2} < 0$
 - ⇒ Decreasing function



- Hence, two real roots.
- Using T-3 One point is common *i.e.* 0 4. (a) Hence, f(x) is continous at x = 0
- (a) Using T-4 : f(x) is continuous is $x \in [0, \pi]$ 5. $\Rightarrow f^{-1}(x)$ will also be continuous
- (4) Since, f(x) is continuous

$$\Rightarrow (a-1)x^2 + (2-c)x + (b-1) = 0 \xrightarrow{> 1} (\text{on subtracting})$$

- 1, 2, 3, must be roots of above equation
- ⇒ Equation becomes identity (Because more than one root)
- $\Rightarrow a = 1, b = 1, c = 2$; Hence, a + b + c = 4
- (2) As we know that AM \geq GM $\Rightarrow \frac{e^x + \frac{2}{e^x}}{2} \geq (2)^{1/2} \Rightarrow \frac{e^x}{e^{2x} + 2} \leq \frac{1}{2\sqrt{2}}$ 7.

Hence,
$$0 < \frac{1}{e^x + 2e^{-x}} < \frac{1}{2\sqrt{2}} \Rightarrow C = 2$$